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______________________________________________ 
Abstract: C++ is a programming language which has  imperative, object-oriented and generic 
programming features and facilities for low-level memory manipulation. C++ has also been 
found useful in many other contexts, with key strengths being software infrastructure and 
resource-constrained applications, including desktop applications, servers (e.g., e-commerce, 
web search or SQL servers), and performance-critical applications (e.g., space probes). A C++ 
model was constructed to forecast, yellow fever (YF), case distribution in an agro-irrigation, 
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riceland, village ecosystem, eco-epidemiological, study site in Gulu, Uganda. Initially, a 
panchromatic, grid-stratified, QuickBird 0.61m, spatial resolution,  uncoalesced endmember 
dataset of transmittance, land use land cover, (LULC), spectral signatures of the study site was 
differentitated by visible and  near-infrared, (NIR) wavelength, irradiance frequencies. Next, an 
object-based classification algorithm employed a divergence measure to match mixed pixels ( 
“mixels”) to the endmember, LULC, derivative spectra. The spectrum of  a selected mixel was 
calculated as a linear combination of the endmember LULC spectra weighted by the area 
coverage of each endmember within the mixel if the scattering and absorption of electromagnetic 
radiation was dominated by a single component on the capture point, habitat surface. A 
mosaiciked dataset was then employed to manage, display, serve, and distribute, raster, time 
series, intermittent, YF virus, mosquito, vector, Aedes aegypti, oviposition, capture point, 
immature, habitat geolocations along the  riceland, peripheral, forest-canopied, interface 
corridor. A new mosaiciked dataset was created as an empty container in an ArcGIS  
geodatabase cyberenvironment  with default properties which was subsequently  added to the 
raster dataset. Thereafter, the YF virus data was cartographically illustratable as non Fractional 
abundances of non-mixelated, endmember  riceland, agro-village, non-homogeneous, LULC, 
geoclassifiable eco-zones (e.g., sparsely shaded, pre-flooded, densely canopied, post-tillering) 
within a supervised classification matrix. Non-normalized, geometric, seasonal, YF, case 
distribution data was articulated from various Bayesian perpsectives.  The models took inputs 
from table file in the geodatabase, which subsequently imput information of yearly population 
and  YF cases from 1990 to 2012. Log-likelihood functions were also generated in PROC REG 
for each geosampled, YF virus, mosquito vector (i.e., Ae.aegypti) endmember, LULC-specified, 
visible and NIR, wavelength regressor employing  whilst the 

joint log-likelihood function was exponentially logrithmically quantitated by . 

Consequently, the model output rendered  and 

=.0915. The forecasts, ( ), were positively correlated with 

a relative change in YF cases, where a regression line was denoted as , which 
revealed a pseudo R2 of 0.93. To uncorrelate, noisy, LULC, oviposition residuals for deriving 
meaningful, unbiased, non-linear, computable forces in the YF model, a sequential iterative 
algorithm was employed in AUTOREG. A second-order, pertubation algorithm investigated the 
error and sensivity of  the forecasts. Specified orthogonal matrices updated a subset of 
endmember synthetic functions and their renderings. A log-determinant Jacobian term 
orthogonally eigen-decomposed  oviposition, LULC  gridded data which ensured that the 
integral of the model’s likelihood function equaled 1 when integrated over the densities of all 
unknown, endmember, signature, frequency estimators. The model assumption that the post-
unspecified, marginally monotone, semi-parameterically, supplemental, sub-meter resolution, 
uncoalesced, wavelength, irradiance distributions were multivariate Gaussian was violated. 
Generalized autoregressive moving average (GARMA) models were extended to autoregressive, 
integrated, moving average, (SARIMA) models in PROC ARIMA for optimally conducting, 
observation-driven, sub-mixel, signature modelling of  the non-Gaussian, non-stationary, YF-
related,time series,  LULC count variables. A negative binomial, mean model fit 
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[i.e., ] was compared to that of a Bayesian Gaussian fit [i.e, 
, ] employing Box-Cox transformed YF data. For the Gaussian 

[i.e., ], the posterior distributions appeared to be platykurtic. The logarithm 

of the posterior density was calculable as follows  which was equivalent to 

 where  was  a vector of the geometric, seasonal,   endogenous regressors. 
Geospatial outliers were teased out in the residual plots. The normalized modes were validated 
employing a Monte Carlo simulation in PROC MCMC. Subsequently, the time series YF data 
was eco-epidemiologically forecasted in C++ employing a stochastic-dynamic, random, 
weighted matrix. Homoscedastic residuals were cross-tabulated via various hierarchies of 
continuous or categorical, finite, seasonal, transitional, rice agro-irriagted LULC endmembers. 
The model included, meteorological, values. The final model tabulation revealed prognosticated 
population growth and number of case occurrences to 2020 in C++ for the Gulu study site. C ++ 
language may have  implementations for constructing  real-time,  geometric, endmember, YF 
virus, forecasting  cyber-platforms including the Free Software Foundation Low Level Virtual 
Machine Microsoft, Intel and IBM. In so doing, cartographic and geostatistical descriptors of  
geo-spectrotemporally, fractionalized, seasonal, hyperproductive, sylvatic, Ae aegypti, 
,oviposition, sub-meter resolution, newly transitioned inhomogeneously forest, canopied, to rice-
agro-iririgated, LULC abudance may be elucidated for implementing larval control strategies in 
expanding  agro-village, African, complex due to anthropogenic pressure for parsimonously 
forecasting YF case distributions.   

 Keywords: Yellow fever virus, ArcGIS, time series, C++, Gulu, Uganda. 

______________________________________________ 
Introduction 

 Due to increasing anthropogenic population growth in African, riceland, agro-village 
complexes, seasonal, transitional, landscape shifts from inhomogeneous, forest-canopied, land 
use land cover (LULC) to agro-irrigation LULCs along the periphery of these ecosystems is 
common. Increased interface between anthropogenic population and intermittent, forest-
canopied, discontinuous LULCs may facilitate sylvatic, yellow fever (YF), endemic transmission 
by increasing exposure of farm workers and their families to prolific, (i.e., seasonal 
hyperproductive), larval, mosquito, vector habitats of Aedes aegypti, (Linnaeus). Yellow fever is 
a viral hemorrhagic fever transmitted by mosquitoes infected with the YF virus (YFV) whose 
case fatality rates in severe cases can exceed 50% (www.who.gov). Aedes aegypti is the primary 
vector of YF (http://entnemdept.ufl.edu/). The virus could hence be transmitted via Ae. aegypti to 
humans whenst farmers and their families encroach into forest-canopied LULCs along African 
riceland, agro-village, peripheral, discontinuous corridors during occupational or recreational 
activities Ae. aegypti is the most efficient vector for arboviruses because it is highly 
anthropophilic, frequently bites, and thrives in close proximity to humans [WHO, 2009]. An 
intermediate (savannah) cycle exists that involves transmission of YF virus from mosquitoes to 
humans living or working in jungle border areas (http://www.cdc.gov).  
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Literature has revealed a lithany of contributions of anthropogenic-induced, seasonal, 
rice-cycle, LULC changes (e.g., pre-flooded to post-tillering) in expanding African, agro-
irrigated ecosystems contributing to aquatic, vector, larval habitats of malaria, mosquito, 
Anopheles arabiensis (Mwangangi et al. 2008, Muturi et al. 2007, Jacob et al. 2007). However, 
there are substantially less contributions to the potential risks associated with seasonal, endemic, 
YF, transmission on immature, sylvatic, Ae aegypti, hyperproductive foci along sparsely, forest-
canopied, agro-irrigated, African, riceland, capture point, peripheral, LULC, oviposition sites.  

 Amongst the limited contribution, Ricardo Lourenço-de-Oliveira (2002) examined the 
oral susceptibility to YFV of 23 Brazilian samples of Ae.  aegypti   which was evaluated  on 
areas of LULC change induced by anthropogenic pressure. For comparative purposes, six 
additional samples from Southeast Asia, West Africa and North and South America were tested. 
Mosquito samples were collected by employing ovitraps settled around human dwellings, from 
March to December 2001, except for the West Palm Beach, Florida, Ho Chi Minh Vietnam, 
Phnom Penh, Cambodia and Boulbinet, Guinea samples which were collected either as larvae or 
pupae. Field collected mosquitoes (F0) raised to adult in the laboratory were morphologically 
identified to species and fed on guinea pigs to obtain eggs. The procedures to maintain and infect 
mosquitoes followed those described by Vazeille-Falcoz et al. (1999).  

    A total of 2,487 Ae. aegypti from Brazil were tested. Except for  Ae. aegypti collected in 
Milhã, where 148 tested females in areas of geocalssified  LULCs were negative, all other 
evaluated  samples from Brazil were orally susceptible to YFV. However, the infection rates 
were extremely heterogeneous when all Brazilian samples were considered (P < 0.05). In the 
great majority of the Brazilian  Ae. aegypti  samples (14 out of 23) infection rates were low, (i.e., 
under 13%). This was the case of most of Ae. aegypti, immature, habitat samples from Northeast 
(Pacujá, Quixeramobim, Salvador, Feira de Santana) and Southeast regions (Cariacica, Leandro 
Ferreira and five samples from the State of Rio de Janeiro). When only samples from the 
endemic area of sylvatic, YFV, transmission were taken into account at the eco-epidemiological 
study sites, the infection rates were higher, although heterogeneous (P < 0.05), ranging from 
11.1% in Rio Branco to 46.4% in   Ananindeua in the LULC change sites. The  highest infection 
rate for Ae. aegypti was observed for Foz do Iguaçu (48.6%), which was geographically located ( 
henceforth geolocated) in  an LULC transition area  of sylvatic, endemic, YFV transmission in 
Brazil. The Asian samples were more susceptible (47%-64.4%) than those from Brazil (0-
48.6%), Venezuela (13.6%) and USA (24.8%). Although the authors were able to regress some 
discrete, integer, count values representing geosampled, clinical, diagnostic, field-operational 
data on remote-specified, oviposition, LULC data and generate some eco-epidemiological 
statistics, the   research failed to optimally quantitate  circumstancial cases where  the  pathogen 
may not have reached all susceptible population within  gridded, geoclassified, stratified, LULC 
areas at the eco-epidemiological study sites; thus, assuming geomorphological homogeneity ( 
e.g., continuous canopy cover). In has been recognized through multiple contributions to 
literature (Mwagangi et al. 2008, Jacob et al. 2007, Muturi et al. 2007, Gu and Novak 2005), that 
grid-stratifiable, vector, arthropod, eco-epidemiological, immature, LULC, capture point, habitat 
data display extreme, geospatial, endogeneity and topological heterogeneity (eco-
georeferenceable, geosampled, seasonal, oviposition,  capture point, depth levels),  especially 
whenst regressively, forecasting, sub-meter resolution, geoclassifiable, geo-spectrotemporal, 
oviposition, sub-meter resolution, LULCs based on semi-parametric, iterable, interpolative, 
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eigen-decomposable, endmember, signature covariates. Hence, the data collections were an 
incomplete reflection of eco-regions where newly transitioned LULCs were optimally suitable 
for Ae. aegypti and host presence.  

 

Spatial heterogeneity in an entomological, eco-epidemiological, vector, arthropod, 
endmember, time series, grid-stratifiable, sub-meter resolution, LULC  model can refer to the 
variation or instability in observational units (e.g., gridded,  eco-georeferenecable 
discontinuously canopied, forestland, sylvatic, Ae aegypti, oviposition, capture points) across an 
eco-geographic region (agro-irrigated African floodplain) which may imply that the functional 
forms and/or behavioral parameters vary by geolocation. The adaptation for oviposition 
preference may have been part of the overall evolution of domesticity that likely occurred in 
North Africa when ancestral sylvan Ae.  aegypti. became isolated from sub-Saharan Africa due 
to the Sahara Desert ( Tabachnick 1991 ). In general oviposition choice in mosquitoes is largely 
due to volatiles produced by the microorganisms in the larval (Yelfwagash et al. 2017,). Thus, as 
long as appropriate volatiles are produced by a standing  forested, sparasely canopied pool of 
water, resding next to an expandinf African agro-irrigated riceland corridor  an opportunistic 
species like Ae. aegypti may oviposit there.This is supported by situations where this domestic 
form outside Africa has reverted to developing in natural water. This has occurred mostly on 
islands or other isolated sites. Chadee et al. (1998) report 12 types of natural habitats where 
Ae.aegypti  can be found in Jamaica, Puerto Rico and Trinidad including rock holes, tree holes, 
leaf axils, bamboo joints and coconut shells. Larvae developing in rock holes has been 
documented on the east coast of Africa ( Trpis 1972 ) and in Anguilla ( Wallis & Tabachnick 
1990 ). Ae.aegypti  has been observed ovipositing in tree holes in New Orleans [cited in Wallis 
and Tabachnick (1990)]. 

Geographically weighted regression (GWR) may be employable to characterize Ae. 
aegypti, oviposition, sub-meter resolution, geoclassifiable, immature habitat variations, by 
approximatimg parameter estimators for each LULC site or observational unit (e.g., forest-
canopied, capture point along an expanding African, riceland corridor) based on all observations 
within a neighborhood (optimally pre-determined using cross validation), as described in 
Fotheringham (2003). Ghosh et al. (2008) analyzed impervious (or heavily developed) LULC 
shares via a continuous-response GWR model, using data points across Minnesota’s Twin Cities 
metro area. Páez (2006) calibrated a binomial probit GWR model with heteroscedastic error 
terms to characterize the development of 324 vacant 1-hectare grid cells near California’s Bay 
Area Rapid Transit lines. Applications of multinomial GWR models for land use patterns can be 
found in McMillan and McDonald (1999) and Wang et al. (2011). The second type of spatial 
effect, spatial autocorrelation spillover may arise primarily due to imperfect information on 
observational, inhomogeneous, forest-canopied, Ae. aegypti, oviposition, capture point, eco-
epidemiological, grid-stratified, sub-meter resolution, peripheral African riceland, LULC units 
and measurement errors. For example, information on endmember, LULC variables like soil 
types,  may be regularly absent from Ae. aegypti models of African agro-irrigated land use and 
change, resulting in correlations across nearby discontinuous, forest-canopied sites’ along with 
their geoclassified LULC error terms. Moreover, geo-aggregated spatial entomological, data 
values (such as geo-spectrotemporally geosampled, LULC, ovipoition, capture point, count 
density values) and arbitrary spatial boundaries (such as Census tract designations) can introduce 
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forms of spatial autocorrelation into an agro-irrigated, African, riceland, sub-meter reosolution 
eco-epidemiological, oviposition, forecast, vulnerability, study site model  especially whenst 
quantitating probability of endemic, YF transmission based on seasonal LULC change due to 
anthropogenic pressure. A common treatment for this effect may be  to directly specify a spatial 
structure, such as a spatial autoregressive (SAR) or spatial moving average (SMA) models (see 
Anselin 1988, Anselin and Hudak 1992, LeSage and Pace 2009). Work on discrete states of land 
use change with such specifications can be found in Chakir and Parent’s (2009) spatial 
multinomial probit model (for cross-sectional data), Munroe et al.’s (2002) series of binary 
probit and random effects probit models (using panel techniques), and Wang and Kockelman’s 
(2009a, 2009b, 2009c) dynamic spatial ordered probit model with a temporal component 

In statistics, a probit model is a type of regression where the dependent variable can only 
take two values. The purpose of the model is to estimate the probability that an observation ( 
e.g., geo-spectrotemporally geosampled, eco-georeferenceable, seasonal hyperproductive, Ae. 
aegypti  capture point,) with particular characteristics (e.g., inhomogeneous forest-canopied 
LULC) will fall into a specific regression category. (e.g., a binary 
classification model).A probit model is a popular specification for an ordinal or a binary response 
model (Bliss 1935); 

In  time series,  vector, arthropod-related, eco-epidemiological, oviposition, capture point, 
signature LULC, endmember, analyses, binomial regression is a technique in which 
the response (often referred to as Y) is the result of a series of Bernoulli trials, or a series of one 
of two possible disjoint outcomes (traditionally denoted "success" or 1, and "failure" or 0) ( 
Jacob et al. 2009, Griffith 2005). In the theory of probability and statistics, a Bernoulli 
trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" 
and "failure", in which the probability of success is the same every time the experiment is 
conducted (Papoulis 1984). In binomial regression, the probability of a success is related 
to explanatory variables: the corresponding concept in ordinary regression is to relate the mean 
value of the unobserved response to explanatory variables (Hosmer and Lemeshew 2002). 
Binomial regression models in vector arthropod entomological science are essentially the same 
as binary choice models, one type of discrete choice model.  

Discrete choice models, or qualitative choice models can  describe, explain, or predict 
choices between two or more discrete alternatives, such as probability of endemic YF 
transmission if  a farm worker residing an expanding, African, agro-ecosystem, eco-
epidemiological, irrigated, study site  enters or not enters an inhomogeneous, forest-canopied, 
peripheral, sub-meter resolution, geoclassifiable LULC. Such choices contrast with standard 
consumption models in econometrics in which the quantity of each good consumed is assumed to 
be a continuous variable. In the continuous case, calculus methods  (e.g., first-order LULC 
conditions ) may  be optimally employable to determine the probability of an endemic, YF, 
transmission based on  the times an individual enters a “hot spot” zones ( area of positively 
autocorrelated, Ae. aegypti, forest, discontinuous, capture points along a riceland perphery) 
which may be modeled empirically using regression analysis. Alternatively, a discrete choice, 
sub-meter resolution, geometric, grid-stratifiable, sub-meter resolution,  endmember, LULC  
analysis may examine situations in which the potential outcomes are discrete, such that the 
optimum is not characterized by standard first-order conditions. Thus, instead of examining 
“how much the probability of endemic YF transmission” could occur in an expanding African 
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floodplain due to anthropogenic pressure employing continuous choice LULC variables, discrete 
choice analysis would examine which behavior response of the individual residing in the agro-
ecosystem may cause a higher probability of an endemic YF transmission event to occur. 
However, a discrete choice geo-spectrotemporal endmember, sub-meter resolution, eco-
epidemiological, LULC analysis can also be used to examine the chosen quantity  when only a 
few distinct quantities, such as the number of  seasonal, hyperproductive, oviposition, sub-meter 
resolution, grid-stratifiable,  LULC sites along inhomogeneous, forest-canopied. peripherial  
riceland corridors of an expanding African, agro-ecosystem are avialable.  Techniques such 
as logistic regression and probit regression can be employed for endmember LULC empirical 
analysis of discrete choice (Griffith 2003). Discrete choice models specify the probability that an 
individual chooses an option among a set of alternatives (Hosmer and Lemeshew 2000). The 
endmember LULC description of discrete choice behavior in an Ae. egypti, forecast vulnerability 
model may thus be reflected by the  individual behavior of a farm worker or other African 
riceland resident to enter or not enter  into a discontinuous, forest-canopied, grid-straifiable 
geolocation along the peripherial corridor of the agro-irrigated eco-georferenecable ecosystem  
which may be  quantiatable as intrinsically probabilistic event for  endemic YF  transmission.  

 

In practice, no one individual  can know all co-factors affecting endemic, YF, 
transmission in an African expanding riceland, agro-ecoystem  nor their determinants which may 
be partially observed or imperfectly measured. Therefore, entomological  time series, discrete 
choice models for prognosticating YF endemic transmission in farm workers and other residents 
in expanding, African, riceland, agro-irrigated environments  may rely on stochastic assumptions 
and specifications to account for unobserved LULC factors related to a) choice alternatives, b) 
taste variation over people (interpersonal heterogeneity) and over time (intra-individual choice 
dynamics), and c) heterogeneous choice sets. The different formulations may be been 
summarized and classified into groups for modeling endemic probability of YF transmission. 
 

Regardless, the primary difference in any geo-spectrotemporal or geo-spatiotemporal, 
forecast,  capture point, Ae aegypti oviposition, capture point, eco-epidemiological, endmember 
endemic, transmission-oriented, risk model  is in the theoretical motivation: Discrete LULC 
choice models are motivated using utility theory so as to handle various types of correlated and 
uncorrelated seasonal, time series, covariate coefficient  choices, while binomial regression 
models are generally described in terms of the generalized linear model. 

 
In statistics, the generalized linear model (GLM) is a flexible generalization of 

ordinary linear regression that allows for response variables that have error distribution models 
other than a normal distribution. The GLM generalizes linear regression by allowing the linear 
model to be related to the response variable via a link function and by allowing the magnitude of 
the variance of each measurement (e.g.,  eco-georeferenced,  seasonal, hypeproductive, Ae. 
aegypti, oviposition site on a sub-meter resolution, grid-stratifiable, inhomogeneous forest-
canopied LULC)   to be a function of its prognosticated value .Generalized linear models  in 
vector entomological, time series endmember, oviposition, eco-epidemiological forecast, 
vulnerability  models were formulated as a way of unifying various other statistical models, 
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including linear regression, logistic regression and Poisson regression ( Jacob et al. 2005, Griffith 
2005) These authors  propose an  iteratively reweighted least squares method for maximum 
likelihood estimation of  field remote and clinically specified diagnostic LULC, vector 
arthropod-related model parameters.    Maximum-likelihood estimation remains popular in 
vector ecology and is the default method on many statistical computing packages. These sub-
modeling endmember, techniques   extends beyond the exponential-family-type generalized 
linear models to other distributions, to non-linear parameterizations, and to dependent 
observations. Various criteria for estimation other than maximum likelihood, including resistant 
alternatives, may be used. The algorithms are generally numerically stable, easily programmed 
withouthe aid of packages, and highly suited to interactive computation. Other approaches, 
including iterative Bayesian approaches and least squares fits to variance stabilized responses, 
have been developed for various vector arthropods ovipsoition, eco-epidemiolgical, predictive 
risk  modeling  

 
Henceforth, geo-spectrotemporally geosampled entomological eco-epidemiological, 

LULC, capture point, Ae aegypti,sub-meter resolution, grid-stratifiable discrete choice, forecast, 
vulnerability  models may be described primarily with a latent variable indicating the "utility" of 
making a choice, and with randomness introduced through an error geosampled habitat 
variable distributed according to a specific probability distribution.  statistics, latent variables as 
opposed to observable variables), are variables that are not directly observed but are rather 
inferred (through a mathematical model) from other variables that are observed (directly 
measured).  

 

Endogeneity is often described in geo-spatiotemporal, vector arthropod, eco-
epidemiological, geo-spectrotemporal,  geosampled, endmember, geoclassifiable, LULC, 
forecast, vulnerability, eco-georeferenecable, capture point,  signature model as having three 
sources: 1)omitted  density, count variables, 2) habitat wavelength, frequency dimension 
measurement error;and,3) simultaneity ( Jacob et al. 2012, Jacob et al. 2009) Though it is often 
helpful to mention these "sources" separately, confusion sometimes arises because they are not 
truly distinct. Imagine a regression forecasting the effect of  an empirical, geo-spectrotemporally 
geosampled, sub-meter resolution, grid-stratified,  capture point, oviposition LULC dataset of  
uncoalesced, sub-meter resolution,  3-dimensional, immature, explicative, African , riceland, 
agro-irrigated, Ae, aegypti, catchment watershed, endmember, covariates based on  seasonal, 
immature, habitat, larval, density count. Perhaps the measure of eco-georeferenceable, forecast, 
vulnerability, YF, endmember, LULC,  3-Dimensional (D) model, slope coefficients based or the 
number of  geo-spectrotemporally geosampled, seasonal hyperproductive, Ae, aegypti, 
immature,capture points in an agro-irrigated, African floodplain may be  pertinent, diagnostic, 
parameterizable,sub-meter resolution, grid-stratifiable covariate estimators regardless of the time 
of the rice-cycle. Additionally, if an arbovirologist, medical entomologist or YF experimenter 
has  an idea of what type of  contour lines may create discontinuous, floodplain,  surface, runoff 
statistics, then he or she may be able to optimally tabulate a propogagtional measurement error in 
the eco-epidemiological, capture point, oviposition, Ae aegypti, immature habitat, unmixed, 
explanatory, diagnostic, sub-mixel, regression-related, capture point, wavelength, transmittance, 
LULC frequencies.  
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Alternatively, a arbrovirologist, medical entomologist or a YF experimenter could 
describe the situation as an omitted variables problem for approximating uncertaintyiteratively 
interpolative , endmember,sub-meter resolution, wavelength, frequency, signature,  LULC 
estimates. If  monthly precipitation evapotranspiration.  and elevation coefficients are selected as 
explicative diagnostic, regressors in the geo-spectrotemporal, geosampled, YF, Ae.aegypti,  
forecast, vulnerability, sub-meter resolution, endmember, LULC, grid-stratified,   model  and are 
measured at the same time this would be  example of simultaneity, but it too, might be reframed 
in terms of omitted variables. 

Potential implications of precipitation evapotranspiration.  and elevation variability along 
with LULC on stream flow have been assessed by  Akopoti et al. (2016). in the Black Volta 
basin employing the Soil and Water Assessment Tool (SWAT) model. The spatio-temporal 
variability of rainfall over the Black Volta was assessed using the Mann-Kendall monotonic 
trend test and the Sen’s slope for the period 1976–2011. The statistics of the trend test showed 
that 61.4% of the rain gauges presented an increased precipitation trend whereas the rest of the 
stations showed a decreased trend. However, the test performed at the 95% confidence interval 
level revealed that the detected trends in the rainfall data were not statistically significant. Land 
use trends between the year 2000 and 2013 revealed  that within thirteen years, LULC classes 
like bare land, urban areas, water bodies, agricultural lands, deciduous forests and evergreen 
forests had increased respectively by 67.06%, 33.22%, 7.62%, 29.66%, 60.18%, and 38.38%. 
Only grass land decreased by 44.54% within this period. Changes in seasonal stream flow due to 
LULC were assessed by defining dry and wet seasons. The results showed that from year 2000 to 
year 2013, the dry season discharge has increased by 6% whereas the discharge of wet season 
has increased by 1%. The changes in stream flows components such us surface run-off lateral 
flow and ground water (GW) contribution to stream flow and also on evapotranspiration changes 
due to LULC was evaluated. The results showed that between the year 2000 and 2013, and have 
respectively increased by 27% and 19% while  GW flow decreased by 6% while ET has 
increased by 4.59%. The resultant effects are that the water yield to stream flow has increased by 
4%.  

The climate and geophysical characteristics of the basin (such as topography, soil, 
vegetation and vegetation) as well as anthropogenic activities are the main factors that influence 
the ecohydrological biophysical processes in African, riceland, agro-irrigated, ecosystem basins. 
Thus, e LULC processes that influence the evolution of the surface of these basins (and hence  
any Ae. aegypti, immature, habitat, oviposition, capture point geo-spectrotemporally geosampled 
at the basin), will  depend on the geo-spatiotemporal patterns of the precipitation and evaporation 
rates.  The distribution of rainfall is one of the favorable factors that can influence the number of 
Aedes aegypti mosquito Amongst the remotely sensed, sub-meter resolution,  LULC, eco-
epidemiological models, geophysically based distributed models are well established models for 
analyzing the impact of land management practices on water, sediment, and agricultural 
chemical yields in large complex watersheds. Unfortuantely, the SWAT is a comprehensive, 
semi-distributed river basin model that requires a large number of input parameters, which can 
complicate model parameterization and calibration for optimally quantitating abundance of Ae. 
aegypti foci on  grid-stratifiable, sub-meter resolution,  expanding, endmember, geoclassified, 
LULC plots in African ricefields due to anthropogenic pressure. 
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A simulation-based approach may be  employable for attributing the observed flooded 
LULC trends to the postulated drivers of seasonal, hyperproductive, Ae. aegypti, oviposition foci 
in African riceland environments. Aich et al. (2015) contributed to the ongoing discussion on 
whether LULC or climate trends have influence on the observed increase of flood magnitudes in 
the Sahel. An ecohydrological model Soil and Water Integrated Model (SWIM) with a new, 
dynamic LULC module was set up for the Sahelian part of the Niger River until Niamey, 
including the main tributaries Sirba and Goroul. The model was driven with observed, 
reanalyzed climate and LULC data for the years 1950–2009. In order to quantify the shares of 
influence, one simulation was carried out with constant land cover as of 1950, and one including 
LULC. As quantitative measure, the gradients of the simulated trends were compared to the 
observed trend. The modeling studies showed that for the Sirba River only the simulation which 
included LULC was able to reproduce the observed trend. The simulation without LULC showed 
a positive trend for flood magnitudes, but underestimated the trend significantly. For the Goroul 
River and the local flood of the Niger River at Niamey, the simulations were only partly able to 
reproduce the observed trend. The new endmember LULC module enabled some first 
quantitative insights into the relative influence of LULC and climatic changes. For the Sirba 
catchment, the results implied that LULC and climatic changes contributes in roughly equal 
shares to the observed increase in flooding.  

Unfortunately for optimally prognosticating,  seasonal, Ae. aegypti abundance and 
distribution in expanding African agro-irrigated environments parts of the subcatchment must be 
included,which  SWIM cannot provide for  any ecohydrological geosampled body. The SWIM  
model can only simulate ecohydrological LULC  processes, vegetation, erosion and nutrient 
cycles at the catchment scale. A subcatchment is composed of hydrotopes, which are sets of 
elementary units with homogeneous soil and land use types( Jensen 2005). In each hydrotope, 
nutrient transport and transformation are simulated to model processes from the hydrological 
system to the river network.  A subcatchment is used to model the runoff from a given area of 
land( www.esri.com). Optimally each subcatchment LULC should generate a runoff hydrograph, 
that   typically routes into a downstream reach or iririgation pond in an African, riceland agro-
village complex for quantitating Ae. aegypti, oviposition sites on geoclassifiable LULCs. The 
SWIM model results may be able to  distinguish that climatic changes and LULC are drivers for 
the flood increase in African ricelands ; however their shares cannot be quantified for 
quantitating Ae. aegypti eco-epidemiological, capture points on newly transitioned 
inhomogeneous, forest-canopied LULC to agro-irrigation LULC along the periphery of these 
ecosystems.  

The SWAT model is a complex semi-distributed process-based model. It was developed 
by the Agricultural Research Service of the United States Department of Agriculture and can 
model changes in hydrology processes, vegetation, erosion, and nutrient loadings at the sub-
catchment scale. It divides the catchment into subcatchments and subsequently into Hydrologic 
Response Units (HRUs). Different combinations of land use, soil types and slope in each 
subcatchment can be represented by the HRUs. The processes related to water, sediment and 
nutrient transport  for a geosampeld, geo-spectrotemporal, endmember, sub-meter resolution, 
endmember LULC, capture points may be  modeled at the HRU scale. The hydrological 
processes may then be  distributed in five compartments: the stream, the soil surface, the soil 
water layers, the shallow unconfined aquifer, and the deep confined aquifer. Up to ten soil layers 
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can be divided in SWAT( www.esri.com). Surface runoff can be calculated either by Soil 
Conservation Service-Curve Number (SCS-CN) method or Green and Ampt method. Erosion of 
the oviposition site may be  estimated with the Modified Universal Soil Loss Equation 
(MUSLE). With the daily time step, SWAT simulates nutrient transports and transformations in 
soil profiles, river network, various water bodies (e.g., pond, lakes, and wetland), and the 
interaction processes between different systems. The SWAT model may also differentiate 
between nutrient fluxes from different ecohydrological, geoclassifiable, sub-meter resolution, 
LULC sources in expanding African riceland agro-village complexes that may influence Ae. 
aegypti abundance and distribution in these  irrigated ecosystems 

 
Althoug SWAT distributed models are capable of capturing the spatial distribution of 

input forecast, vulnerability, geo-spectrotemporally geosampled, Ae aegypti sub-meter 
resolution, endmember, LULC   variables including metrological conditions (rainfll, temperature 
etc) and physical parameters (land use, soil, elevation etc).  distributed models are data intensive 
they need quality data, hard to configure and they require greater simulation and calibration 
time( Jensen 2005). The performance of these models is quite low in hydrological remote area 
(data scare regions). Semi-distributed models, lump metrological variables and biophysical 
parameters in sub-basins,. Hence, parameter calibration of the geosampled,  Ae aegypti, 
oviposition, LULC etsimators may not reveal all capture point heterogeneous variables in the 
model.  
 

Unobserved heterogeneity is simply variation/differences  (e.g.,seasonal, endmember, 
LULC, African, riceland, Ae aegypti, oviposition sites along discontinuous forest canopied, 
peripheral ecosystem geoclocations) amongst cases which are not measured (Cressie 1993). If an 
arbovirologist, medical entomologist or YF experimenter understands endogeneity such a sub-
meter resolution endmember, LULC, eco-epidemiological, forecast, vulnerability model, the 
implications of unobserved heterogeneity in a regression context may be definable. For example, 
let a be an empirical geo-spectrotemporal, endmember geosampled dataset of immature habitat 
returns for a seasonal, hypeproductive, geosampled, Ae aegypti, African, oviposition, LULC,  
time series be defined as β+biβ+bi with E(bi)=0E(bi)=0 in PROC REG. In so doing 
yi=xi(β+bi)+w′iγ+ϵi,yi=xi(β+bi)+wi′γ+ϵi may optimally quantitate seasonal, hypeproductive, 
capture points along the ecosystem peripheral, geoclassified LULCs whenst   yiyi is a typically, 
log- transformed density count rate, xixi is the sample frame time and wiwi is a set of other 
controls. An example of endogeneity then may be quantitated along with noisy LULC variables 
when xixi is correlated with ϵiϵi (e.g., precipitation diffusion floodplain rates is correlated with 
number of agro-irrigation ditches, which is not amongst the other prognosticators). If an 
arbovirologist, medical entomologist or YF experimenter estimates a single geosampled, Ae 
aegypti, endmember, sub-meter resolution, oviposition,  LULC coefficient 
yi=xiβ+w′iγ+(ϵi+bxi)=xiβ+w′iγ+ϵ~iyi=xiβ+wi′γ+(ϵi+bxi)=xiβ+wi′γ+ϵ~I, then the included 
variable xixi  may be  correlated with the error term ϵ~iϵ~i, inducing the same problems as the 
case of endogeneity in the sub-mter resolution, forecast, vulnerability, eco-epidemiological, YF, 
geo-spectrotemporal, signature model. 

 
 Unfortunately, the authors of  Ricardo Lourenço-de-Oliveira (2002) also cateogorized 

vectorial competence of these samples high, even though YFV infected mosquito LULC data had 
not been tested for violations of assumptions ( i.e., heteroskedascity) in the experimental, 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

12 
Copyright © acascipub.com, all rights reserved.  

regressively, geo-spectrotemporally or geo-spatiotemporally  geosampled, diagnostic, time 
series, endmember,  residual,  LULC prognosticators. Many articles in the literature on 
stochastic, medical entomological, vector, arthropod-related, geoclassified, sub-meter resolution, 
LULC, immature habitat, diagnostic, riceland, parameter estimators ( e.g., meteorological, or 
Euclidean distance measurements from a capture point to an eco-georferenecable,  agro-village, 
grid-stratified, orthogonal centroid)  have provided arguments for optimally quantitating the 
nonconstancy of coefficients across multiple, bio-geophysical, eco-georeferenceable, eigen 
function, orthogonally decomposable, synthetic, spatial filter,  LULC endmember observations  
(Jacob et.al. 2012). Suffice it to note that if parameterizing sylvatic, endmember, YFV, 
geometric, eigen-decomposable, seasonal, geo-spectrotemporally geosampled, regression 
coefficients is to be regarded as a vital modeling methodology for retrieving true partial 
derivatives from an empirical optimizable, Ae. aegypti, oviposition, endmember, LULC dataset 
of  uncoalesced, sub-meter resolution, quantitative, iterative, qualitatively, interpolative, 
geoclassifiable, wavelength, forest-canopied or African, riceland, agro-irrgated, village, 
stochastic sub-mixwel signature explanators with respect to the diagnostic, endogeneity, it is 
improbable that these partial derivatives are identical for any two different, geosampled, capture 
point, hyperproductive, foci grid-stratifiable observations. Panchromatic, geometric, 
geoclassifiable time series, dependent, frequentistic, LULC data is optimal for geostatistically, 
optimally targeting, vector, arthropod-related, endemic, transmission-oriented, eco-
georeferenceable, seasonal, hyperproductive, capture point, oviposition foci on geo-
spectrotemporal, geoclassified ,grid-stratifiable,  sub-meter, resolution, LULCs (Jacob and 
Novak 2014).    

Frequentist probability or frequentism is an interpretation of probability; it defines an 
event's probability ( e.g., an Ae. aegypti, sub-meter resolution, orthogonal, endmember,  LULC 
model forecasts of capture point, seasonal hyperproductive foci) as the limit of its 
relative frequency in a large number of trials( Hosmer and Lemeshew 2002). There are two broad 
categories of  explanative, probability signature LULC interpretations in time series, vector eco-
epidemiological entomological, oviposition, remotely sensed data  which can be called 
"geophysical" and "evidential" probabilities( Jacob et al. 2009). Geohysical explicative probabilities, 
(i.e., objective or frequency probabilities), can be associated with vector arthropods in random, 
geophysical ecosystem, geomorphological, terrain-related, grid-stratifiable, LULC transitions grid-
stratifiable geolocations such as an those commonly seen in agro-irrigated, African, rice-cycle, 
LULC changes (e.g., discontinuous, peripheral, forest-canopy to riceland, Ae aegypti, , immature, 
seasonal, hyperproductive, oviposition habitats). In such agro-irrigated LULC ecosystems, a given 
type of event (e.g., flooding event) may yield a lower, Ae. aegypti, immature habitat, eco-
epidemiological, capture point, seasonal, count density at a persistent rate, or "relative 
frequency", in a long run of trials. Geophysical endmember probabilities may be usable to either 
explain, or may be invoked to explain, these stable frequencies in these entomological models.  

All interpretations of probability in a seasonal, geo-spectrotemporal, vector, 
entomological, sub-meter, resolution, geosampled, signature endmember, LULC model are 
associated with approaches to statistical inference, including theories 
of estimation and hypothesis testing. The physical interpretation, of frequentist statistical 
methods may be robustly employable for remotely targeting, seasonal, hyperproductive, Ae. 
aegypti, immature habitat, capture points in expanding African, riceland, agro-irrigated 
ecosystems due to expanding anthropogenic populations, but iterative, interpolative explicative 
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forecasts must be field validated (“ground truthed”). Prior to implementation of a LULC , 
entomological, LULC model  the existence and importance of propogagtional error probabilities, 
must be considered in the entomological, forecasts, so that the calculation of evidential 
probabilities may be statistically valid ( Jacob et al. 2005). 

 
  There are four principal assumptions which justify the usage of a time series, eco-
epidemiological, linear, vulnerability,  probabilistic, remotely sensed, explanative, predictive, 
YF, geometric, diagnostic, endmember, orthogonal, LULC, signature, orthogonal  paradigms for 
purposes of generating inference of specific, seasonal, transitional, inhomogeneous, peripherally 
expanding, agro-irrigated, eco-georeferenecable, African ricelands endmeber estimators into  
discontinuous, LULC, canopied corridors where, flooded, oviposition, hyperproductive, 
seasonal, sylvatic, Ae. aegypti,  immature habitats may occur. Rice plants along gap edges forage 
for light by occupying both horizontal and vertical gap space and this morphological flexibility 
has implications for individual plant success, as well as forest structure and dynamics (Ackerly 
and Bazzaz 1995).  To determine if contrasts in light availability lead to the development of 
canopy displacement, Jacob et al. (2015) investigated the responses of tree canopies to the 
heterogeneous light environments at the edges of multiple experimental canopy gaps to 
distinguish hyperproductive, eco-epidemiological, capture point onchocerciasis (river 
blindness”), black fly vector Similium damnosum s.l. in a riverine tributary in northern Togo. 
Canopies and trunks of gap edge trees were mapped, and their spatial distributions were analyzed 
using sub-meter resolution, endmember, LULC data. The authors found that tree canopies were 
displaced towards LULC gap centers where the eco-epidemiological oviposition foci was 
geolocated. The magnitude and precision of canopy displacement were greater for subcanopy 
trees than for canopy trees. The magnitude and precision of canopy displacement were generally 
greater for earlier successional trees than for later successional trees surrounding a seasonal, 
hyperproductive, S. damnosum s.l., trailing vegetation, capture point. Canopy depth was 
significantly greater on gap-facing sides of trees than on forest-facing sides of trees. Thus, the 
authors of Jacob et al. (2015) determined that trees along gap edges forage for light by occupying 
both horizontal and vertical gap space especially where seasonal, hyperproductive, immature 
habitats of S. damnosum s.l. occur in African meandering seasonal, flood-prone, agro-irrigated 
tributaries.  This morphological flexibility may have implications for individual rice plant 
success, as well as canopy gaps in forest structures and dynamics for prognosticating seasonal 
hypeproductive capture point, Ae. aegypti foci in expanding African, Riceland villages due to 
anthropogenic  pressure. 

 The first assumption is linearity and additivity of the relationship between  an, 
expositorial, intuitive, prognosticative, diagnostic, entomological, geoclassified,  orthogonal, 
signature, LULC variable [e.g., annual, YF, prevalence, incidence rates] and a series of 
independent, geo-spectrotemporal or geo-spatiotemporal, geosampled, endmember, continuous 
and categorical, sub-meter resolution, time series, geoclassifiable, vulnerability variables such as 
weekly, meteorological, endmember, LULC estimators or  log-transformed,  surface and 
subsurface, geomorphic structures [e.g., catchment three (3)-dimensional, agro-irrigated, 
watershed covariates]. The linearity assumption can best be tested with scatterplots (Hosmer and 
Lemeshew 2002).  These plots may depict a curvilinear and a hetroscedastic relationship in an 
empiricial optimizable, uncoalesced, LULC, endmember,  signature dataset of uncoalesced, sub-
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meter resolution, remotely sensed, Ae.  aegypti,  oviposition, capture point  seasonal, 
hyperproductive  habitats in an expanding, African, agro-irrigated  riceland. 

The following statements in the CORR prodcedure was employed by Jacob and Novak 
(2014) for requesting  an endmember,  iteratively interpolative, time series, malarial, mosquito, 
Anopheline arabiensis, seasonal hyperproductive, oviposition, sub-meter resolution, 
geoclassifiable, uncoalesced, endmember, LULC, capture point, signature, correlation analysis  
within a scatter plot matrix. The CORR procedure is a statistical procedure for numeric random 
variables that computes Pearson correlation coefficients, nonparametric measures of association, 
and the probabilities associated with these statistics. The correlation statistics include; Pearson 
product-moment and weighted product-moment correlation, Spearman rank-order correlation, 
Kendall's tau-b, Hoeffding's measure of dependence, D andPearson, Spearman, and Kendall 
partial correlation. PROC CORR also computes Cronbach's coefficient alpha for estimating 
reliability (www.sas,edu).The explicative, default, endmember, LULC  correlation analysis 
includes descriptive statistics, Pearson correlation statistics, and probabilities for each analysis 
exploratory geo-spectrotemporal, geosampled, LULC variable.  It may be possible for an 
arbovirologist, medical entomologist or other researcher to save the correlation statistics 
regressively derived from an eco-epidemiological, eco-georeferenceable, sub-meter resolution, 
LULC geo-spectrotemporal, Ae. aegypti,  geoclassified, geosampled, African agro-irrigated, 
riceland, forecast, vulnerability, signature,oviposition,  LULC model in a SAS dataset for use 
with other endmember statistical and reporting procedures. 

Simple Correlation Analysis for a Fitness Study using PROC CORR is the simplest form 
of PROC CORR output (www.sas.edu). Pearson correlation statistics may be computed for all 
numeric geo-spectrotemporal, geosampled, African, riceland, ago-irrigated and discontinuous, 
forest-canopied, sub-meter resolution, geoclassifiable, Ae. aegypti,  empirical oviposition 
variables for investigating the effect of  various LULC, uncoalesced, signature covariates on  
immature habitat fitness in these peripheral ecosystem capture points The statement in Jacob and 
Novak (2014) that would produces the SAS outputwas : 

options YF mosquito habitat size=60; 
proc corr data=fitness; 
run; 

 A sub-meter resolution, grid-stratified,eco-epidemiological, eco-georeferenceable, 
LULC  orthogonal, signature dataset containing multiple, empirical, geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiological, geosampled, clinical, field and remote, optimally specified, 
YF prognosticators may be employable to unbiasedly, regressively quantitate, agro-irrigated, 
hyperproductive, seasonal,  immature habitat, LULC estimators geosampled in an African agro-
irrigated, riceland environment, This dataset  may contian multiple bio-geophysical, geo-
spectrotemporal, geosampled, endmember, capture point, seasonal, eco-georeferenecable, sub-
meter resolution,  endmember, LULC observations, one of which may contain a missing value 
for the immature density variable (e.g., larval Weight3) for example. Initially, the capture point, 
immature habitats external, topological, geo-morphological, LULC feature attributes may be 
examined employing: 
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ods graphics on; 
title 'Ae. aggypti Larval Measurement Data'; 
proc corr data=mosq1 nomiss plots=matrix(histogram); 
   var Height Width Length3 Weight3; 
 run; 
ods graphics off; 
 

 The "Simple Statistics" table in Figure 1 display univariate descriptive statistics for the 
hypothetical, Ae.aegypti, larval habitat, endmember, sub –meter resolution, LULC, endemic 
,vulnerability, forecast  dataset 

Figure 1: The CORR Procedure variable output for 4 African riceland and forest 
discontinuously canopied ovispoition, capture point, topological regressors  

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

Height 34 15.22057 1.98159 517.49950 11.52000 18.95700 

Width 34 5.43805 0.72967 184.89370 4.02000 6.74970 

Length3 34 38.38529 4.21628 1305 30.00000 46.50000 

Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000 
 

An arbovirologist, medical entomologist or YF experimenter may specify the NOMISS 
option for quantiating the same empirical dataset of oviposition, eigen-decomposable, Ae. 
aegypti capture point, riceland, agro-village,  geosampled  observations to computate the 
correlation  of each pair of parameterizable, hyperproductive, seasonal geosampled, immature 
habitat   estimators. A Pearsons Correlation matrix may be generated.The NOMISS option can 
exclude geoclassified endmember, LULC observations with missing values of the VAR 
statement variables from the LULC, forecast, vulnerability analysis. The OUTP= option can 
create an e output LULC Ae. aegypti capture point dataset (i..e, CorrOutp) that may contain the 
Pearson correlation statistics. 

In statistics, the Pearson correlation coefficient [PCC], d also referred to as the Pearson's 
r, Pearson product-moment correlation coefficient (PPMCC) or bivariate correlation] is a 
measure of the linear correlation between two explanative endmember variables( e.g., 
geosampled, YF-related, geo-spectrotemporal, African,  riceland, partially,  forest-canopied, sub-
meter resolution, endmember, LULC, geoclassified, Ae. aegypti, agro-irrigated, seasonal, 
hyperproductive foci) X and Y. Pearson's correlation coefficient is the covariance of the two 
variables divided by the product of their standard deviations(Hosmer and Lemeshew 2002). The 
form of the definition involves a "product moment", that is, the mean (the first moment about the 
origin) of the product of the mean-adjusted random variables, hence the modifier product-
moment in the name. It has a value between +1 and −1, where 1 is total positive linear 
correlation, 0 is no linear correlation, and −1 is total negative linear correlation. Pearson's 
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correlation coefficient is the covariance of the two variables divided by the product of their 
standard deviations (Cressie 1993). The absolute values of both the sample and population 
Pearson correlation coefficients are less than or equal to 1. Correlations equal to 1 or −1 
correspond to data points (geosampled, African, agro-irrigated, riceland, Ae aegypti, eco-
epidemiological, capture points along peripheral, discontinuous, canopy, forested corridors) 
lying exactly on a line (in the case of the sample correlation), or to a bivariate distribution 
entirely supported on a line (in the case of a capture point , immature habitat, population 
correlation).  

Hence, an arbovirologist, medical entomologist or YF experimenter could 
transform X to a + bX and transform Y to c + dY, where a, b, c, and d are constants with b, d > 0 
in an eco-epidemiological, time series, siganature,  YF forecast, sub-meter resolution, time 
series, LULC equation  without changing the diagnostic, normalized, correlation coefficient. The 
Pearson correlation coefficient is symmetric: corr(X,Y) = corr(Y,X).A key mathematical property 
of the Pearson correlation coefficient such  that it is invariant under separate changes in location 
and scale in any two variables( Hosmer and Lemeshew 2002). Employing the hypothetical, 
entomological signature LULC dataset, an uncertainty-related,  Pearson’s correlation  test was 
constructed ( see Figure 2). 

Figure 2:Pearson’s Correlation Coefficients, Prob>IrI under HO: Rho=0 for a hypothetical  
dataset of forecasted, Ae,aegypti riceland, agro-village, LULC , ovispoition  regressors 
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In our example provided the geo-spectrotemporally geosampled newly transitioned, 
African, riceland, agro-irrigated, sub-meter resolution, geoclassifiable, endmember,   LULC 
variables and forest-discontinuous, canopy, iterative interpolative signature dataset were highly 
correlated. For example, the correlation between Height and Width of an eco-epidemiological, 
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capture point, eco-georferenecable, Ae. aegyti capture point, hyperproductive, seasonal, forest-
canopied  foci was 0.92632.  

 To test the performance of a selected Ae. aegyti capture point,  LULC variable selection 
method in linear regression with normal errors using simulated African riceland agro-irrigated 
sub-meter resolution data, a model :y=Xβ+ϵ,y=Xβ+ϵ,may be employable 
whereyy is n×1, β is p×1n>pn>p, ϵj∼ind.N(0,σ2)ϵj∼ind.N(0,σ2), j=1,…,nj=1,…,n., .Another way 
way would be to simulate all x1,x2,...,xpx1,x2,...,xp together and assigning each  geo-
spectrotemporal, geosampled , geoclassifiable, endmember, explantory LULC variable a 
coefficient where the endogeneity may be quantitated by the error term ϵ. In such circumstances 
the explanative, YF, dependent variable would be the sum of the X′β and ϵ. Many statistical 
packages have functions that  can specify the correlation between the x , geosampled African 
rice-land agro-irrigated and discontinuous, forest canopied, sub-meter resolution, geoclassifiable 
LULC , oviposition, endmember variables,. In Stata, for instance, that could be achieved with 
the corr2datacommand.,  

// set a certain number of African riceland Ae. aegypti observations 
set obs 1000 
 
// generate the explanatory variables (here we simulate 2 variables 
from a normal distribution) 
gen x1 = rnormal(5,3) 
gen x2 = rnormal(9,1) 
 
// generate the error term (here is the simple case where the error is 
distributed as N(0,1) - for other distributions use the according 
sampling technique) 
gen e = rnormal(0,1) 
 
// generate the dependent variable and assign coefficients to the 
explanatory variables (0.5 for x1 and 0.9 for x2, for instance) 
gen y = 0.5*x1 + 0.9*x2 + e 
 
// run the linear YF regression model using y on x1 and x2 
reg y x1 x2 
 

The corr2data command can render more options to specify Ae. aegypti, African, 
riceland, sub-meter resolution, orthogonal,  endmember, LULC correlations between the 
variables. So if the signature model has high collinearity between x1 and x2, an arbovirologist, 
medical entomologist or YF experimenter may simulate measurment error correlations in the 
entomological, signature forecast, vulnerability, LULC model It can also be used to generate a 
heteroscedastic relationship between one or more of the explanatory habitat variables with the 
error. Below is an example on how to add superfluous Ae.aegypti, sub-mixel, timem series, 
LULC  variables. In order to facilitate this quantiation ,an arbovirologist, medical entomologist 
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or YF experimenter may need to specify a correlation matrix before generating the African 
riceland LULC , oviposition data, for example: 
    |       x1       x2       x3        e 
----+------------------------------------ 
 x1 |   1.0000 
 x2 |   0.3000   1.0000 
 x3 |   0.0100  -0.0000   1.0000 
  e |   0.0000  -0.0000  -0.0000   1.0000 
which  may be achieved via 

mat C = (1, 0.3, 0.01, 0 \ 0.3, 1, 0, 0 \ 0.01, 0, 1 , 0 \ 0, 0, 0, 1) 
corr2data x1 x2 x3 e, n(1000) means(5 7 13 0) sds(3, 1, 2, 1) corr(C) 
corr 
where x3 can be made "superfluous" by simply not including it in the construction of y. If the 
geo-spectrotemporally geosampled, explanatory, YF forecastable variable  is correlated with x1, 
it may still be usable through the correlation matrix C which may also reveal how superfluous x3 
actually is. y may be generated in the entomological, vector arthropod, forecast, vulnerability, 
geo-spectrotemporal, signature  model in  Stata employing: 

// generate the dependent variable 
gen y = 0.5*x1 + 0.9*x2 + e 
 
// run the regression with the useless variable 
reg y x1 x2 x3 
 

But this would be the generic set-up to generate such African agro-irrigated, riceland, sub-meter 
resolution, LULC uncoalesced signature data which should work in any other statistical package 
in the same way. Presumably other packages have additional/different functions that use but the 
steps done here are a basic way to achieve this. 

Jacob and Novak (2014) generalized a simulation malarial, mosquito (An. arabeinsis)  
ovispoition, capture point, eco-epidemiological, forecast, vulnerability model employing PROC 
MCMC in SAS employing  the method proposed by Gelman and Rubin (1992a) for monitoring 
the convergence of iterative, sub-meter resolution, LULC  simulations by comparing between 
and within variances of multiple chains, in order to obtain a family of tests for convergence in an 
oviposition,eco-epidemiological,capture point, forecast, vulnerability model.The authors  
reviewed methods of inference from multiple endmember LULC simulations in order to develop 
convergence-monitoring summaries that were relevant for the purposes of  optimally targeting, 
seasonal, eco-georeferenceable, hyperproductive, grid-stratifiable, immature, riceland habitats. 
An iterative method was given for selecting the biasing parameter, k, in the regression equation. 
The method rendered  a distribution of squared errors for the geo-sampled, An. arabiensis, 
geoclassifiable, LULC regression coefficients that had a smaller mean and a smaller variance 

than least squares or the single iteration estimate The authors recommend applying a 
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battery of  endmember tests for unmixing entomological vectoir arthropod , seasonal 
hypeproductive foci based on the comparison of inferences from individual iteratively 
interpolated, LULC signature sequences and from the mixture of  geosampled parameterizable 
estimator sequences. The authors also suggest multivariate analogues, for assessing convergence 
of several, African, agro-irrigation, geosampled, riceland, endmember, sub-meter resolution, 
geoclassifiable  LULC observations simultaneously. 

The form of the definition  in an  eco-epidemiological, YF, forecast, vulnerability, time 
series, African, riceland, discontinuous, forest-canopy, sub-meter resolution, agro-irrigation, 
riceland, eco-georeferenceable, LULC model would  involve a "product moment"( Jacob et al. 
2013) that is, the mean (the first moment about the origin) of the product of the mean-adjusted, 
oviposition, sylvatic, capture point, seasonal, endmember, hyperproductive, Ae. aegypti, random 
variables; hence the modifier product-moment in the name.The product moment correlation 
coefficient is a measuremnet of the degree of scatter( Cressie 1993). It is usually denoted by r 
and r can be any value between -1 and 1. It is defined as follows:r = sxy (sxsy where sxy is the 

covariance of x and y, .The product moment correlation coefficient (pmcc) can 
be used to tell us how strong the correlation between two variables is. A positive value indicates 
a positive correlation and the higher the value, the stronger the correlation (Griffith 2003). 
Similarly, a negative value indicates a negative correlation and the lower the value the stronger 
the correlation. If there is a perfect positive correlation (in other words the points all lie on a 
straight line that goes up from left to right), in an Ae aegypti, eco-epidemiological, geo-
spectrotemporal, forecast, vulnerability endmeber, oviposition, LULC model then r = 1.If there is 
a perfect negative correlation, then r = -1.If there is no correlation, then r = 0. r would also be 
equal to zero if the geosampled capture point variables were related in a non-linear way (they 
might lie on a quadratic curve rather than a straight line, for example). 

 

The PLOTS=MATRIX (HISTOGRAM) option requests a scatter plot matrix for the 
VAR statement variables( www.sas.edu). With VAR statement input, the rows of the 
contingency table may correspond to the observations (geosampled uncoalesced, Ae. aegypti, 
African, riceland LULC regression estimators)  of the input data set, and the columns correspond 
to the VAR statement variables. In so doing, the  values  of the habitat variables would then  be 
definable employing the table frequencies.  

PROC FREQ statements also request frequency plots for the crosstabulation tables. PROC 
FREQ produces these plots by using ODS Graphics to create graphs as part of the procedure 
output. ODS Graphics must be enabled before producing plots. The 
PLOTS(ONLY)=FREQPLOT option requests frequency plots. The 
TWOWAY=CLUSTER plot-option specifies a cluster layout for the two-way frequency plots. 

ods graphics on; 
proc freq data=SummerSchool; 
   tables Gender*Internship*Enrollment / 
          chisq cmh plots(only)=freqplot(twoway=cluster); 
   weight Count; 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

20 
Copyright © acascipub.com, all rights reserved.  

run; 
ods graphics off; 

 In an sub-meter resolution, ricland agro-irrigated, African, Ae. aegypti, LULC, eco-
epidemiological, geo-spectrotemporal, forecast vulnerability model negative values may be 
treated as missing. In so doing, the observation may be excluded from the capture point, 
endmember, oviposition analysis. The values are not required to be integers. Row labels for the 
table may be specified in SAS with an ID variable. Column labels may be constructed from the 
variable name or variable label ( Ae aegypti , post-harvesting, capture point). An arboviroloist, 
medical entomologist or YF experimenter may specify multiple correspondence analysis (MCA). 
In so doing, the row and column labels will be the same and may be constructed in SAS from the 
variable names or labels, so as to include an ID statement. With MCA, the VAR statement must 
list the variables in the order in which the rows occur( www.sas.edu).  

A  Scatter Plot Matrix may also be generated in Mathlab based on the of the regression-
related, entomological, LULC, sub-meter resolution uncoalesced, capture  point, seasonal 
hyperproductive,  oviposition prognosticators. Scatter plot is a useful exploratory tool for 
multivariate, endmember, LULC data analysis and is one of the most commonly used statistical 
graphics(https://www.mathworks.com). Scatterplot matrices are good for determining rough 
linear correlations of metadata that contain continuous entomological, LULC variables ( Jacob at 
al. 2007) an arbovirologist, medical entomologist or YF experimenter may create a scatter plot 
matrix with  one or two Matrix Inputs employing  randomized, African, grid-stratifiable, 
orthogonally eigen-decomposable, sub-meter resolution, LULC  data. The subplot in the ith row, 
jth column of the matrix is a scatter plot of the ith column of X against the jth column of X( 
Griffith 2003). In so doing, the diagonal will be histogram plots of each column of X which may 
aid in specifying the LULC marker type and the color for the time series, seasonal, 
hyperproductive. Ae aegypti, eco-epidemiological,  capture point, scatter plots in Mathlab 
emplying  

X = randn(50,3);   
plotmatrix(X,'*r' 
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Figure 3: A hypothetical  scattergraph  employing multiple  sub-meter resolution LULC 
Cartesian coordinates to display regressed oviposition, An. egypti seasonal   geosampled 
sub-mter resolution, endmember values  

    

In traditional SAS/GRAPH®, to create a quality time series, eco-epidemiological, YF, 
regression-related, sub-meter resolution scatter matrix cooperation of the GPLOT procedure, 
several SYMBOL statements and GOPTION statements would be necessitated.  New with 
SAS® 9.2, the SGSCATTER procedure can produce a variety of sylvatic, YF, Ae.aegypti, 
oviposition, sub-meter resolution, LULC, capture point, scatter plots and put them into panels 
with different grid-stratified ,orthogonal layouts within just a few lines of code. Creating 
different types of  riceland, African, agro-village LULC, scatter plots with PROC SGSCATTER 
and using ODS GRAPHICS and ODS styles may  enhance cartographically and geostatistically 
illustrating seasonal, hyperproductive, sylvatic,  Ae .aegypti, oviposition, sub-meter resolution, 
riceland,capture point, geoclassified , grid-stratified, LULCs  spilling into inhomogeneous ,forest 
canopy, in these  expanding irrigated ecosystems due to anthropogenic pressures. 
 

Traditional SAS/GRAPH® procedures create graphs that are saved in SAS® catalogs and 
can be displayed and edited in the GRAPH window. GOPTIONS, SYMBOL, AXIS and other 
SAS/GRAPH® statement control the appearance of the graph. On the other hand, the new 
statistical graphics procedures, such as PROC SGSCATTER can create and display graphs of 
seasonal, hyperproductive,  capture point, Ae. aegypti, oviposition, foci on newly transitioned 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

22 
Copyright © acascipub.com, all rights reserved.  

discontinuous, forest-canopied, sub-meter resolution, geoclassified, LULC in expanding, 
African, agro-irrigated, riceland village in standard image formats, such as BMP and PNG,.This 
could be facilitated using the Output Delivery System (ODS) directly. Instead of GOPTION and 
SYMBOL statements, ODS statement, especially ODS graphics, may be usable in controlling the 
appearance of endemic, YF, transmission-oriented, time series, LULC graphs produced by 
PROC SGSCATTER. The new SGSCATTER procedure can provide an exciting method to 
produce paneled, forecast, YF, vulnerability, time series, explanative,  scatter plots. Its simple 
and natural syntax and seamless cooperation with ODS GRAPHICS may make PROC 
SGSCATTER a powerful tool for sylvatic, Ae.aegytpti geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiological, sub-meter resolution, LULC, data visualization.  

In order to create this display, Jacob and Novak (2014) specified the ODS GRAPHICS 
ON statement in addition to the PLOTS= option for geo-spectrotemporally and geo-
spatiotemporally mapping , seasonal, hyperproductive, An. arabiensis, ovispoition, sub-meter 
resolution, geoclassifiable, eco-georeferenceable, capture points. To explore the correlation 
between Height and Width predictor, LULC malaria, capture point, seasonal hyperproductive, 
oviposition, sub-meter resolution,  variables the following statements were employed. .  

ods graphics on; 
proc corr data= malmosq nomiss 
          plots=scatter(nvar=2 alpha=.20 .30); 
   var Height Width Length3 Weight3; 
 run; 
ods graphics off; 
 
The NOMISS option was specified with the original VAR statement to ensure that the 

same set of oviposition wavelength, frequency, sub-meter rersolution, grid-straified, An. 
arabiensis LULC observations was used for the analysis. The PLOTS=SCATTER(NVAR=2) 
option requested a scatter plot for the first two variables in the VAR list. The ALPHA=.20 .30 
suboption requested 92% signature paradigm prediction ellipses, respectively. 

 
Prediction ellipse is a region for predicting a new observation from the population, 

assuming bivariate normality ( Hosmer and Lemeshew 2002). In Jacob and Novak (2014) this 
forecast vulnerability, signature, endmember map approximated an  eco-epidemiological, capture 
point  region (positively autoccorelated)  containing a specified percentage of the  immature 
geosampled population( i.e., ‘hot spot). The displayed prediction ellipse was centered at the 
means . Note that the following statements displayed a scatter plot for the An. arabiensis 
hyperproductive, seasonal, foci estimators Height and Width:  

ods graphics on; 
proc corr data=Mal mosq1 
          plots=scatter(alpha=.20 .30); 
   var Height Width; 
 run; 
ods graphics off; 
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For any eco-epidemiological, geo-spectiotemporal or geo-spatiotemporal, sylvatic,  Ae 

aegypti,YF,  eco-georeferenceable, sub-meter resolution LULC, forecast, vulnerability model the 
multiple linear regression, analysis would  require that the error between observed and predicted, 
immature, habitat density values (i.e., the residuals of the regression) should be normally 
distributed. This assumption can best be checked by plotting residual values on a histogram with 
a fitted normal curve or by reviewing a Q-Q-Plot of the eco-epidemiological, time series, YF, 
model, diagnostic output.   
 

Normality in a forecast ,vulnerability, eco-epidemiological, sylvatic, YF, Ae. aegypti , 
oviposition, African, riceland, agro-ecosystem, endmember, LULC model can be checked with a 
goodness of fit test (e.g., the Kolmogorov-Smirnov test), though this test must be conducted on 
the residuals themselves.  When the LULC, orthogonal, grid-stratified, time series,  eco-
epidemiological, YF data is not normally distributed, a non-linear transformation (e.g., log-
transformation) might correct this issue in SAS if one or more of the individual explanatory, 
predictor variables are to blame, though this   may not directly respond to the normality of the 
residuals. 

 
Further, a multiple, linear, YF, sylvatic, Ae aegypti, oviposition, capture point, forecast, 

vulnerability, geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological, African, 
riceland, agro-irrigated, regression-related, prognosticative model will assume that there is little 
or no multicollinearity in the geosampled, LULC, parameter estimators.  Multicollinearity occurs 
when the independent variables are not independent from each other ( Rao 1972). 
Multicollinearity in such a paradigm may be checked against 4 key criteria: 

 
1) Correlation matrix – When computing the matrix of Pearson's Bivariate Correlation amongst 
all sylvatic, Ae. aegypti, potential, African, riceland or forest-canopied, explicative, independent 
variables (i.e., optimally the correlation coefficients shoud be smaller than .08)( see Jacob et al. 
2009). 
 
2) Tolerance – The tolerance measures the influence of one independent variable on all other 
independent explanatory variables; the tolerance is calculated with an initial linear regression 
analysis (Hosmer and Lemeshew 2002). Tolerance in an eco-epidemiological,  YF, sub-meter 
resolution, geo-spectrotemporal or geo-spatiotemporal, LULC, endmember, signature, 
vulnerability model  may be defined as T = 1 – R² for conducting a vigrious first step regression 
analysis( see Jacob et al. 2012). With T < 0.2 there might be multicollinearity in the uncoalesced, 
LULC endmember, sub-meter resolution signature  and with T < 0.01 there certainly would be. 
 
3) Variance Inflation Factor (VIF) – The variance inflation factor of for a medical 
entomological,forecast, vulnerability, sub-meter resolution, eco-epidemiological,  LULC model  
linear regression may be  defined as VIF = 1/T . Similarly with VIF > 10 there is an indication 
for multicollinearity to be present. 
 
4) Condition Index – The condition index may be  calculable for an oviposition, sub-meter 
resolution,  Ae aegypti, YF, eco-epidemiological, eco-georeferenceable, sylvatic, grid-
stratifiable,   LULC representing inhomogeneous forecast canopy and or riceland African 
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ecosystems using a factor analysis on the independent geosampled variables.  Values of 10-30 
may indicate a mediocre multicollinearity in the regression variables, whereas values > 30 may 
indicate strong multicollinearity. 
 

If multicollinearity is found in an empiricial, orthogonal, dataset of  geo-spectrotemporal 
or geo-spatiotemporal, geosampled, eco-epidemiological, African, agro-ecosystem, 
geoclassified, YF, oviposition, sylvatic,  Ae. aegypti, sub-meter resolution, data frequency, 
signature,sub-meter resolution, estimators, one remedy might be centering the data employing a 
grid-stratified LULC.  To center the endemic, transmission  LULC data, an arbovirologist, 
medical entomologist or other experimenter may simply deduct the mean score from each 
geosampled, riceland, agro-irrigation, or forest-canopied LULC geosampled observation. Other 
alternatives to tackle the problem of multicollinearity in a multivariate,endemic, YF, time series, 
LULC regression is to conduct a factor analysis before the linear analysis and to rotate the 
factors to insure independence of the factors in the analysis.  

 
An endemic, transmission-oriented, geo-spectrotemporal or geo-spatiotemporal, sylvatic, 

YF, forecast, vulnerability, eco-epidemiological, eco-georeferenceable, multiple, linear 
regression, LULC analysis would require that there is little or no autocorrelation in the geo-
spectrotemporal or geo-spatiotemporal, geosampled African, riceland, LULC data. 
Autocorrelation occurs when the residuals are not independent from each other.  In other words 
when the value of y(x+1) is not independent from the value of y(x). 
 

The Goldfeld-Quandt Test may test for heteroscedasticity in an uncoalesced dataset of  
sub-meter resolution, uncoalesced, eco-epidemiological, inhomogeneous, forest-canopied, 
riceland, oviposition, capture point, transitional, LULC, wavelength, signature frequencies for 
determining abundance and distribution of  oviposition, Ae.aegypti, seasonal, hyperproductive 
foci in African agro-irrigation ecosystems. In statistics, the Goldfeld–Quandt test checks for 
homoscedasticity in regression analyses ( Hosmer and Lemeshew 2002) . It does this by dividing 
a dataset into two parts or groups, and hence the test is sometimes called a two-group test. The 
test would split the multiple linearly regressed, oviposition, Ae.aegypti seasonal, hyperproductive 
foci data into high and low density value to see if the samples are significantly different. If 
homoscedasticity is present in any eco-epidemiological, orthogonal, YF, predictive risk-related, 
multiple, linear regression model estimator, a non-linear correction might fix the diagnostic, 
residiual without allowing multicollinearity into the model. 

 
Expanding agro-irrigation, African, riceland, ecosystem, flood plains facilitate high 

geohydrologic connectivity (e.g., water flux between the channel and flood plain) marked by 
complex seasonal patterns of  inundation, extensive penetration of channel water laterally into 
the alluvial aquifer, and springbrooks formed by ground water erupting onto the agro-village 
flood-plain surfaces. After cartographically optimally delineating and geostatistically classifying 
sub-meter resolution, flood-plain, geoclassifiable, LULC elements (e.g., tillered vegetation 
patches and agro-irrigation channel reaches) in an African riceland flood plains in central Kenya,  
Jacob et al. (2007) remotely  regressively quantitated expanding, malarial, mosquito, vector, An. 
arabiensis, seasonal, hyperproductive, eco-georeferenceable, capture points  in peripheral 
corridors of the  agro-village complex. Amongst the geoclassified, LULC, regression-related, 
paramterizable.field-operational covariates selected to delineate the prolific, capture point, 
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oviposition foci was contour survey data retrieved from a sub-meter resolution, 3 –dimensional 
(D) Digital Elevation Model (DEM) which aided in identifying expected relationships amongst 
flood-plain, LULC, element types, surface scour frequency, and flood-plainslope coefficients. 
Data analyses of the eco-georeferenced, eco-epidemiological, seasonal, hyperproductive, 
sylvatic, Ae. aegypti  may reveal that scour frequency  is  inversely proportional to the elevation 
of the flood plain after the tillering rice-cycle stage, except when localized geomorphic controls 
such as natural levees prevent normal high flows from inundating and scouring relatively low, 
flood-plain, LULC elements within the periphery of an African, riceland, agro-irrigated  
ecosystem. Further, while different flood-plain, sub-meter resolution, geoclassifiable, rice-cycle, 
LULC, element types may occupy distinct elevation zones on these flood plains, the elevation of 
each zone above the agro-irrigation channel may differentiate with localized channel 
entrenchment along the peripheral, inhomogeneus, partially, forest-canopied, peripheral corridors 
of these ecosystems. It may be that topographic variation amongst flood-plain, LULC elements 
in an African, expanding, agro-village, ricland complex is greater than the variation within 
elements during post-harvesting, suggesting that  sub-meter resolution, scaled, flood-plain 
topography may  be optimally  usable for remotely characterizing, seasonal, hypeproductive, 
sylvatic, Ae aegypti, oviposition,signature, capture points within geoclassifiable, forest-canopied, 
flood-plain discontinuous peripheral  elements. 
 

Field data literature suggest strong associations between specific geo-spectrotemrpoal or 
LULC classes of flood-plain elements and preferential ground-water flow paths in the upper 
alluvial aquifer (Brooker 2002). Combined with preexisting  geo-spatiotemporal or geo-
spatiotemporal,  geoclassified satellite surveys, eco-georeferenecable, oviposition, seasonal, 
LULC,capture point,grid-stratified,   Ae aegypti, hyperproductive foci, geoclassifiable, data may 
reveal  a sinuous lattice of preferential, ground-water, flow paths (e.g., buried abandoned 
streambeds) in the upper alluvial aquifer  along the peripheral edges of the expanding, African, 
riceland environment at approximately the same elevation as the main channel’s streambed 
where the geoclassifiable, forest-canopied, discontinuous LULCs are being converted to riceland 
oviposition, seasonal, hyperproductive,capture point, sylvatic, Ae. aegypti, immature habitats. 
Employing geostatistical interpretations of remotely discernible, orthogonal, grid-stratifiable, 
sub-meter resolution, regressively quantizable relationships amongst geoclassifiable, time series, 
multivariate. LULC, element types, (e.g., elevation,), preferential ground-water flow paths may 
be optimally characterized employing 3-D, surface and subsurface, geomorphological, terrain-
related, caovariate, parameter estimation  across an  entire riceland, agro-village,  flood plain. In 
so doing, a heuristic, eco-epidemiological, probabilistic, YF model effort may be utilized for 
optimally investigating how much expanding African, agro-irrigated, riceland ecosystems due to 
anthropogenic pressures  are geospatially spilling into forest-canopied,  discontinuous LULCs.  
Potential, hyperendemic, geostatistical,“hot spots.”( e.g., positively autocorrelated eco-
georeferenceable, Ae.aegypti oviposition, eco-epidemiological, capture points) may be identified 
in SAS/GIS. 

The expected value of a geometric probabilistically regeressable, endmember, time 
series, geoclassifiable, grid-stratifiable, Ae aegypti, oviposition, geomorphological, terrain-
related, eco-georeferenceable, explanatorial, LULC specified, response variable quantitated in 
SAS/GIS whilst holding the other independent variables fixed would be a straight-line function 
of each geostatistically significant,  forecastable  variable within a 95% confidence interval.   
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The slope coefficient of that line would  not  be dependent on the values of  any time series,  
diagnostic, clinical, field or remote, time series, specified, sylvatic,  YFV-related, empirical, 
regressively optimizable endmember, oviposition, geoclassifiable, grid-stratifiable, sylvatic, Ae 
aegypti, capture point, or any of the oviposition, LULC, spectral, wavelength frequencies. The 
effects of different empirical, geometric frequency, endmember, independent variables on the 
expected value of a geo-spectrotemporal or geo-spatiotemporal, uncoalesced,  wavelength, 
frequency,endmember, LULC, signature, dependent variable (e.g., case distribution data)  would 
then be  additive. 

        Another assumption  that would have to be non-violated, in an experimental,  
prognosticative, endmember, time series, field-operationizable, regressable, geometric, 
endmember,orthogonal, grid-stratifiable,  dataset of uncoalesced, vulnerability,  geometric, sub-
resolution, eco-epidemiological, YFV, signature paradigm, remotely sensed, paramerizable 
estimators for optimally targeting seasonal, hyperproductive, eco-georeferenceable, eco-
epidemiological, Ae aegypti,  oviposition, capture points on sub-meter resolution, sparsely forest-
canopied, geo-spatiotemporal or geo-spectrotemporal, geoclassifiable LULCs along expanding, 
African, riceland  peripherial corridors   would be statistical independence of the  sampling 
errors. In particular, no correlation should exist between consecutive, iterative, quantitative, 
inconspicuous, propogagtional regression error [e.g., aspatial heteroskedascity amongst LULC 
oviposition observations] especially in the case of any uncoalesced, YF-related, sub-meter 
resolution, geosampled, eigen-decomposable, explanatory, agro-irrigated, African, riceland, 
sylvatic, Ae. aegypti, elucidative wavelength, frequency, diagnostic, orthogonal variables with 
discontinuous, forest-canopied, synthetic, feature attributes. If two events are independent, 
statistically independent, or stochastically independent then the occurrence of one does not affect 
the probability of the other (Hazewinkle 2001).  

Similarly, two optimally unbiased, expositiorial, diagnostic, YFV–related, explanatory, 
clinical, field or remote specified, random, African, agro-village,  riceland, LULC variables  or 
inhomogeneous, forest-canopied, LULC variables would be independent if the realization of one  
on a  sub-meter resolution, discontinuous,  geoclassifiable, seasonal, hyperproductive, sylvatic, 
capture point along an expanding   agro-irrigated, ecosystem, geoclassifiable LULC does not 
affect the probability distribution of the other. The concept of independence may extend to 
dealing with collections of more than two events whenst,  eco-georeferenceable, agro-irrigated,  
riceland, explicative, geo-spectrotemporal or geo-spatiotemporal, YFV-related, randomized 
probability regression variables are geosampled in which case the events would be pairwise 
independent, if each pair are independent of each other. Further, the transitional, triggering, 
riceland, agro-village, LULC events (i.e., Ae. aegypti inhomogenous forest-canopied, newly 
transitioned agro-irrigated, rice cycles) would be mutually independent if each sample event is 
independent of each other based on a combination of statistically quantitated events.  

         Violations of homoscedasticity ( i.e., common variance) in an entomological, sub-meter 
resolution, geo-spectrotemporal or geo-spatiotemporal, diagnostic, sub-meter resolution, [ e.g., 
QuickBird visible and near infra-red (NIR) at 0.61m], geoclassifiable LULC, explanatory,  
forecast, probabilistic,  vulnerability, YFV paradigm  (e.g., "heteroscedastic " non-robust 
parameters ) may make  it  difficult to gauge the true standard deviation of optimal, iteratively, 
quantitative, explicative, illuminative, seasonal  prognostications (e.g., remotely sensed,  



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

27 
Copyright © acascipub.com, all rights reserved.  

optimally targeted, hyperproductive, sub-meter resolution, sylvatic, oviposition, eco-
georeferenecable, Ae. aegypti, geoclassifiable, grid-stratfied, sub-meter resolution, eco-
georeferenceable, sites) along expanding riceland corridors and their unquantiated, propagational 
regression, probabilistic, uncertainty, erroroneous, LULC estimators. In such vulnerability 
paradigms the optimally targeted, eco-georeferenceable, hyperproductive,   vector arthropod, 
immature, seasonal, eco-epidemiological, diagnostic, explanatory, capture point, time series, 
probabilistic variable output would render confidence intervals that are too wide or too narrow. 
Confidence intervals may provide the likely range of a sample proportion or sample mean from 
the true proportion mean found in immature, seasonal, geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiologically geosampled, Aedes populations on partially 
discontinuous, forest canopy, transitioning geoclassifiable, sub-meter resolution, LULCs to agro-
irrigated, riceland LULCs in an expanding, African, agro-village ecosystem   which may enable 
optimally estimating the precision of results  rendered from a sample frame for prognosticating  
the true population of prolific, oviposition, immature, capture point, Ae aegypti, seasonal, 
hyperproductive riceland geolocations. In so doing, a intervention may be developed for 
implementing a targeted larval control strategy based on hyperproductive, seasonal, eco-
georeferenceable, georeferenceable, YF, oviposition sites (e.g., see Gu and Novak 2005)  
employing algorithms from geostatistical geodatabase cyberenvironments ( e.g., ArcGIS) (see 
Jacob and Novak 2014). 

       Results for both individual studies and meta-analyses of an orthogonally eigen-
decomposable, eco-georeferenceable, autoregressively optimizable, eco-epidemiological, 
sylvatic,Ae. aegypti, hyperproductive, capture point, remotely specifies, oviposition, 
geoclassifiable, frequency,  LULC, sub-meter resolution, uncoalesced dataset of  irradiance, 
frequency, wavelength measurements may be  tabulated in  SAS/GIS, R or other statistical 
packages( GeoDa). In so doing, empirically, optimally forecastable, geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiological sub-meter resolution, endmember, LULC, signature 
datasets of diagnostic, seasonal, explanative, agro-irrigated, African, riceland, eigen-
decomposable, explanatory, empirical estimators   may be reported along with an eco-
epidemiological, capture point, probabilistically, geoclassifiable, regresseable estimates and an 
associated confidence interval. For example, the odds ratio of a a vulnerability, sub-meter 
resolution, geoclassifiable, eco-epidemiological, sylvatic, robustifiable, YFV-related, eco-
georeferenceable, explanatorial, diagnostic, regression estimate may be  optimally calculable as 
0.75 with a 95% with confidence interval of 0.70 to 0.80. The iteratively, quantitative, seasonal, 
eco-georeferenceable, hyperproductive,  capture point, eigen-decomposable, interpolative, 
explicative estimate (0.75) may then be the best guess of the magnitude and direction of the 
experimental, oviposition, LULC, control, intervention’s effect compared with the YFV control 
intervention. The confidence interval may optimally describe the propagational uncertainty 
inherent in this quantitative, geoclassified, seasonal,  LULC, oviposition, regression, explicative 
estimate, whilst simultaneously describing a range of prolific, eco-georeferenceable, optimally 
regresseable, immature, capture point,uncoalesced, habitat count, density values which an 
arbovirologist, medical entomologist or YFV experimenter could  use to statistically validate the 
LULC effect actual effects  on an expanding, African, riceland, agro-village complex, eco-
epidemiological, study site. By employing  unbiased, sylvatic, seasonal, Ae. aegypti, oviposition, 
sub-meter resolution,   LULC, explanatory, African, riceland agro-irrigation, parameterizable, 
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covariate, frequency geo-spectrotemporal and or geospatiotemporal, unbiased, wavelength 
estimators geosampled along an  interfacing agro-irrigated and discontinuous, forest-canopied 
corridor, hypeproductive foci may be optimally remotely identified and henceforth optimally 
seasonally forecasted employing within a YF, signature paradigm. 
 

If the confidence interval is relatively narrow (e.g., 0.70 to 0.80) in the eco-
epidemiological, eco-georeferenecable, seasonal, explanatory, forecast, vulnerability, sub-meter 
resolution, LULC remotely sensed, sylvatic, YFV, geo-spatiotemporal or geo-spectrotemporal, 
sub-meter resolution, regression model, the effect size may be known precisely.  If the interval is 
wider (e.g. 0.60 to 0.93), the probabilistic, propogagational uncertainties in the diagnostic, 
explanatory, geoclassifiable, endogeneous regressors would be greater, although there may still 
be enough precision to make decisions about the utility of the Ae. aegypti control intervention 
variables to optimally target, eco-georeferenecable,  hyperproductive, seasonal, eco-
epidemiological, oviposition foci  along an expanding agro-irrigated, riceland, African, village 
complex parsimoniously.  Intervals that are very wide (e.g. 0.50 to 1.10) in a partially 
discontinuous, diagnostic,explanatory, forecast, vulnerability, probabilistic, sub-meter, 
resolution, riceland, sylvatic, Ae. aegypti, oviposition, LULC, parameterizable estimator 
signature dataset would indicate little knowledge about the effect, and hence  further information  
would be warranted prior to implementation of an effective control intervention,[e.g., an 
Integrated Vector Management program (see Gu and Novak 2005)] for optimally, precisely, 
remotely targeting, prolific, eco-georeferenceable, immature habitat, seasonal, hyperproductive, 
eco-epidemiological, capture points. 

 
A 95% confidence interval is often interpreted as indicating a range within which can be 

95% certain that the true effect lies (Fotheringham 2002).  This statement may be a loose 
interpretation in an explicative, geoclassifiable, eco-epidemiological, YF-related, predictive,  
sub-meter resolution, LULC, probabilistic, Ae egypti, oviposition, African, agro-irrigated, 
riceland, risk model, diagnostic outout. It may be  however useful as a rough guide for measuring 
robustness  of a real-time,  explanative, optimally forecastable, eco-georeferenceable, geometric,  
endmember, orthogonal, grid-stratified, time series, regression, probabilistic, regressable LULC 
estimate.  The strictly-correct vulnerability, frequency, wavelength, sub-meter resolution, 
uncoalesced, endemic, seasonal, geo-spectrotemrpoal or geo-spatiotemporal, geosampled 
diagnostic interpretation of a confidence interval in such a probabilistic, sylvatic, oviposition, Ae. 
aegypti, sub-meter resolution, signature paradigm would then be  based on the notion  that the 
iteratively quantitatively interpolative, parameterizable, LULC covariates results could be 
extracted  if the eco-epidemiological, geoclassifiable, sylvatic, YF study were repeated multiple 
times at the agro-irrigated, riceland, African, agro-village complex. If the model were repeated 
often, a 95% confidence interval may be calculable in SAS (e.g., PROC REG). Subsequently, 
95% of these intervals could optimally contain the true effect in an empirical,optimizable, 
uncoalesced signature, uncoalesced LULC  dataset of expositorial, residual, vulnerability, eco-
georeferenceable, geometric, endmember, explanative forecasts (e.g.,  targeted, hyperproductive, 
oviposition, Ae. aegypti, LULC sites on sub-meter resolution imaged, geo-spatiotemporal or 
geospectrotemporal, geoclassifiable,  agro-irrigated, oviposition, eco-georeferenceable, 
discontinuous, partially, forest-canopied, capture point, seasonal foci). 
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        Further, the parsimonious width of the eco-epidemiological, sylvatic, YFV-related, geo-
spectrotemporal or geo-spatiotemporal, geometric, endmember, sub-meter resolution, LULC, 
endmember datset of frequency, uncoalesced, prognosticative, geo-spectrotemporal or geo-
spatiotemporal, wavelength, frequency, confidence intervals for remotely optimally capturing an 
individual geoclassifiable, orthogonal, agro-irrigated, agro-ecosystem, riceland, expanding  
African, eco-epidemiological,  forecast, vulnerability model unbiased, eco-georeferenecable 
estimator  would depend to a large extent on the sample size of the, heuristically optimizable,  
time series, explicative, clinical, field or remote, endogenous, multivariate observables. Larger, 
elucidatively log-normalized, geo-spectrotemporal or geo-spatiotemporal, geoclassifiable, 
diagnostic, time series, uncoalesced, wavelength, frequency, signature, transmittance, emissivity, 
regressors orthogonally synthesized from eigen-decomposable, grid-stratifiable, sylvatic, capture 
point, Ae. aegypti, oviposition, LULC, wavelength, frequency, spectral signatures and 
subsequently qualitatively iteratively, interpolated over an expanding, agro-irrigated, African, 
riceland, sub-meter resolution polygon employing  an eigen-function decomposition, algorithm 
in AUTOREG  may render   endmember, estimates of  hyperproductive, immature habitat effects 
on discontinuous, forest-canopied LULCs.  
 

In a seasonal, iterative, Bayesian, YFV, explanative, endmember, time series, geo-
spectrotemporal or geospatiotemporal, wavelength, frequency, geodatabase cyberplatform, 
continuous, explicative, latent, outcome precision  would depend on the variability in the 
outcome measurement LULC dataset (e.g., the standard deviations of individual,geosampled, 
temporal, eco-georeferenceable, sylvatic, oviposition, Ae. aegypti, geoclassifiable, capture point, 
seasonal, immature, forest-canopied, endemic foci) in peripheral eco-zones of agro-irrigated 
expanding, African ecosystems in geographic space. For dichotomous outcomes it would depend 
on the risk of the sampling event, and for time-to-event outcomes it would depend on the number 
of riceland, oviposition, capture point, eco-epidemiological, capture point, immature, habitat 
events observed (see Jacob et al. 2009).  In so doing, optimally log-transformed, uncoalesced, 
seasonal, covariance, endmember weightages may be optimally employable in sub-meter 
resolution, eco-epidemiological, forecasting, YV-oriented, regression-related, vulnerability 
LULC signature, frequency, sub-meter resolution paradigms.  Robust computation of 
expositorily quantizable, standard errors of the probabilistically, regressable,sub-mter resolution, 
LULC wavelength frequency  effects from which the confidence interval determination based on 
the target (i.e., hyperproductive, seasonal, eco-georferenceable, discontinuous, forest-canopied, 
oviposition, Ae. aegypti,  eco-epidemiological, geoclassified foci) may be subsequently optimally 
orthogonally derivable. 

The problem  of optimally estimating a covariance, orthogonal, spatial filter, grid-
stratifiable, algorithmic, weighted matrix in small, sylvatic, Ae. aegypti oviposition, sub-meter 
resolution, geometric endmembers along African, riceland corridors expanding into 
discontinuous forest-canopied,  peripheral, LULC samples has not been considered in literature. 
In probability theory and statistics, a covariance matrix (also known as dispersion matrix or 
variance–covariance matrix) is a matrix whose element in the i, j position is the covariance 
between the i th and j th elements of a random vector. A random vector is a random variable with 
multiple dimensions (Hazewinkle 2001).This problem may be especially important in sub-meter 
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resolution, diagnostic, hyperproductive, seasonally, intermittent, discontinuous, forest-canopied, 
geo-spatiotemporal or geo-spectrotemporal, grid-stratifiable, geoclassifiable, sylvatic, 
oviposition, Ae. aegypti, sub-meter resolution, LULC, eco-georeferenceable,  eco-
epidemiological, capture point, orthogonal, autoregressive signature, endmember paradigms 
where the standard errors of fixed and seasonal, oviposition, parameter estimator, random effects 
would depend on estimation of the covariance matrix which would be based on the distribution 
of the random effects. A set of hierarchical priors (HPs) for the covariance matrix that produces 
posterior shrinkage toward a specified, geoclassifiable, agro-irrigated, LULC, African, riceland, 
transitioning, orthogonally, time series, regressable eigen-structure in an eco-georeferenceable, 
sylvatic, Ae aegypti, inhomogeneous, ovipostion, sub-meter resolution, grid-stratified, 
vulnerability, forecast model may quantitate geoclassifiable, partially, forest-
canopied,hyperproductive, seasonal, oviposition sites through examination of shrinkage toward 
diagonality.  

Standardizable, sub-meter resolution, diagnostic, uncoalesced, endemic, transmittance,  
frequency, wavelength, sub-meter resolution, signature, LULC estimators like the unstructured 
maximum likelihood (ML) estimator or restricted maximum likelihood (REML) estimator may 
be very unstable  in a geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological, Ae 
aegypti, probabilistic, interpolative, geometric, LULC, endmember, African, riceland, 
oviposition,probabilistic paradigm with the smallest orthogonally eigen-decomposable, 
estimated, time series, eigenvalues being too small and the largest too big. A standard approach 
to more stably estimating the orthogonal gridded matrix in small geoclassifiable, regressable, 
sylvatic, time series,  eco-epidemiological, uncoalesced, orthogonal, endmember empirical 
datasets of geosampled, Ae. aegypti, oviposition, geo-spatiotemporal or geo-spectrotemporal, 
LULC, wavelength, frequency, estimators in  SAS or R may be to compute the ML or REML 
estimator under some simple structure that involves estimation of fewer, riceland, agro-irrigated, 
agro-village, explanatory, eco-georeferenceable, LULC parameters, such as compound symmetry 
or independence. However, these geoclassifiable, oviposition, LULC, agro-village, riceland, 
endemic foci and their, time series, clincial, field or remote, optimally specified, endmember 
oviposition, YF estimators may not be consistent unless the hypothesized structure in the 
paradigm is correct. If  an arbrovirologist, medical entomologist or other experimenter interest 
focuses on geometric eigen-deomposable, wavelength, frequency, endmember, 
LULC,orthogonal,  estimation of eco-epidemiological, time series, empirically geo-
spatiotemporal or geo-spatiotemporal, geosampled, regression coefficients associated with 
seasonal, African, riceland, agro-irrigated, sylvatic,  YFV transmission, then correlated 
longitudinal data (i.e., geocoordinates of prolific, discontinuous, partially, forest-canopied, 
sylvatic, Ae. aegypti, oviposition, geoclassified, sandwich estimators) must be accounted for 
within a covariance matrix which may be alternatively useable to provide efficient standard 
errors for the estimated coefficients.  

The sandwich estimator, often known as the robust, covariance, matrix estimator or the 
empirical covariance matrix estimator, has achieved increasing use with the growing popularity 
of generalized estimating equations in entomology. Its virtue is that it renders consistent 
estimates of the covariance matrix for optimally parameterizing regressable, endmember 
covariate, eigen-decomposable LULC estimates (geo-spectrotemporally or geo-spatiotemporally 
geosampled, uncoalesced, African, riceland, eco-epidemiological, oviposition,  seasonal, 
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hyperproductive, eco-georeferenced, sub-meter resolution, signature, wavelength  frequencies) 
even when a parametric model fails to hold, or is not even specifed. Surprisingly though, there 
has been little discussion of the properties of the sandwich method other than consistency in any  
eco-epidemiological, YFV-related, geo-spectrotemporal or geo-spatiotemporal, geometric, time 
series, endmember, prognosticative, LULC, oviposition, signature, risk  model. The sandwich 
estimator in  quasilikelihood, riceland, sylvatic, Ae. aegypti, eco-epidemiological, geometric, 
endmember, sub-meter resolution,  signature LULC  models may be  asymptotically, feasible for 
optimally discerning  expanding agro-irrigated, geoclassifiable, sub-meter resolution, eigen-
decomposable, orthogonal, geoclassifiable, geospatial or geo-spectral, endmember,  LULC, 
components onto  submeter resolution, discontinuous, partially, forest-canopied LULCs and in 
the linear case analytically. 

 
 In analytic geometry, an asymptote of a curve is a line such that the distance between the 

curve and the line approaches zero as they tend to infinity (Hosmer and Lemeshew 2002). Some 
sources include the requirement that the curve may not cross the line infinitely often, but this is 
unusual for modern authors). It may be shown that when the quasilikelihood, entomological, 
endmember, forecast, vulnerability, YF-related, sylvatic, capture point,  Ae aegypti,  oviposition, 
eco-epidemiological, LULC model is correct, the sandwich covariance matrix estimate is  far 
more variable than the usual parametric variance, orthogonal, endmember, regressable estimate, 
and its coverage probabilities may be abysmal. The increased variance may be a fixed featureof 
the method, and the price an arbovirologist, medical entomologist or other YF experimenter may 
have to pay in terms of quantitating parametric model robustness to obtain consistency. 
Modifying the method in SAS or R may improve eco-epidemiological, eco-georeferenceable, Ae 
aegypti, capture point, LULC, oviposition, coverage probabilities. 

 
Interpretability is not the only advantage of the linear, probability, explanatory LULC 

model  for fitting an uncoalesced endmember dataset of Ae. aegypti, oviposition, seasonal, 
hypeproductive, capture point, sub-meter resolution eco-cartographically illustraable, 
inhomogeneous forest canopy and agro-irrigated, immature habitats. Another advantage is 
computing speed. Fitting a logistic, dichotomous, riceland, African, oviposition, eco-
epidemiological, forecast, vulnerability, geometric, endmember, geo-spectrotemporal or geo-
spatiotemporal, sylvatic, Ae. aegypti forest-canopy, risk model may be inherently slower as the 
model may be diagnostically  fit  only by an iterative process of the ML. The slowness of logistic 
regression is not   noticeable if fitting a simple model to a small or moderate-sized 
entomological, vector, arthropod, time series, empirical geo-spattiotemrpoal or geo-
spactrotemporal eco-epidemiological, geosampled dataset. But if an arbovirologist, medical 
entomologist or YF  experimenter desires fitting a very complicated endmember, oviposition, 
eco-georeferenecable, geometric, sub-meter resolution, LULC model or a very large eco-
epidemiological, grid-stratified, eigen-function, eigen-decomposable,  Ae. aegypti, time series, 
African riceland agro-village, uncoalesced dataset, logistic regression can be frustratingly 
misspecified (see Jacob et al. 2005).  

Linear, regression, model misspecifications ( e.g., false positive, seasonal, 
hyperproductive, Ae. aegypti, oviposition geolocations)  forecasted on a sub-meter resolution, 
grid-stratified, geosampled,  African, expanding, riceland corridor adjacent geospatially to  
inhomogeneous, forest-canopy LULCs may be inconspicuous unless the arbovirologist, medical 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

32 
Copyright © acascipub.com, all rights reserved.  

entomologist or YF experimenter deduces the non-normalities (e.g.,  lepokurotic distributions) in 
the model summary statement. In many instances in entomological forecast vulnerability, time 
series, endmember, sub-meter resolution, LULC models, erroneous propogational outputs may 
not be gauged. If errors are non-normally distriuted in a YF, seasonal, hypeproductive, sub-meter 
resolution, endmember signature, capture point,  non-continuous, African riceland, eco-
epidemiological, signature model, then the forecasts rendered would be non-robust ( 
e.g.,collinear LULC, oviposition,capture point, estimates)  In cicumstances whenst   geo-
spectrotemrpoal or geo-spatiotemporal, eco-georeferenceable, YF, eco-epidemiological,  
seasonal, prognosticative, LULC signature models are constructed from  sub-meter resolution 
endmember, wavelengths, residual, parameter estimator   uncorrelatedness  may be detected by 
usage of object-based geoclassifiaction algorithms ( e.g., Spectral Angle Mapper in ENVI).  In a 
geo-spatiotemporal or, geo-spectrotemporal, eco-epidemiolgoical, predictive, Ae. aegypti, 
oviposition, capture point, eco-eeidmiological, eco-georeferenceable, vulnerability , 
probabilistic, regression  paradigm constructed in SAS ( PROC REG)  a stepwise backward 
elimination may determine independence amongst the YF, LULC parameter estimators.  

Stepwise regression is a method of fitting models in which the choice of predictor 
variables ( e.g., uncoalesced, Ae . aegypti, oviposition, YF , sub-meter resolution, African 
riceland and or inhomogeneous forest-canopied  LULC discrete integer values) is carried out by 
an automatic process in SAS or R.  In each step, an eco-epidemiological, YF  seasonal 
geosampled, geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological LULC variables  
would be considered for addition to or subtraction from the empirical dataset of eigen-
decomposable,  grid-stratified, sub-meter resolution, wavelength frequencies or other clinical 
diagnostic grid-stratifiable regressors based on some pre-specified criterion. Usually this would 
take place in the form of a sequences (e.g., F test or T Test). Other test are also possible for 
detecting unquantitated propogational, inconspicuous, endmembers and or parameter estimator 
deviations. The frequent practice of fitting the final selected LULC model followed by reporting 
estimates and confidence intervals without adjusting them to take the model building process 
into account has led to using stepwise model building (  Hosmer and Lemeshew 2002)  Other  
salient sequence distributions that may be applicable for  constructing a robust. optimizable, YF 
eco-epidemiological, forecast, vulnerability , signature, sub-meter resolution, LULC  model  
would be the  adjusted R2, Akaike information criterion, Bayesian information criterion, 
Mallows's Cp, PRESS, or false discovery rate 

The linear probability model is more accurate by comparison as it can be estimated non-
iteratively using ordinary least squares (OLS). This model would ignore the fact that the linear 
probability, riceland, African agro-village, expanding, vulnerability, eco-epidemiological, 
riceland, oviposition, discontinuous, forest-canopy, prognosticative model is heteroskedastic 
with residual variance p(1-p), but the heteroscedasticity is minor if p is between .20 and .80, 
which is the situation when employing  linear probability models at all. OLS estimates of eco-
georeferenecable, eco-epidemiological, remote targets of seasonal,   hyperproductive, Ae. 
aegypti, oviposition sites on geoclassifiable, sub-meter resolution LULCs can be improved by 
using heteroscedasticity-consistent standard errors or weighted least squares.  

Heteroscedasticity-consistent standard errors may be usable for optimally regressively 
quantitating diagnostic fit of an agro-village, riceland, African, agro-ecosystem, sub-meter, 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

33 
Copyright © acascipub.com, all rights reserved.  

resolution, discontinuously canopied, geometeric, endmember, LULC, capture point, 
vulnerabiltiy model estimators that does contain heteroscedastic residuals. The first such 
approach was proposed by Huber (1967), and further improved procedures have been produced 
since for cross-sectional data, time-series data (e.g., geosampled, geo-spectrotemporal or geo-
spatiotemporal, uncoalesced, sub-meter resolution, Ae. aegypti, capture point , YF African, 
riceland. Discontinuous forest-canopy model for targeting newly transition discontinuous, forest-
canopied LULCs) and GARCH estimation. 

Autoregressive conditional heteroskedasticity (ARCH) may be optimally interpreted as 
the condition when there are one or more seasonal, eco-georeferenceable, sub-meter resolution, 
goclassifiable, LULC, eco-epidemiological, capture points (e.g., geosampled, discontinuous, 
forest-canopied, and riceland agroecosystem, Ae aegypti oviposition, geoclassifiable stratified, 
orthogonal grids) in a series for which the variance of the current error term exists. Alternatively, 
ARCH innovation may be  a function of the actual sizes of the previous geosampled time 
periods' parameterized error terms. In such circumstances in a YF eco-epidemiological, African 
ricland, vulnerability signature, LULC sub-meter resolution, immature, capture point,habitat 
model the variance may be related to the squares of the previous innovations in the endmember, 
time series forecasts. In  remotely sensed LULC, vector arthropod, entomological bio-
geophysical, endmember ARCH models, time series may  be characterized (Griffith 2005). A 
variety of other acronyms are applicable for particular structures that have a similar basis ARCH 
model assumptions  which may be robustly parsimoniously usable in time series, forecast, 
vulnerability, eco-epidemiological, endmember, YF signature modeling that exhibit time-varying 
volatility clustering, (i.e., periods of seasonal  wavelengths in an oviposition,  flooded, African, 
riceland agro-ecosystem geo-spectrotemporal, sub-meter resolution, geclassifiable, 
discontinuous, forest-canopied, LULC paradigm interspersed with periods of relative calm). 
ARCH-type models are sometimes considered to be in the family of stochastic volatility models, 
although this is strictly incorrect since at time t the volatility is completely pre-determined 
(deterministic) given previous values (Box and Jenkins 1985). 

An eco-epidemiological, time series, weighted, ARCH, malarial, sub-meter resolution, 
eigen-decomposable, LULC, orthogonal, grid-stratified, risk map  was generated in Jacob et al. 
(2013) using prevalence  as a response variable for devising whether aggregate, eco-
epidemiological, capture point, immature  habitat counts  digitally overlaid over an eco-
geographical region subdivided by administrative boundaries (e.g., districts) could help prioritize 
areas for implementing an  IVM control strategy  in Uganda. Initially, univariate statistics and 
regression models were generated from empirical geosampled data to determine seasonal 
covariates (e.g., rainfall) related to monthly prevalence rates. Specific, eco-epidemiological, 
district-level,time series,  prevalence measures were forecasted employing autoregressive LULC 
specifications and geo-spatiotemporal data collections for targeting district-evel, eco-
georeferenceable geolocations  that had higher prevalence rates. Case, as counts, were employed 
as a response variable in a Poisson probability model framework for quantitating the empirical 
datasets of district-level, explanatorial, ecogeoreferenceable LULC covariates (i.e., 
meteorological data, densities and distribution of health centers, etc.) sampled from 2006 to 2010 
in Uganda. Results from both a Poissonian and a negative binomial (i.e., a Poisson random 
variable with a gamma distrusted mean) revealed that the geoclassified LULC covariates 
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rendered from the model were significant, but furnished virtually no predictive power. Inclusion 
of indicator variables denoting the time sequence and the district geolocation spatial structure 
was then articulated with Thiessen polygons which also failed to reveal meaningful 
paramterizable covariates.  

Thereafter, in Jacob et al. (2013) an ARIMA model employing the empirical geosampled, 
district-level, datasets was constructed which revealed a conspicuous but not very prominent, 
first-order, temporal, autoregressive, endmember, LULC structure in the individual, district-
level, time-series, dependent regressors. A random effects term was subsequently specified using 
monthly time-series dependent explanators. This specification included a district-specific 
intercept term that was a random deviation from the overall intercept term which was based on a 
draw from a normal frequency distribution. The random effects specification revealed a non-
constant mean across the districts. This random intercept represented the combined effect of all 
omitted, endmember, LULC covariates that caused districts to be more prone to the malaria 
prevalence than other districts.  

Additionally, in Jacob et al. (2013) inclusion of a random intercept assumed random 
heterogeneity in the districts’ propensity or, underlying risk of malaria prevalence which 
persisted throughout the entire duration of the time sequence under study. This random effects 
term displayed no spatial autocorrelation, and failed to closely conform to a bell-shaped curve. 
The model’s variance, however, implied a substantial variability in the prevalence of malaria 
across districts. The estimated model contained considerable overdispersion (i.e., excess Poisson 
variability): quasi-likelihood scale = 76.565. The following equation was then employed to 
forecast the expected value of the prevalence of malaria at the district-level: prevalence = exp[-
3.1876 + (random effect)i] . Compilation of accurate explanative, geo-spatiotemporal or geo-
spectrotemporal, endemic,  YF geoclassifiable, sub-meter resolution, LULC, African,   riceland 
oviposition  data along forest-canopied corridors in agro-irrigated grid-stratfied ecosystems  may 
allow continual updating of the random effects term estimates allowing research intervention 
teams to bolster the quality of the  LULC forecasts for district-level, Ae aegypti, ovisposition 
African riceland agro-irrigation, eco-epidemiological risk modelling efforts.  

Robustness in a time series, elucidative, eco-epidemiological, YF, riceland, capture point, 
sylvatic, Ae aegypti, forecast, vulnerability model for optimally targeting, newly trasnitioned, 
oviposition, intermittent, forest-canopied, LULC, eco-georeferenceable seasonal, into 
hyperproductive habitat sites would be  definable  in SAS or R  if the ability of the newly, 
transitioned,  regressively, paramterizable, coavariate, geometric, endmember, time series, LULC 
effects remains consistent under misspecifications of the covariance structure. With large 
matrices, the inefficiency of the sandwich estimator may become worrisome for constructing, 
optimal, endemic, YF,  geo-spatiotemporal or geo-spectrotemporal, geosampled, endmember, 
sub-meter resolution, geoclassifiable, LULC datasets of unbiased, forecast-oriented, seasonal, 
hyperproductive, oviposition, sylvatic, Ae. aegypti ,exploratory, uncoalesced, sub-meter 
resolution, iteratively, quantitatively interpolative, eco-epidemiological, vulnerability models, 

An arbobiologist, medical entomologist or YFV experimenter may consider two general 
shrinkage approaches for optimally estimating the covariance matrix in SAS for optimally 
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regressively, targeting, hyperproductive, seasonal, eco-epidemiological, immature, Ae aegypti, 
eco-georeferenceable, explanative, sub-meter resolution, LULC,  capture points along a riceland, 
grid-stratifiable, partially, forest-canopied,  discontinuous interface in an expanding, African, 
agro-irrigated, agro-ecosystem complex. The first would involve shrinking the eigenvalues of the 
unstructured ML or REML estimator. The second would involve shrinking an unstructured, 
riceland, LULC, orthogonal prognosticative estimator toward a structured estimator. For 
bothcases, the geosampled, geo-spectrotemporal or geospatiotemporal, uncoalesced endmember, 
LULC-specified, regression variables would determine the amount of shrinkage. These 
uncoalesced, oviposition, sub-meter resolution, wavelength, frequency, entomological signature 
estimators may be consistent and render asymptotically efficient estimates for optimally 
aggregating an eco-epidemiological, sylvatic, Ae. aegypti  LULC, ovisposition, endmember 
dataset of probabilistic, iteratively interpolative, time series, regression-related, eco-
georeferenceable, eigen-decomposable, coefficients parsimoniously. Simulations may 
demonstrate improved operating characteristics of time series, geoclassifiable shrinkage, sub-
meter resolution, LULC, wavelength frequency , endmember  ovisposition riceland estimators of 
the covariance matrix and their weighted, regressable, diagnostic, YF, time series, 
parameterizable, covariate coefficients in finite samples. The final, sub-meter resolution, 
diagnostic, geometric, endmember, LULC, oviposition, signature paradigm itartive interpolative,  
dependent variable as selected  in PROC MIXED may include a combination of both approaches 
by shrinking the reference  eigen-decomposed eigenvalues of the signature  toward the 
endmember LULC structure where a hyperproductive discontinuous, forest-canopied, sylvatic, 
Ae. aegypti, seasonal, hyperproductive, capture point,  inmature habitat  occurs along an 
expanding, African, riceland, agro-ecosystem complex. In so doing, an arbovirologist, medical 
entomologist or YF experimenter may optimally remotely differentiate between structured and 
unstructured, eco-georeferenceable, explanatorial, eco-epidemiological, oviposition, seasonal, 
hypeproductive, endmember, LULC, explanatory, orthogonally sub-meter resolution, grid-
stratifiable, YFV, oviposition, geo-spectrotemrpoal or geo-spatiotemrpoal, frequency, 
wavelength, eigenvector, habitat, decomposed, frequency estimators. 

PROC MIXED implements two likelihood-based methods: ML and REML 
(www.sas.edu). A favorable theoretical property of ML and REML is that they accommodate 
data that are missing at random (see Rubin 1976; Little 1995). PROC MIXED may optimally 
construct an objective function associated with an explantory, ML or REML, in an expanding, 
African, riceland, agro-village, sylvatic, Ae. aegypti, forecast, vulnerability, eco-epidemiological, 
oviposition, geometric, endmember, sub-meter resolution,  LULC, signature model and 
maximize it over all unknown geo-spatiotemporal or geo-spectrotemporal, geosampled, 
geoclassifiable, optimizable, sub-meter resolution, LULC, forecast, canopy, discontinuous  
parameters.  

Employing calculus, it is possible to reduce maximization problems applying one over an 
empriical dataset of only uncoalesced, eco-epidemiological, Ae. aegypti, time series, diagnostic, 
sub-meter resolution, YFV-related, eigen-decomposable, parameterizable, LULC endmember, 
signatureizable, explanatory estimators in and  employing the corresponding log-likelihood, 
elucidative, functions = and 
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where the equation 
and  is the rank of . PROC MIXED actually minimizes  times these 

functions by employing a ridge-stabilized Newton-Raphson algorithm. Lindstrom and Bates 
(1988) provide reasons for preferring Newton-Raphson to the Expectation-Maximum (EM) 
algorithm described in Dempster, Laird, and Rubin (1977) and Laird, Lange, and Stram (1987), 
as well as eigen-analytical, orthogonally decomposable, endmember, LULC, sub-meter 
resolution,  grid-stratifiable, details for implementing an algorithmic, probabilistic approach to 
the problem of  geometerically, remotely identifying discontinuous, forest-canopied, sub-meter, 
resolution, geoclassifiable, LULC, capture point,  oviposition, YF, eco-epidemiological sites in  
expanding riceland agro-village, African, agro-irrigated ecosystems.  Wolfinger, Tobias, and Sall 
(1994) present the sweep-based algorithms that are also implementable in PROC MIXED for 
conducting the same task.  

One advantage of employing the Newton-Raphson algorithm for seasonally 
probabilistically optimally quantitating eco-epidemiological, eco-georeferenecable, eigen-
decomposable, orthogonal,  seasonal, hyperproductive, capture point, Ae. aegypti,  eco-
georferenceable,  oviposition foci on time series, sub-meter resolution, satellite images of 
expanding African, riceland, agro-ecosystem environments  is that the second derivative matrix 
of the objective function evaluated at the optimal is available upon completion in SAS. This 
software provides a powerful programming language with components called procedures. 
Procedures can enable an arbovirologist, medical entomologist or YF researcher to perform 
many different types of endmember, sub-meter, eco-epidemiological, orthogonal, endmember, 
risk analysis and LULC data, management functions. Procedures also may render many different 
types of text-based and graphical seasonal, eco-georeferenceable, African, riceland, agro-
irrigated, ecosystem, capture point, hyperproductive habitats on discontinuous, forest-canopied, 
sub-meter resolution, gridded, LULC, endmember outputs. Combined with other seasonal, eco-
epidemiological, eco-georeferenecable, geo-spatiotemporal or geo-spectrotemporal, YFV-
related, African, riceland, agro-village complex, endmember, Ae. aegypti, uncoalesced, 
oviposition, sub-meter resolution, LULC-related, attribute features, the SAS language and its 
procedures may render an immense variety of  regressively applicable platforms for remotely, 
optimally, targeting, seasonal, hyperproductive, immature,eco-georeferenceable, capture point, 
immature habitats including the following examples:1)Access raw data files and sub-meter 
resolution, LULC  data in external databases and cyberdatabase management systems, 2)Manage 
data using tools for data entry, editing, retrieval, formatting, and endmember conversion of 
geoclassifiable, African, riceland, oviposition, LULCs into discontinuous forecast canopy,3) 
Analyze  geoclassifiable, geo-spatiotemporal or geo-spectrotemporal, sylvatic, Ae. aegypti, 
geomorphological, terrain-related and meteorological data  employing descriptive statistics and 
multivariate techniques for optimally constructing optimal, forecast, vulnerability, sub-pixel, 
eco-epidemiological, signature models employing linear programming. SAS is also portable 
across computing environments. The applications would function the same and produce the same 
results regardless of the operating environment on which an arbovirologist, medical entomologist 
or YF experimenter is running SAS/GIS to process the sub-meter resolution, geoclassifiable 
LULC, riceland, African, ecosystem data.  
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Whilst denoting a robust, regression, grid-stratified, orthogonal matrix ,in a  
oviposition, forecast, vulnerability, sub-meter resolution, African agro-village ecosystem, 
probabilistic, time series, YFV, endmember, signature paradigm reflecting transitioning riceland, 
Ae. aegypti, immature, capture point, immature habitats into inhomogeenous, forest canopy, 
seasonal, hyperproductive, geoclassifiable LULC, seasonal sites,  the asymptotic theory of  ML 
may reveal that is an asymptotic variance-covariance matrix of the probabilistically 
estimated, YF gesampled, parameters of  and . Hence, tests and confidence intervals based on 
asymptotic normality in an optimally regressable, eco-epidemiological, orthogonal, grid-
stratifiable, endmember, eigen-decomposable, eco-georeferenceable dataset of sub-meter 
resolution, oviposition, wavelength, frequency, geoclassifiable, LULC, sylvatic, Ae. aegypti, 
geo-spatiotemporal or geo-spectrotemporal, geomorphological, geoclassifiable,  forecast,  
vulerability models, uncoalesced, wavelength, frequency, parameterizable estimators can be 
quantitatively  obtained. However, these probabilistic, time series dependent, eco-
epidemiological Ae. aegypti, oviposition, geoclassifiable,  LULC regressors may be unreliable in 
small geosampled, forecast, vulnerability, endmember, signature  datasets especially for 
revealing  partially discontinuous, geoclassifiable, forest-canopied, geometric endmember, 
LULC parameters along an eco-epidmiological, expanding African, agro-irrigated, riceland, 
agro-village complex, such as variance components that have sampling distributions that tend to 
be skewed to the right.  

If a residual variance is a part of an mixed oviposition, eco-epidemiological, geo-
spatiotemporal or geo-spectrotemporal, vulnerability, geometric, endmember, LULC, endemic, 
YFV, probability, oviposition, signature  model, it can usually be profiled out of the likelihood. 
This may require   solving analytically for the optimal and plugging this expression back into 
the likelihood formula in PROC REG. This would reduce the number of optimization, eco-
georeferenceable, sylvatic, Ae. aegypti, sub-meter,resolution, geoclassfied, LULC parameters by 
one which  may improve convergence properties. PROC MIXED may also  profile the 
forecasting vulnerability, time series, endmember, YFV model, sub-meter resolution, signature, 
residual variance out of the log-likelihood whenever it appears reasonable to do so. This includes 
the case when  equals  and when it has blocks with a compound symmetry, time series, or 
spatial structure. PROC MIXED would  not profile the log-likelihood whenst has unstructured 
blocks, whenst an arbovirologist, medical epidemiologist or YFV researchist employs the 
HOLD= or NOITER option in the PARMS statement, or whenst he or she uses the NOPROFILE 
option in the PROC MIXED statement.  

Instead of ML or REML, an arbovirologist, medical epidemiologist or YFV researchist 
can employ the non-iterative MIVQUE0 method to estimate  and  in an probabilistic, 
sylvatic, Ae. aegypti, oviposition, eco-epidemiological, forecast, vulnerability, LULC, geo-
spectrotemporal or geo-spatiotemporal, endmember,  signature paradigm. In so doing, PROC 
MIXED would use MIVQUE0 estimates as starting values for the ML and REML procedures for 
optimally regressively quantitating YFV-related, geo-spatiotemporally or geopectrotemporally, 
geosampled, geoclassifiable, explanatory, endmemberm LULC variables. For computating 
geometric, endmember, variance component, vulnerability, in the diagnostic, eco-
epidemiological, YFV models, another estimation method in SAS may be performed that 
involves equating Type 1, 2, or 3 as expected mean squares to the observed, forest-canopy, and 
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expanding, agro-village, African, riceland expanding, seasonal, geosampled, LULC values and 
solving the resulting system. However, Swallow and Monahan (1984) present simulation 
evidence favoring REML and ML over MIVQUE0 and other method-of-moment estimators. 

An arbobiologist, medical entomologist or YFV researchist may address the 
computational difficulties raised by incorporating priors, and nonconjugate priors into 
hierarchical, African, riceland, agro-village, forest-canopy, discontinuous, Ae. aegypti, 
oviposition, eco-epidemiological, LULC models. A combination of approximation, Gibbs 
sampling (possibly with a Metropolis step), and importance reweighting may be optimally 
employable to fit the sylvatic, oviposition, endmember, discontinuous, forest-canopy, eco-
epidmiological, wavelength, frequency, signature, LULC models and compare them with a 
realization rendered from a hybrid approach to alternative Markov Chain Monte Carlo (MCMC) 
methods.  

 
The Wishart distribution is frequently employable as the prior on the precision matrix 

parameter of a multivariate, normalized, geometric, endmember, LULC, oviposition, sylvatic, Ae 
aegypti, seasonal distribution. Because the gamma distribution is the conjugate prior for the 
precision parameter of a univariate normal distribution( Hosmer and Lemeshew 2002), the 
Wishart distribution (as its multivariate generalization) would extend conjugacy to ta  
multivariate, forecast, normalized distribution as rendered from an YFV, eco-epidemiological, 
eco-georeferenecable,  forecast, vulnerability, Bayesian model. In statistics, the inverse Wishart 
distribution, also called the inverted Wishart distribution, is a probability distribution defined on 
real-valued positive-definite matrices[2]. In statistics, the inverse Wishart distribution, also 
called the inverted Wishart distribution, is a probability distribution defined on real-valued 
positive-definite matrices.  

 
Wishart distribution W(Σ, d, n) is a probability distribution of random nonnegative-

definite d × d matrices that is used to model random covariance matrices. The parameter n is the 
number of degrees of freedom, and Σ is a nonnegative-definite symmetric d × d matrix that is 
called the scale matrix. By definition W ≈ W(Σ, d, n) ≈ Xn i=1 XiX0 i , Xi ≈ N(0, Σ) (1.1) so that 
W ≈ W(Σ, d, n) is the distribution of a sum of n rank-one matrices defined by independent 
normal Xi ∈ Rd with E(X) = 0 and Cov(X) = Σ according to Jacob et al. (2013)  for identifying 
captuire points on geoclassifiable, grid-startifiable vector entomological, forecast vulnerability, 
eco-epidemiological, remotely sensed, sub-meter resolution  data In particular E(W) = nE(XiX0 i 
) = n Cov(Xi) = nΣ (1.2) may be applicable for remotely targeting seasonal hypeproductive foci. 
In general, any X ≈ N(µ, Σ) can be represented X = µ + AZ, Z ≈ N(0, Id), so that Σ = Cov(X) = A 
Cov(Z)A 0 = AA0 .The easiest way to find A in terms of Σ  in a YF, eco-epidemiological, Ae. 
aegypti, oviposition, African, riceland, agro-ecosystem, forecast vulnerability, endmember 
LULC model for targeting prolific, capture points on geoclassifiable, sub-meter resolution, 
forest-canopied, discontinuous  LULCs is based on the prcise eigen-decomposition of  the  
signature   estimators  which may find a unique lower diagonal matrix A with Aii ≥ 0 such that 
AA0 = Σ. Then by (1.1) and (1.2) with µ = 0 W(Σ, d, n) ≈ Xn i=1 (AZi)(AZi) 0 ≈ A µXn i=1 ZiZ 
0 i ¶ A 0 , Zi ≈ N(0, Id) ≈ A W(d, n)  A 0 where W(d, n) = W(Id, d, n) (1.3) In particular, W(Σ, d, 
n) can be easily represented in an eco-epidemiological, YF forecast, vulnerability geo-
spectrotemporal or geo-spatiotemporal endmember, sub-meter resolution, forecast, vulnerability  
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model in terms of W(d, n) = W(Id, d, n). Assume in the model that n > d and Σ is invertible. 
Then the density of the random d × d matrix W in (1.1) can be written in SAS  as f(w, n, Σ) = |w| 
(n−d−1)/2 exp¡ −(1/2) tr(wΣ −1 ) ¢ 2 dn/2π d(d−1)/4|Σ| n/2 Qd i=1 Γ ¡ (n + 1 − i)/2 ¢ (1.4) where 
|w| = det(w), |Σ| = det(Σ), and f(w, n, Σ) = 0 unless w is symmetric and positive definite . 

 
In Bayesian inferencial statistics an inverse wishart distribution may be employable as the 

conjugate prior for the covariance matrix of a multivariate normal distribution. Hence, spatial 
Bayesian statistics  may be usable for remotely targeting geo-specrotemporal or geo-
spatiotemproal, geoclassifiable, hyperproductive, oviposition, Ae. aegypti, geometric, 
endmember, seasonal, LULC sites on  grid-stratifiable,  sub-meter resolution, satellite imagery 
employing the conjugate prior for the covariance matrix of a multivariate normal distribution. 

 
A flexible class of prior distributions may be proposed for optimally remotely 

quantitating sub-meter resolution, discontinuous, forest-canopied, expanding, riceland 
oviposition,  geoclassifiable LULCs employing a covariance matrix in PRINCOMP. The 
PRINCOMP procedure may perform a principal component analyses employing an empirical, 
endmember, eco-epidemiological, dataset of uncoalesced, orthogonal, African, riceland, 
oviposition, geoclassifiable, eco-georeferenceable, sub-meter resolution LULC, geometric 
endmembers. As input, time series, eco-epidemiological,  eigen-decmposable, Ae. aegypti, 
uncoalesced, sub-meter resolution,  LULC variables, an arbovirologist, medical entomologist or 
YF experimenter  may quantitate geosampled, riceland agro-irrigation.oviposition, 
geoclassifiable, iterative, interpolative, endmember,LULC,  raw data using  a correlation matrix, 
a covariance matrix, or a sum of squres and cross-products (SSCP) matrix. He or she may create 
an output, explanatory, endmember, forecast, vulnerability, eco-georeferenecable, discontinuous, 
forest-canopied, African, riceland, parameter estimator Ae .aegypti ovispoition dataset of newly 
transitioned partially shaded, orthogonal, eigen-decomposed, LULC,  eigenvectors into riceland, 
agro-irrigated, orthogonal eigenvalues employing standardized or unstandardized principal 
components scores. 
  

Principal component, explanatory, endmember sub-meter resolution grid-stratifiable, 
orthogonal eigen-analyses may be an optimal methodology for quantitating  multivariate,  sub-
meter, resolution, endmember effects  amongst geo-spatiotemporal or geo-spectrotemporal, 
iteratively interpolative, quantitative, geo-spectrotemrpoal or geo-spatiotemporal, LULC 
variables. The choice between employing factor analyses and principal component analyses for 
constructing a sub-meter resolution, African, riceland, eco-epidemiological, YF , forecast, 
vulnerability model may depend on the depth of  the frequentistic responses required for 
extrapolating robustifiable, eco-epidemiological, eco-georferenceable, forecasts of seasonal, 
hyperproductive, sylvatic, capture points, Ae aegypti, oviposition foci. Principal component 
analyses was created for non-high performing computer. Conversely factor analyses may be 
optimally employable to describe variability amongst observed, correlated, eco-
georeferenceable, sub-meter resolution, agro-irrigated African, riceland, endmember, LULC 
variables in terms of a potentially lower number of unobserved variables (i.e, factors). For 
example, it may be  possible that variations in six observed, discontinuous, forest-canopied, 
seasonal,  grid-stratified, endmember, LULC variables mainly reflect the variations in two 
unobserved (underlying),  African, riceland, eco-epidemiological, eco-georeferenceable LULC 
inhomogeneous, forest-canopied variables. Factor analysis would search for such joint variations 
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in response to unobserved LULC, explanatory, non-zero autocorrelated, latent variables in the 
geosampled dataset. The observed variables would be modelled as linear combinations of the 
potential factors, plus "error" terms. Factor analysis would then find independent latent, 
explanatory, agro-irrigated, time series, African riceland, agro-village, Ae. aegypti, oviposition, 
sub-meter resolution, endmember, LULC variables that are geostatistically related to 
discontinuously canopied, forest, periphery LULCs.  

 
PRINCOMP may summarize sylvatic, YF, eco-epidemiological, endmember, LULC data 

for detecting quantitative, grid-stratifiable, linear relationships between geosampled, geo-
spatiotemporal, or geo-spectrotemporal, eco-georeferenceable, orthogonal, Ae. aegypti, riceland 
and forecast-canopied, optimally regressively  parameterizable covariates.  The application of 
principal components is discussed by Rao (1964), Cooley and Lohnes (1971), and Gnanadesikan 
(1977). Excellent statistical treatments of principal components are found in Kshirsagar (1972), 
Morrison (1976) and Mardia, Kent, and Bibby (1979).  

 
A likelihood approximation may be parsimomnioulsy obtainable employing a matrix 

logrithm of the covariance matrix via Bellman’s iterative solution may be employable for 
optimally targeting seasonal hypeproductioev Ae aegypti, ovispoition, capture points on sub-
meter resolution, grid-stratifiable, African riceland agro-village  on newly transitioned 
inhomogeneous, forest canopied habitats.The  Bellman–Ford algorithm is an algorithm that 
computes shortest paths from a single source vertex to all of the other vertices in a weighted 
digraph. It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it is 
capable of handling YF grid-stratfied graphs in which some of the edge weights (discontinuous, 
forest-canopied, geoclassifiable LULC, discrete integers)  are negative numbers. Bellman–Ford 
is based on the principle of relaxation, in which an approximation to the correct distance ( e.g., 
Euclidean distance from a discontinuous canopy, forestland, Ae aegypti, capture point to a 
African, riceland, orthogonal centroid) is gradually replaced by more accurate values until 
eventually reaching the optimum solution. In both algorithms, the approximate distance to each 
vertex is always an overestimate of the true distance, and is replacable by the minimum of its old 
value with the length of a newly found path. However, Dijkstra's algorithm uses a priority queue 
to greedily select the closest vertex that has not yet been processed, and performs this relaxation 
process on all of its outgoing edges; by contrast, the Bellman–Ford algorithm simply 
relaxes all the edges, and does this  times, where  is the number of vertices in the graph. In each 
of these repetitions, the number of vertices in an eco-epidemiological, sub-meter resolution, grid-
stratifiable, orthogonal,  YF-related, forecast, vulnerability, endmember, model with correctly 
calculated grid-stratified distances grows, from which it follows that eventually all vertices will 
have their correct distances. This method allows the Bellman–Ford algorithm to be applied to a 
wider class of inputs than Dijkstra for targeting, Bayesianized, seasonal, hyperproductive, Ae. 
aegypti, African riceland, agro-village, eco-epidemiological, capture points on newly 
transitioned forest-canopy, peripheral corridors 

  In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same 
family as the prior probability distribution p(θ), the prior and posterior are then called conjugate 
distributions, and the prior is called a conjugate prior for the likelihood function. For example, 
the Gaussian family is conjugate to itself (or self-conjugate) with respect to a Gaussian 
likelihood function: if the likelihood function is Gaussian, choosing a Gaussian prior over the 
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mean will ensure that the posterior distribution is also Gaussian. This means that the Gaussian 
distribution in an  African geoclassified, LULC, riceland, YF, sub-resolution, forecast, 
vulnerability endmember model for targeting seasonal hyperproductive, capture point, endemic, 
Ae. aegypti. oviposition foci would be a conjugate prior for the likelihood that is also Gaussian.  

Let the likelihood function be considered fixed; the likelihood function is usually well-
determined from a statement of the data-generating process in a forecast, oriented, risk model. It 
is clear that different choices of the prior distribution p(θ) may make the integral more or less 
difficult to calculate, and the product p(x|θ) × p(θ) may take one algebraic form or another inan 
African,  rice-agro-ecosystem, seasonal, Ae. aegypti, eco-epidemiological, forecast, vulnerability, 
LULC model. For certain choices of the prior in the eco-epidemiological, YF model there would 
be  the posterior which may have the same algebraic form as the prior (generally with different 
parameter values). Such a choice would be termed a conjugate prior. A conjugate prior is an 
algebraic convenience, giving a closed-form expression for the posterior; otherwise numerical 
integration may be necessary (Gelman 1995). Further, conjugate priors for a seasonal, YF, eco-
epidmiological, forecast, vulnerability, endmember, sub-meter resolution  model for targeting, 
endemic, oviposition, riceland and or inhomogeneous, forest-canopy,inhomogeneous,  LULC 
sites may render robust intuitions (seasonal, hyperproductive,agro-irrigation, hyperproductive   
geolocations ) by more transparently showing how a likelihood function updates a prior 
distribution in the model. All members of the exponential family have conjugate priors (Cressie 
1993). 

    The width of a confidence interval for conducting a robust, geo-spectrotemporal, or geo-
spatiotemporal, endemic, geosampled, YF meta-analysis in SAS for optimally targeting seasonal, 
hyperproductive, sylvatic, Ae. aegypti, geoclassifiable, geometric, endmember, oviposition, 
LULC sites in an  eco-georeferenceable, ArcGIS-derived, sub-meter resolution, seasonal, grid-
stratifiable, orthogonal, time series, geospatial cluster of  partial, discontinuous, sub-meter 
resolution, forest-canopied, LULCs along agro-irrigated, African, expanding, riceland agro-
ecosystems would depend on the precision of the individual geosampled, eco-epidemiological, 
capture point,  count density, regressable estimates. Commonly this data would be overlaid 
digitally onto the uncoalesced, descriptive, satellite, geoclassified, eco-epidemiological, grid-
stratified, endmember, LULC data.  In addition, for parsimonious, robust, endmember optimal 
quantitation of random-effects LULC realizations from a forecast, vulnerability, geo-
spectrotemporal or geo-spatiotemporal,   sylvatic, Ae. aegypti, oviposition, geometric, frequency 
endmember, LULC model, precision,empirical, YF-related, optimizable, dataset of 
parameterizable, wavelength, frequency, sub-resolution covariates will decrease with increasing 
heterogeneity and confidence intervals will widen correspondingly based on the 
geomorphological variation and other geosampled eco-georeferenceable variables ( e.g., weekly 
meteorological unmixed components). Conversely, as temporality in added to the SAS, 
endmember, YF, forecast, vulnerability, LULC, meta-analysis, the width of the confidence 
interval could decrease.  However, if the additional, sub-meter resolution, wavelength, 
frequency, irradiance, sub-resolution LULC data increases the heterogeneity in the meta-analysis 
, a random-effects, time series, eco-epidemiological, geo-spectrotemporal or geo-
spatiotemporal,YFV model may be  employed to exploit the geosampled, agro-irrigated, African, 
riceland, discontinuous, forest-canopied covariates which may make it possible  to increase 
confidence interval width. 
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 Confidence intervals and point estimates may have different interpretations in fixed-
effect and random-effects time series, eco-epidemiological, wavelength, frequency, remotely 
sensed, YF, sub-meter resolution, seasonal, transmittance,  Ae. aegypti, oviposition, LULC, 
discontinuous, sylvatic models.  Whilst the fixed-effect, regression, optimizable explanatory 
estimate in the forecast-oriented, vulnerability, probabilistic signature paradigm  and its 
confidence interval may address the question ‘what is the best (single), sub-meter resolution, 
and/or estimate for optimal targeting of eco-georeferenceable, sparse, forest-canopied, prolific,  
seasonal, hyperproductive, sylvatic, Ae. aegypti, endmember, oviposition LULC sites along a 
agro-irrigated, African, riceland corridor, the random-effects estimate would assume there to be a 
distribution of regression effects, and hence the estimate and its confidence interval may 
determine   the  estimate of the effect in the eco-georeferenceable, residual,  diagnostic, forecast 
dataset of targeted, hyperproductive, seasonal, capture point, tabulated,  immature productivity. 
 
          A confidence interval may be reportable for any level of confidence (although they are 
most commonly reported for 95%, and sometimes 90% or 99%) for determining robustness of an 
eco-epidemiological, YF, forecasting, optimizable, remotely sensed, sub-meter resolution,  
vulnerability, explanatory, diagnostic, optimizable  LULC model and its parameterizable, 
geometric, endmember, covariate, geoclassifiable, paramterizable, estimator datasets. For 
example, the odds ratio of 0.80 could be reported with an 80% confidence interval of 0.73 to 
0.88; a 90% interval of 0.72 to 0.89; and a 95% interval of 0.70 to 0.92 for targeting, 
hyperproductive, Ae. aegypti, oviposition sites on geoclassifiable, partially, discontinuous, 
forest-canopy, sub-meter resolution, endmember, LULC, risk maps. As the confidence level 
increases, the confidence interval widens (Rao 1965).  

There may be logical correspondence between the confidence interval and the P value in 
an unbiased, eco-georeferenceable,optimizable, sub-meter resolution, uncoalesced dataset of 
agro-irrigated, African, expanding, sub-meter, spatial resolution, forecast-oriented, vulnerability, 
eco-epidemiological, parameterizable,  frequency, wavelength, YF estimators for geospatially 
quantitating levels of African, riceland, oviposition sites on geoclassified discontinuous, partially 
geoclassified, forest-canopied LULCs.  The 95% confidence interval for an effect may exclude 
the null value (such as an odds ratio of 1.0 or a risk difference of 0), if and only if the test of 
significance yields a P value of less than 0.05.  If the P value is exactly 0.05 in the explanatorial, 
diagnostic, time series, orthogonal, residual, eco-georeferenceable, eco-epidemiological, grid-
stratified, LULC, sub-meter resolution, oviposition forecasts, then either the upper or lower limit 
of the 95% confidence interval will be at the null value in the entomological model.  Similarly, 
the 99% confidence interval will exclude the null if and only if the test of significance yields a P 
value of less than 0.01 in the forecast, vulnerability, eco-georeferenceable, endemic, forecast, 
model output (e.g., hyperproductive,  foci, of seasonally, Ae. aegypti, geo-spatiotemporal or geo-
spectrotemporal, geoclassifiable, endmember, geometric, oviposition, LULC, capture points) in 
an irrigated, African, riceland, expanding, agro-village complex.  
          

  In SAS, the regression, explanative, oviposition, eco-epidemiological, seasonal, 
hyperproductive, capture point, regression estimate and confidence interval  may provide 
information to assess time series, eco-epidemiological, diagnostic, clinical, field or remote-
specified, sub-meter resolution, LULC, signature, parameterizable  signature covariates 
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usefulness  in an  sylvatic,  Ae. aegypti, oviposition, geo-spatiotemporal or geo-spectrotemporal, 
geoclassifiable, ArcGIS interventional, forecast, vulnerability, eco-epidemiological model.  For 
example, suppose that an arbovirologist, medical entomologist or other  experimenter is 
evaluating a treatment that reduces the risk of sylvatic YF by remotely targeting an eco-
georeferenceable, sub-meter resolution, explanative, geospatial cluster of seasonal, 
hyperproductive, Ae. aegypti, oviposition, LULC sites at the peripheral of an agro-irrigated, 
African, discontinuously canopied, riceland agro-ecosystem.  In order for the probabilistic, time 
series, regresseable grid-stratifiable, LULC data to be useful, the  quantitated, YF-related,  geo-
spectrotemporal or geo-spatiotemporal, endmember, sub-meter resolution, diagnostic, 
geoclassified,  geosampled variables  would have to help reduce the risk of an endemic 
transmission event from 30% by at least 5 percentage points to 25% (these values will depend on 
the specific clinical scenario and diagnostic outcome), for example. 
 

 If the sylvatic, LULC, oviposition, sub-meter resolution,Ae. aegypti, YF-specified, eco-
epidemiological, meta-analysis yields an effect estimate of a reduction of 10 percentage points 
with a tight 95% confidence interval, say, from 7% to 13%  for an expanding,  agro-irrigated, 
African, riceland agro-environment, forecast, vulnerability, endmember, seasonal, LULC model, 
an arbovirologist, medical entomologist or  another experimenter may be  able to conclude that 
the control stragey was useful since both the point estimate and the entire range of the interval 
exceeded a criterion of a reduction of 5% for diagnostic usefulness.  However, if the YF meta-
analysis reports the same risk reduction of 10% but with a wider interval, say, from 2% to 18%, 
in prevalence for the riceland eco-epidemiological, study site the optimal estimate of the effect of 
treatment, would not be so confident as there would be no exclusion of the possibility that the 
effect could be between 2% and 5%.  If the confidence interval was wider in the explicative,  
optimizable, residual, eco-epidemiological, eco-georeferenecable,  forecasts (e.g., remotely 
targeted, oviposition, seasonal, Ae. aegypti, hyperproductive foci on a sparsely shaded, sub-meter 
resolution, geoclassified, endmember, LULC strip along a ricefield African corridor) and include 
the null value of a difference of 0%, the arbovirologist, medical entomologist nor any YF 
experimenter  could exclude the possibility that the control treatment has any effect whatsoever. 
Confidence intervals with different levels of confidence can demonstrate that there is differential 
evidence for different degrees of benefit or harm ( Rao 1972).  

          In particular, if the variance of the errors is increasing over time, confidence intervals in a, 
sub-meter resolution, YF, vulnerability, probabilistic, eco-epidemiological, orthogonal LULC,  
paradigm constructed for quantitating agro-irrigation, oviposition covariates on discontinuous, 
forest-canopied, peripheral, African, riceland regions for out-of-sample predictions will tend to 
be unrealistically narrow. Heteroscedasticity in such a geometric, probabilistic paradigm may 
have the effect of giving too much weight to a small subset of geosampled, diagnostic, sylvatic, 
YF, explanatorial, clinical, field or remote, geo-spatiotemporal, geo-spectrotemporal, LULC,  
frequency, orthogonal, wavelength,uncoalesced, grid-stratifiable, sub-meter reoslution data 
(namely the subset where the error variance is the  largest) whenst optimally estimating the sub-
meter resolution, iterative interpolative, explanative,  endmember, geometric, LULC coefficients. 
It might be possible to report the same analysis results (i) with 95% confidence that the 
intervention does not cause harm; (ii) with 90% confidence that it has some effect; and (iii) with 
80% confidence that it has an important endemic transmission benefit.  These elements may 
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suggest both usefulness of the intervention and the need for additional, YF research in 
expanding, agro-irrigated, African, riceland, agro-village environment due to anthropogenic 
pressure. 

          Diagnosing, non-explanatorial, time series, heteroskedastic, orthogonal, wavelength, 
frequency parameters in an eco-epidemiological, geo-spectrotemporal, sub-meter resolution, 
geo-spatiotemporal, explicative, forecast, vulnerability dataset of  eco-georefernceable,  YF, 
model, unbiased estimators would require  devising a plot of residually predicted, optimally 
fractional, geometric, explicative, endmember, time series, LULC values.  Importantly evidence 
of propagational residuals that grow larger either as a function of time or as a function of the 
prognosticative, eco-epidemiological, time series, uncoalesced, endmember, orthogonal, 
signature, regressed explanators can cause frequency mispecifications in a target dataset of 
seasonally explanative, hyperproductive,uncoalesced,  sylvatic, capture point, Ae. aegypti, 
oviposition, sub-meter resolution, geoclassifiable explanative, clinical, field or remote, geo-
spectrotemporal or geo-spatiotemporal, geosampled, predictively  mapped, sub-meter resolution, 
LULC sites. To be really geostatistically thorough, however, an  arbobiologist, medical 
entomologist or YF researcher could also generate experimental, explanative, time series, eco-
epidemiological, eigen-decomposable, orthogonal, synthetic,  spatial filter, residual, explanatory, 
diagnostic plots of residuals versus independent variables to optimally  quantitate consistency in 
the endmember model dataset. Because of imprecision in uncoalesced, biased, diagnostic, sub-
meter resolution, LULC, covariate coefficient, endmember, seasonal, wavelength,  YF-related, 
frequency, estimator , sub-meter resolution datasets, may tend to be slightly larger for  
diagnostic, geo-spectrotemporal or geo-spatiotemporal, model outputs associated with eco-
epidemiological forecasts (e.g., regressed values of independent  explanatorial variables that are 
extreme in both directions) although the effect may not be too dramatic. If the explanatory, 
dependent variable (e.g., prevalance of  YF in a riceland agro-village, environment expanding 
complex  is strictly positive, and if the residual-versus, predicted, diagnostic, explanatorial  plot 
shows that the size of the non-Gaussian,  probabilistic, uncertainities is proportional to the size of 
the YF-related, sub-meter resolution,  optimally derived, elucidative,  LULC, hyperproductive, 
eco-epidemiological, capture point, seasonal, vulnerability predictions (i.e., if the regression 
errors seem consistent in percentage rather than absolute terms), a log transformation in  SAS  
applied to the dependent variable may be appropriate.  

The BOXCOX in PROC TRANSREG may perform a transformation of a cature point, 
seasonal, hyperproductive, oviposition, African riceland, Ae. aegypti, eco-georeferenceable, 
geoclassifiable, LULC geosampled, forest-canopied, discontinuous, sub-meter resolution, 
orthogonal, time series, diagnostic,  LULC-oriented, response, regressed variable x. This variable 

may be then indexed by λ, and optimally defined thereafter as  (Equation 1.1) At 
first glance, although the formula in Equation (1.1 ) is a scaled version of the Tukey 
transformation xλ, this transformation does not appear to be the same as the Tukey formula : 

where HSD may be   the significant, unbiased, explanative, parameter estimator 
in a vulnerability, eco-epidemiological,  Ae. aegypti, oviposition, forest-canopied, discontinuous, 
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orthogonal, eigen-decomposable, time series, African, agro-irrigated, riceland, forecasting, 
vulnerability, endmember,sub-meter resolution, LULC, wavelength, frequency, uncoalesced, 
signature, probabilistic paradigm.   

Freeman-Tukey (FT) transforms seek to adjust data to make the distribution more similar 
to a Normal distribution. The basic square root transform is a form of power transform, but the 
FT variant (see Freeman and Tukey, 1950) was specifically designed for Poisson-like data, 
especially with a mean value >1. The FT angular or arcsine transform was developed for 
Binomial-like data, (e.g., presence or absence of YF in an, African, riceland ,expanding, agro-
irrigated ecosystem); in particular, empirical endmember, orthogonal, sylvatic, Ae. aegypti, 
paramter estimator dataset (e.g., geo-spatiotemporal or geo-spectrotemporal geosampled, sub-
meter resolution, geoclassified, LULCs)  representing proportions or percentages. 

 
The angular or arcsin transform applies to source data in the range [-1,1] or more commonly 

in the range [0,1] and is designed to spread the set of values near the end of the range. Frequently 
data in the [0,1] range will represent proportions (Cressie 1993).However, these should be 
genuine measurements and not derived values that are essentially nominal, (e.g. 
presence/absence data). Once transformed data (e.g., orthogonally eigen decomposed sub-meter 
resolution, African, riceland, geo-spectrotemporal or geo-spatiotemporal, sub-meter resolution, 
geoclassified, inhomogeneous, forest canopy, Ae. aegypti, oviposition LULCs) are scaled to the 
range [-π/2,+π/2]. k is typically 0.5 and thus can provide the square root in an eco-
epidemiological, YF, forecast, vulnerability, rice-agro-ecosystem, eco-georeferenceable, LULC 
model. This transform is often used to correct S-shaped relationships between response and 
explanatory variables.  

Tukey suggests exploring simple relationships such as y = b0 + b1Xλ or yλ = b0 + b1X where 
λ is a parameter (e.g., African, riceland, agro-irrigated, empirical, orthogonal, endmember, 
sylvatic, Ae. aegypti,  oviposition, geosampled, LULC variable)  chosen to make the relationship 
as close to a straight line as possible (Abramowitz and Stegun, 1972). If a transformation of the 
type xλ or yλ work as in Equation (1.1) whenst for robustly optimally regressively quantitating, 
immature, Aedes productivity  on geoclassifiable, SAS/GIS-derived, sub-meter resolution, forest-
canopied, discontinuous, riceland, geoclassfied LULCs  along an expanding,  irrigated, riceland 
African agro-ecosystem, then an arbobiologist, medical entomologist or YFV researcher may 
consider changing  measurement scales during  the targeting of the  seasonal, hyperproductive, 
eco-georeferenceable, geo-spectrotemporal or geo-spatiotemporal, geoclassified, endmember 
eco-epidemiologically   mapped oviposition, sites.  

In the iteratively, explanatively, qualitatively   interpolatable, vulnerability, geometric, 
endmember, LULC, sub-resolution, orthogonal, forecast, eco-epidemiological YF, Ae. aegypti, 
African, riceland, forest, canopy, discontinuous, sub-meter, resolution model  renderings when λ 
< 0, both xλ and x′λ ,the sign of xλ may change as to preserve the ordering of the geo-
spectrotemporal or geo-spatiotemporal, geosampled, geoclassifiable LULCs. Of more interest 
would be  the fact that when λ = 0, then the Box-Cox, sylvatic, capture point, Ae. aegypti, eco-
georeferenceable, oviposition, sub-meter resolution, LULC, explanatory, predictor  variable 
would be  the indeterminate form 0/0. Rewriting the Box-Cox formula 
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as  .[ Equation 1.3] would render  λ → 0 This 
same results may also be obtainable employing l'Hôpital's rule.Let lim stand for the limit , 

, , , or  in a YF eco-epidemiolgical, sub-meter resolution, African 
riceland, LULC model.In such circumstances , a, elucidative, robust, YF, riceland, eco-
epidemiological, geo-spectrotemporal or geo-spatiotemporal, endemic, transmission-oriented, 
sub-meter resolution, eco-epidemiological, predictive, risk model may reveal, seasonal,  
hyperproductive,  eco-georeferenceable, Ae egypti, oviposition, on sub-meter resolution, 
geoclassified LULCs in expanding African, irrigated agro-ecosytems due to anthropogenic 
pressure.   

 
Suppose that lim and lim are both zero or are both in an oviposition,eco-

epidemiological,  forecast, vulnerability,oviposition, eco-epidemiological, capture point,  Ae. 
egypti, eco-georeferenceable,  remotely sensed,sub-meter resolution, LULC model. If 

has a finite value or if the limit is , then  may be calculable  for 
quantitating statistical significance of the geosampled, oviposition, sub-meter resolution, 
predictive, YF, eco-epidemiological, risk model estimators. A rigorous explanation for Tukey's 
suggestions in the geometric, endmember, LULC, signature, probabilistic paradigm may reveal 
that the log transformation (which is not an example of a polynomial transformation) may be 
inserted at the value λ = 0 in the wavelength, frequency, Ae egypti, oviposition, LULC model for 
optimally targeting seasonal, hyperproductive, capture points. 

 

Further,  x = 1 may map to the African, riceland, agro-irrigated, LULC , Ae egypti, 

oviposition,capture point = 0 from all regressively, iteratively, quantitatively, interpolatable 
geo-spectrotemporal, or geospatiotemrpoal, geosampled, eigen-decomposable, grid-stratifiable, 
orthogonal, eco-georeferenceable,  sylvatic, hyperproductive, wavelength, frequency, sylvatic, 
Ae. aegypti, oviposition, partially discontinuous, forest-canopied,  sub-meter resolution, 
geoclassifiable, LULC, site values of λ. The choice λ = 1 may simply shift x to the value x−1, 
which could be optimistically quantitated as a straight line in AUTOREG.In so doing seasonal 
hyperproductive, Ae aegypti, capture points , may be discerned cartographically along an 
inhomogeneous, forest, canopied peripheral corridor.   

 
In the bottom row on a semi-logarithmic scale, the choice λ = 0 may alternatively 

correspond to a logarithmic transformation in AUTOREG which may reveal a straight line in an 
Ae. aegypti, immature habitat, capture point, geosampled in an African, riceland, agro-village 
ecosystem. By  superimposing a larger collection of transformations on a semi-logarithmic scale 
in an empirical, orthogonal, sub-meter resolution, grid-stratified, LULC dataset in AUTOREG of 
orthogonal, geometrical, endmember, sub-meter resolution, geometric diagnostic, residual,  
model prognosticators  (e.g.,  eco-georeferenceable, seasonally  targeting, hypeproductive, 
sylvatic, Ae.aegypti, oviposition, LULC sites on geo-spectrotemporal or geo-spatiotemporal 
optimally remotely  geoclassifiable, sub-meter resolution,uncoalesced, endmember agro-
iririgated, African, riceland, agro-village complex, geosampled, geospectrotemporal, 
uncoalesced, iteratively interpolative, sub-meter, resolution, uncoalesced, wavelength 
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frequencies),propogagtional empirical, vulnerability, uncertainty oviposition  LULC data may be 
treated for correlation biases ( e.g., multicollinearity). 

 The power transformation in AUTOREG is optimally  geostatistically defineable as a 
continuously varying function, with respect to the power parameter λ, in a piece-wise function 
form that makes it continuous at the point of singularity (λ = 0). Unfortunately,  in time series, 
explanatively dependent, geo-spectrotemporal or geo-spatiotemporal,  uncoalesced, sub-meter 
resolution, geometric, endmember, geoclassifiable, orthogonally  eigen-decomposable, LULC, 
sub-meter resolution, optimizable, regression model prognosticators, heteroscedasticity often 
arises due to the effects of inflation and/or real compound growth. Some combination of logging 
and/or deflating may stabilize the variance for optimally robustly quantitating uncoalesced, sub-
meter resolution, immature, Ae.egypti, oviposition, capture point, productivity on geoclassifiable, 
ArcGIS geoclassified,  forest-canopied, discontinuous LULCs  along an expanding  agro-
irrigated, riceland, African  ecosystem. 

Logarithmic transformations may be optimally employable to localize potentially 
nonlinear explanatory transformations of dependent, sub-meter resolution, immature, Ae.egypti, 
oviposition, capture point, African, riceland, agro-village, geo-spectrotemporal or geo-
spatiotemporal,  LULC variables. The Box-Cox transformation has the form 

., hence the transformations of the positive explanatory, eco-
georeferenceable, dependent variable is controllable by the parameter . Transformations 
linearly-related to square root, inverse, quadratic, cubic,  may be usable to aid in targeting, 
seasonal, hypeproductive, eco-georeferenceable, eco-epidemiological,  grid-startieid, orthogonal, 
LULC, forecast, vulnerability model The limit as approaches 0 is the log transformation. More 
generally, Box-Cox transformations of the following geo-spatiotemporal, and or 
geospectrotemporal, Ae.egypti, oviposition, endmember, LULC, riceland, forest canopy interface 

corridor form may fit: .By default,  may be revealed in the 
seasonal, targeted, dataset  of  hyperproductive, Ae.egypti, larval sites on newly transitioned, 
forest-canopy, eco-epidemiological, capture points to riceland agro-village, LULCs. The 
parameter may be usable to rescale the diagnostic, orthogonal, forecasted, clinical, field or 
remote –specified, time series, explanatory, YFV specified, ecogeoreferenceable, LULC, 
orthogonalized, parameter estimators so that it is strictly positive. By default,  may also 
occur in the YF model, diagnostic,  summary statements. Alternatively, the residuals may be 
quantitable by  which may be , whenst is the geometric mean of  in the model.  

The BOXCOX transformation in PROC TRANSREG may be usable to perform a Box-
Cox transformation of the dependent variable in an exploratory, forecast, vulnerability, sylvatic, 
sub-meter resolution, Ae. egypti, LULC, oviposition, eco-epidemiological, orthogonal, risk 
model. An arbovirologist, medical entomologist or YFV researchist may specify a list of power 
parameters by using the LAMBDA= t-option. By default, LAMBDA=–3 to 3 by 0.25. The 
procedure chooses the optimal power parameter by using a maximum likelihood criterion (see 
Draper and Smith 1981, pp. 225–226). The PARAMETER=  transformation option may be 
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specified when the objective is to shift the geoclassified, Ae. aegypti, oviposition, sub-meter 
resolution, geoclassified LULC, YF-related, seasonal geo-spactrotemporal or geo-
spatiotemporal, geosampled, quantitative, LULC values to avoid negatives in an eco-
epidemiological, diagnostic, orthogonal, forecast, vulnerability  model. To divide by , an 
arbovirologist , medical entomologist or YF reseachist may specify the GEOMETRICMEAN t-
option for optimally, remotely, targeting, newly transitioned, inhomogeneous, forest-canopied, 
endmember LULCs into African, riceland, agro-irrigated, seasonal, hyperproductive, capture 
point, immature habitats. 

Here are three examples of using the LAMBDA= t-option for constructing  an eco-
georeferenceable,eco-epidemiological, seasonal, hyperproductive,  geo-spectrotemporal or geo-
spatiotemporal,  autoregressive, probabilistic, forest-canopy  and or riceland corridor,  Ae eypti, 
forecast, vulnerability, endmember,sub-meter resolution,  LULC, risk model BoxCox(y / 
lambda=0) = identity(x1-x5); 

   model BoxCox(y / lambda=-2 to 2 by 0.1) = identity(x1-x5); 
   model BoxCox(y) = identity(x1-x5); 

Here is the first example:  

   model BoxCox(y / lambda=0) = identity(x1-x5); 

LAMBDA=0 may specify a Box-Cox transformation with a power parameter of 0 in an 
oviposition, YF, seasonal, hyperproductive,  geo-spectrotemporal or geo-spatiotemporal,  forest-
canopy  and or riceland corridor,  Ae. aegypti, forecast, vulnerability, endmember, sylvatic, 
LULC, eco-epidemiological, risk model. Since a single value of 0 may be specified for 
LAMBDA=, there may be  no difference between the following eco-georeferenceable,eco-
epidemiological, models:  

   model BoxCox(y / lambda=0) = identity(x1-x5); 
   model log(y) = identity(x1-x5); 

Here is the second example:  

   model BoxCox(y / lambda=-2 to 2 by 0.1) = identity(x1-x5); 

LAMBDA may specify a list of eco-epidemiology, forecast, vulnerability, endmember, 
sylvatic, Ae aeypti, LULC, forest canopy, inhomogeneous, agro-riceland, eco-georferenceable, 
corridor model, unbiased, explicative, sub-meter resolution,  parameter estimators. PROC 
TRANSREG may try each power parameter in the list and pick the best transformation. A  ML 
approach [see Neter et al. (1990)] may employ the empirical, geo-spectrotemporal or 
geospatiotemporal, eco-georeferenceable, heuristically optimizable, sylvatic, Ae egypti, 
endmember, signature parameterizable, sub-pixel, uncoalesced, LULC covariates. With Box-Cox 
transformations, PROC TRANSREG would find the transformation before the usual iterations 
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begin in the eco-georeferenceable, LULC, oviposition model. Note that this is quite different 
from PROC TRANSREG’s usual approach of iteratively finding optimal transformations with 
ordinary and alternating least squares. The method would be analogous to SMOOTH and 
PBSPLINE, which  may optimally quantitate LULC transformations before the iterations begin 
based on a criterion other than least squares in the forecast, vulnerability, LULC, YF, eco-
epidemiological model. Here is the third example:   model BoxCox(y) = identity(x1-x5). 

The above procedure would  be printable employing  the optimal power forecast, LULC, 
sub-meter resolution, sylvatic, oviposition, Ae.  aegypti,  orthogonal, risk model, eco-
epidemiological, grid-stratified,  vulnerability parameter, a confidence interval on the power 
parameter (based on the ALPHA= t-option), a "convenient" power parameter (selected from the 
CLL= t-option list), and the log likelihood for each power parameter tried.  

To illustrate how Box-Cox transformations would work for optimally regressively 
quantitating oviposition, eco-georeferenceable, geo-spatiotemporal or geo-spectrotemporal, 
forecast, vulnerability, sylvatic, Ae aeypti, LULC,African, riceland and forest, discontinuous, 
canopy, eco-epidemiological, risk YF model, unbiased estimators  may be constructed 
where . The transformed data may be fit with a linear model . 

The following statements would produce  

   title 'Basic Box-Cox YF Example'; 
    
   LULC data x; 
      do x = 1 to 8 by 0.025; 
         y = exp(x + normal(7)); 
         output; 
      end; 
   run; 
    
   ods graphics on; 
    

The next example shows how to find a Box-Cox transformation without an 
autoregressive, sylvatic, YFV-related, geosampled, eco-georeferenceable,eco-epidemiological, 
seasonal, hypeproductive, geoclassifiable, geo-spectrotemporal or geo-spatiotemporal,  
autoregressive, sub-meter resolution, forest-canopy  and or riceland corridor, Ae. aegypti, 
forecast, vulnerability, endmember, LULC, risk model, independent variable. This methodology 
seeks to normalize the univariate histogram. This example would generate a minumum  of 500 
random, seasonal, capture point, eco-georeferenceable, forecast, vulnerability, oviposition, 
sylvatic, Ae. aegypti, risk model, endmember, eco-epidemiological, eco-georeferenceable, time 
series,  LULC observations from a lognormal distribution. In addition, a constant variable z 
would be created that could render zero. This is because PROC TRANSREG requires some 
independent explanatory variable to be specified in any predictive, grid-stratified, orthogonal 
paradigm, even if it is constant.  



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

50 
Copyright © acascipub.com, all rights reserved.  

Two options may be optimally specified in the PROC TRANSREG statement for targeting, 
capture point, hyperproductive, seasonal, Ae. aegypti, African, riceland habitats on newly 
transitioned inhomogeneous, forest canopied , sub-meter resolution, optimally geoclassifiable, 
endmember,  LULC sites. MAXITER=0  may be  specified as the Box-Cox transformation is 
performed before any iterations are begun whenst optimally constructing an eco-
epidemiological, forecast, vulnerability, endmember, optimizable, geometrical, African, riceland 
model. In so doing, all  eco-georeferenceable, discontinuous, forest-canopied, oviposition, sub-
meter resolution, orthogonal, grid-stratified, African riceland agro-ecosystem, LULC, unbiased,  
capture points may be quantitated No iterations are needed since no other work is required once 
the model is built. The NOZEROCONSTANT a-option (which can be abbreviated NOZ) may be 
optimally thereafter specified so that PROC TRANSREG does not print any warnings when it 
encounters a constant, African, agro-irrigated, riceland or forest-canopied, LULC oviposition, 
sub-meter resolution, explanatory, time series, independent, elucidative, diagnostic, eco-
epidemiological variable. The MODEL statement may ask for a Box-Cox transformation of y 
and an IDENTITY transformation (which does nothing) of the constant endmember, sub-meter 
resolution, LULC variable z. Therefater, PROC UNIVARIATE may be run to determine a 
histogram of the original geosampled geo-spatiotemporal or geo-spectrotemporal, agro-village, 
riceland, sylvatic, Ae. aegypti, oviposition, geometric, endmember, sub-meter resolution, LULC, 
uncoalesced, wavelength, signature YFV, explanatory, eco-epidemiological, frequentistic, 
predictor y, and the Box-Cox transformation, Ty. The following statements may fit a univariate 
eco-epidemiological, endmember, geo-spectrotemporal or geo-spatiotemporal, seasonal, African, 
riceland, YFV, Box-Cox model  for remotely optimally targeting hyperproductive, Ae. aegypti, 
capture points. 

   title 'Univariate Box-Cox'; 
    
   data x; 
      call streaminit(17); 
      z = 0; 
      do i = 1 to 500; 
         y = rand('lognormal'); 
         output; 
      end; 
   run; 
    
   proc transreg maxiter=0 nozeroconstant; 
      model BoxCox(y) = identity(z); 
      output; 
   run; 
    
   proc univariate noprint; 
      histogram y ty; 
run; 
    
   ods graphics off; 
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The PROC TRANSREG results can show that zero is chosen for lambda in the riceland 
probabilistic, orthogonal paradigm so a log transformation may be optimally chosen. The first 
histogram may reveal that the original oviposition, sylvatic, Ae. aegypti, LULC, sub-meter 
resolution, optimally regressed, YF,  geometric,  wavelength, frequency, orthogonal, endmember 
dataset is skewed, but fortunately a log-transformation may make the entomological regression 
data appear much more normal.  

 Logging  a time series, eco-epidemiological, seasonal, hyperproductive, oviposition, 
capture point, Ae. aegypti, eco-georeferenceable, geo-spectrotemporal or geo-spatiotemporal, 
endmember  dataset of fractionalized, sub-meter resolution, geometric, frequency, wavelength, 
African, riceland, forest, inhomogeneously canopied, LULC  observables  may have an effect 
very similar to deflating: it may straighten out exponential erroneously quantitatable  LULC 
growth patterns and reduce heteroscedasticity (i.e., stabilize variance) in the diagnostic, 
forecasted, endemic, YF estimators.  Logging is not exactly the same as deflating--it does not 
eliminate an upward trend in the data (e.g., agro-irrigated, African, riceland, discontinuous, 
forest canopied sub-meter resolution LULCs) --but it can straighten the trend out so that it can be 
better fitted by a linear model. Deflation by itself will not straighten out an exponential growth 
curve reflecting the immature, sylvatic, oviposition,  Ae.aegypti  seasonal, hyperproductivity  in a 
geoclassifiable, ArcGIS-derived, sub-meter resolution, forest-canopied, discontinuous LULC  
along an expanding,  agro-irrigated, riceland, African  agro-ecosystem especially  if the growth is 
partly real and only partly due to inflation. If the series reflects inflationary growth, then 
deflation will help to account for the growth pattern and reduce spatial and aspatial 
heteroscedasticity in the diagnostic, epidemiological, explicative, orthogonal, eigen-
decomposable, residual, explantory eco-georeferenecable, forecasts (e.g., targeted, seasonally, 
prolific, sylvatic, hyperproductive, Ae. egypti, ovipositions geolocations).  

An arbovirologist, medical entomologist or YF experimenter may quantitate aspatial 
heteroskedascity in an aagro-irrigated, African, agro-ecosystem, oviposition, sub-meter 
resolution, geoclassifiable, Lsub-meter resolution, ULC, endmember diffusion model for 
optimally revealing level of  geospatial spillover into forest-canopied, grid-stratified, sub-meter 
resolution, discontinuous LULCs along the periphery of the riceland complex by employing a 
negative binomial regression with a non-homogenous  gamma distributed mean. In this model 
the primary assumption is that the standard deviation is the mean value (see Haight 1967). 
Overdispersed, Poissionian, probability, riceland, expanding,geo-spectrotemporal, or geo-
spatiotemporal, eco-epidemiological, oviposition,  Ae. aegypti, regressed,   LULC data ( i.e., 
outliers) due to violations of the assumption that the variance is equivalent to the mean in the 
paradigm may be rectified employing a negative binomial regression distribution (Jacob et al. 
2005). Hence biased, endmember geometric, grid-stratified, endmember, LULC estimators 
rendered from an eco-epidemiological, forecast, vulnerability, linear, endmember, sub-meter 
resolution, YF model may be rectified by using a negative binomial gamma distribution as post-
treatment for a Poissonian regression.  

For quantitating aspatial uncommon variance (e.g., non-eco-georeferenceable, 
heteroskedastic, residuals) with latent autocorrelation coefficients, an arbovirologist, medical 
entomologist or YF experimenter may consider a covariance matrix in AUTOREG  for  robustly 
quantitating noisy, geosampled,  African riceland, agro-village, ecosystem, oviposition, sub-



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

52 
Copyright © acascipub.com, all rights reserved.  

meter resolution, geoclassifiable, endmember LULCs that are geospatially spilling over onto 
discontinuous, forest-canopied, remotely geoclassified, sub-meter resolution, grid-stratified 
LULCs along the external corridors of the agro-irrigated, African eco-epidemiological, study 
site. In so doing, he or she may be able to optimally regressively quantitate the frequency, 
wavelength, spatial, heteroskedastic, interaction, covariate terms in the regression matrix. This 
endmember paramterizable quantitation of propagational uncertainty disturbances in such a 
probabilistic, geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological, eco-
georeferenecable, diagnostic, forecast, vulnerability model may reveal moment conditions. 

This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial 
HAC) estimation of covariance matrices of multiple, sub-meter resolution, African, riceland, 
agro-irrigated Ae. aegypti, oviposition, geoclassifiable. LULCs transitioned from 
inhomogeneous, forest-canopied, grid-stratified, orthogonal, parameterizable, covariate 
estimators. We generalize the spatial HAC estimators introduced by Neter et al. (1990) to apply 
to linear and nonlinear, LULC, diagnostic, eco-epidemiological, YF, signature  models with 
moment conditions for optimally regressively quantitating discontinuous, forest-canopied, 
riceland, African, Ae. aegypti, oviposition, eco-epidemiological, forecast, vulnerability, eco-
georeferenceable endmember estimators. We establish a dataset of YF model parameter 
estimator based on regressive consistency, rate of convergence and asymptotic truncated mean 
squared error (MSE). Based on the asymptotic truncated MSE criterion, we derive the optimal 
bandwidth parameter and suggest the geo-spctrotemporal and geo-spatiotemporal, eco-
epidemiological, LULC data, dependent, estimation procedure using a parametric plug-in 
method.The finite sample performances of the spatial HAC estimator are evaluated via Monte 
Carlo simulation employing a data of eco-georeferenceable,eco-epidemiological, seasonal, 
hyperproductive, LULC, geo-spectrotemporal or geo-spatiotemporal,  autoregressive, sub-meter 
resolution, forest-canopy  and or riceland corridor, sylvatic, orthogonal, grid-stratified,  Ae. 
aegypti,  forecast, vulnerability, endmember, risk-related,  endmember model, parameter 
estimators. 

Additionally we deflated the past eco-epidemiological, geo-spectrotemporal or geo-
spatiotemrpoal, eco-georeferenceable, sub-meter resolution, YF data and reinflate the long-term, 
diagnostic, forecasts at a constant assumed rate, whilst simultaneously deflating the past 
oviposition time series, Ae. aegypti, African, riceland agro-irrigated, sub-meter resolution, grid-
stratified,  LULC data by an index  and then "manually" reinflate the long-term forecasts 
employing an  autocorrelation index. In Excel, a column was created of formulas which was used 
to divide the original geo-spectrotemporal and geospatial LULC values by the appropriate 
factors. For example, if the geosampled,  seasonal, hyperproductive, Ae. aegypti, immature 
productivity, oviposition  LULC data deflated at a rate of 5 % annually during a monthly sample 
frame,  we divided by a factor of (1.05)^(k/30) where k was the row index (observation number) 
in a weighted autogressive, estimation matrix for quantitating, African, riceland, agro-irrigated 
LULC,  seasonal, growth, trend patterns in a stimulated, hierarchical model for capturing 
emerging females from a newly transitioned, inhomogeneous, oviposition, eco-epidemiological, 
capture point. Our assumption was that if this route is employable for quantitating LULC sub-
meter resolution data at the agro-village field-operation level, inflation rates and other 
regressable estimates may be useable to prognosticate more than one geosampled sampled period 
ahead. Further, we assumed that the deflated eco-epidemiological, vulnerability, eco-
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georeferenceable rates may forecast confidence limits to a data spreadsheet, then generate and 
save an eco-epidemiological, vulnerability, forecast-based, grid-stratified map  residually 
potraying  geometric,  sub-meter resolution, endmember, LULC indices where hyperproductive, 
Ae. aegypti, oviposition capture points seasonally occur. In so doing, the appropriate columns 
together with other independent, riceland geo-spectrotemporal or geo-spatiotemporal, 
endmember, predictor variables (e.g., meteorological or partially canopied, eco-
georeferenceable, eco-epidemiological, seasonal, hypeproductive,  geo-spectrotemporal or geo-
spatiotemporal,  autoregressive, sub-resolution, forest-canopy  and or riceland corridor, sylvatic,  
Ae. aeypti, forecast, vulnerability, endmember, orthogonal, LULC, risk, model covariates). 

The statisticians Box and Cox developed a procedure to identify an appropriate exponent 
(Lambda = l) to use to transform LULC data into a “normal shape.” Here the Lambda value 
indicated the power to which all the geo-spectrotemporal or geo-spatiotemporal, eco-
epidemiologically geosampled, sub-meter resolution, African, riceland, agro-irrigated, grid-
stratified, LULC data should be raised. In order to do this, the Box-Cox power transformation 
searches from Lambda = -5 to Lamba = +5 until the best value is found. We employed some 
common Box-Cox algorithmic transformations, where Y’ was the transformation of the original 
geosampled data Y. The oviposition, sylvatic, time series geosampled, eco-georeferenceable,eco-
epidemiological, Ae. aegypti, seasonal, hyperproductive,  geo-spectrotemporal or geo-
spatiotemporal,  autoregressive, sub-resolution, forest-canopy  and or riceland corridor,  forecast, 
vulnerability, endmember, LULC, eco-epidemiological, risk model where Lambda = 0 and  
transformation is  not Y0 but instead the logarithm of Y. Table 1 reveals the Box-Cox 
transformations used to target, seasonal, hyperproductive, eco-georeferenceable, eco-
epidemiological, Ae. aegypti oviposition, eco-epidemiological, sub-meter resolution, 
endmember, LULC  sites 

Table 1: Common Box-Cox 
Transformations 

l Y’ 
-2 Y-2 = 1/Y2 
-1 Y-1 = 1/Y1 

-0.5 Y-0.5 = 1/(Sqrt(Y)) 
0 log(Y) 

0.5 Y0.5 = Sqrt(Y) 
1 Y1 = Y 

2 Y2 
 
A Box-Cox power transformation was employed for defining the explanative, diagnostic, 

eco-georeferenceable, eco-epidemiologist, explanatory, oviposition, LULC, orthogonal, 
dependent variable which was useful method to alleviate spatial and aspatial heteroscedasticity in 
the   geo-spectrotemporal, geo-spatiotemporal, eco-epidemiological, geosampled, sub-meter 
resolution, sylvatic, Ae. aegypti, multivariate, eigen-decomposeable, orthogonal LULC sites 
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since the distribution of the explanative, dependent variable was not known in the Ugandan argo-
village complex. For situations in which the dependent variable Y may be positive, the following 

transformation can be used:  ( Cressei 1993). Diagnostic, 
orthogonal, eigen-endmember, LULC, frequency, wavelength, decomposable, sub-meter 
resolution, geo-spectrotemporal or geo-spatiotemporal, vulnerability, forecast eco-
epidemiological, wavelength, frequency analysis of the probabilistically regressed, immature, 
Ae.aegypti  oviposition productivity,  geosampled on geoclassifiable, forest-canopied, 
discontinuous, sub-meter resolutionLULCs  along an expanding  African,  riceland, agro-
ecosystem revealed  heterogeneous,  Gaussian residuals. 

 
Gaussian Process (GP) regression models typically assume that residuals are Gaussian 

and have the same variance for all observations (e.g., eco-georeferenceable,eco-epidemiological, 
seasonal, hyperproductive,  geo-spectrotemporal or geo-spatiotemporal,  autoregressive, sub-
resolution, forest-canopy  and or riceland corridor,  forecast, vulnerability, endmember, LULC, 
risk model,eco-epidemiological,unbiased  estimators) ( Hosmer and Lemeshew 2002). However, 
applications with input-dependent noise (e.g., probabilistically regressed immature, agro-village, 
sylvatic, Ae. aegypti productivity  geosampled on geoclassifiable, sub-meter resolution, partially, 
forest canopied, inhomogeneous, LULC, heteroscedastic, endmember, residuals) frequently arise 
in practice, as do applications in which the residuals do not have a Gaussian distribution. Jacob 
and Novak (2014) propose a GP endmember, regression model with a latent oviposition 
geoclassified, LULC variable that served as an additional unobserved, expanding African, agro-
riceland, frequency, wavelength, orthogonal, grid-stratified, LULC, uncoalesced, endmember, 
covariate into the discontinuous,  eco-epidemiological, forecast, vulnerability regression. This 
GPLC model allowed for heteroscedasticity since it allowed the function to have a changing 
partial derivative with respect to this unobserved, explanative, endmember, LULC covariate. 
With a suitable covariance function, a GPLC model may handle (a) Gaussian, YFV, endmember, 
regression residuals with input-dependent variance, or (b) non-Gaussian, YFV residuals with 
input-explanatory, dependent variance, or (c) Gaussian residuals with constant variance (Griffith 
2003). Jacob and Novak (2014) compared an eco-epidemiological, capture point, seasonal, 
geosampled, hyperproductive, An. arabiensis aquatic larval habitat, eco-georeferenceable, sub-
meter resolution, LULC,orthogonal,  grid-stratified, model, using synthetic endmember  eigen-
decomposed datasets, which the authors referred to as GPLV, which only deals with a standard 
endmember GP model. Markov Chain Monte Carlo methods were developed.  Experiments 
revealed that when the malaria mosquito LULC oviposition, time series data was heteroscedastic, 
both GPLC and GPLV rendered optimal results (smaller eco-epidemiological, forecast, 
vulnerability, mean squared error and negative log-probability density) than standard GP 
regression of the An. arabiensis, aquatic, larval habitats. In addition, when the residuals were 
Gaussian, the GPLC model was as good as GPLV for targeting seasonal hypeproductive capture 
points, while when the residuals were non-Gaussian, the GPLC model was better than GPLV. 
Here we  assumed that since an arbovirologist, medical entomologist or YFV experimenter could 
choose from many covariance functions to achieve different degrees of smoothness or different 
degrees of additive structure, in synthetic regression parameters a quantitable covariance 
function  may automatically determine fgeo-spectrotemporal, sub-meter resolution, eco-
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epidemiological, eco-georeferenceable, endmember, LULC data  revealing hypeproductive, Ae. 
aegypti, immature habitats employing a GP model.  

 
However, standard GP regression models typically assume that the residuals have 

independent and identically distributed (i.i.d.) Gaussian distributions that do not depend on the 
input endmember covariates, though in many applications, the variances of the residuals do 
depend on the inputs (e.g., non-Gaussian, selected, frequency, wavelength,orthogonally eigen-
decomposed, sub-meter resolution, geoclassifiable, Ae. aegypti  grid-stratified, distributions of 
the residuals). A GP regression model may deal with input-dependent explanatory, YFV, agro-
village, African, riceland, grid-stratifiable, residuals bordering, forest canopy, discontinuous 
LULCs This model we assumed. could include a latent, explanatory, diagnostic, geo-
spectrotemporal or geo-spatiotemporal eco-epidemiological, sub-meter resolution  endmember, 
LULC variable with a fixed distribution as an unobserved explanatory, endmember, time series,  
input covariate (e.g., eco-georeferenceable,eco-epidemiological, seasonal, hyperproductive,  
autoregressive, forest-canopy  and or African, agro-riceland, discontinuous, forest-canopied, sub-
meter resolution, LULC corridor,  Ae aegypti, forecast, vulnerability, endmember, LULC, risk 
model, unbiased estimator). When the partial derivative of the response with respect to this 
unobserved, orthogonal, endmember, LULC covariate changes across geosampled, YFV, 
explanative  observations, the variance of the residuals may be assumed to change. When the 
latent explanative  variable is transformed non-linearly, the time series, Ae. aegypti, riceland and 
inhomogeneous, forest canopied, LULC residuals may be non-Gaussian [i.e., endmember 
Gaussian, agro-village riceland, process with a partially canopied, discontinuous, latent covariate 
(GPLC) regression model]. 

 
Standard parametric confidence intervals may provide a measure of significance for 

regression coefficients in an eco-epidemiological, oviposition, sylvatic, YF, Ae aegypti, LULC, 
sub-meter resolution, forecasting, probabilistic, endmember paradigm. The model may require 
acceptance of Gaussian assumptions regarding estimates of endmember coefficients for their 
validity. Diagnostic analysis does not support regression assumptions, especially when only 
limited data is available to estimate the variability from the multitude of sources (Hosmer and 
Lemeshew 2002).  

 
Alternatives to the standard parametric confidence intervals are the semiparametric or 

nonparametric methods employing bootstrap estimates of the variability of the coefficient 
estimates (Cressie 1993). These methods may enable remotely targeting, seasonal, 
hyperproductive, sylvatic,  Ae. aegypti, eco-epidemiological, capture point, oviposition, in an 
expanding, African, riceland environment due to anthropogenic pressure.  In statistics, 
bootstrapping can refer to any test or metric that relies on random sampling with replacement. 
Bootstrapping may allow assigning orthogonal, endmember, eigen-decomposed, grid-stratifiable 
measures of accuracy to define terms of bias, variance, confidence intervals, prediction error or 
some other such measure for optimal, geo-spectrotemporal or geo-spatiotemporal, eco-
epidemiological, Ae. aegypti, immature habitat sampling for regressing sylvatic, YF, oviposition,  
LULC estimates(e.g., eco-georeferenceable, seasonal, hyperproductive,  autoregressive, sub-
resolution, forest-canopy  and or riceland corridor,  forecast, vulnerability, endmember, LULC, 
sub-meter, resolution, risk model covariates). This technique may allow estimation of the 
sampling distribution of almost any statistic using random sampling method in an expanding 
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interpolative, sub-meter resolution, LULC map of an agro-irrigated, African, riceland agro-
ecosystem into discontinuous, forest-canopied, LULCs.  Bootstrapping is the practice of 
estimating properties of an estimator (such as  variance of an Ae. egypti, riceland, 
hyperproductive, seasonal foci) by measuring those properties when sampling from an 
approximating distribution (Hosmer and Lemeshew 2002). One standard choice for an 
approximating distribution is the empirical distribution, explanatory orthogonal, grid-stratifiable, 
sub-meter resolution, LULC function of the observed data (e,g., eco-georeferenceable,eco-
epidemiological, seasonal, hypeproductive,  geo-spectrotemporal or geo-spatiotemporal,  
autoregressive, forest-canopy  and or riceland corridor,  Ae. aegypti, forecast, vulnerability, 
endmember, LULC, risk model, descriptive oviposition covariates). In the case where a set of  
sub-meter resolution, diagnostic observations can be assumed to be rendered from an YF-related, 
eco-epidemiological,  i.i.d.population, this dataset can be implemented for control strategies ( 
IVM)  by constructing a number of resamples with replacement, of the observed, grid-
stratifiable, orthogonal, dataset immature estimators (and of equal size to the observed dataset).It 
may also be usable for constructing hypothesis tests. It is often used as an alternative to statistical 
inference based on the assumption of a parametric model when that assumption is in doubt, or 
where parametric inference is impossible or requires complicated formulas for the calculation of 
standard errors. Although bootstrapping is (under some conditions) asymptotically consistent, it 
may not provide general finite-sample guarantees in a regression, forecasting, vulnerability, 
probabilistic paradigm for optimally  mapping  immature, oviposition, Ae.aegypti  productivity  
geosampled on geoclassifiable, ArcGIS-derived, sub-meter resolution, forest-canopied, 
discontinuous LULCs  along an expanding  agro-irrigated, African,  riceland agro-ecosystems. 
The apparent simplicity may conceal the fact that important assumptions are being made when 
undertaking the bootstrap analysis (e.g. independence of African, Ae. aegypti, riceland habitat 
transitioned form forest canopied inhomogeneous samples) for optimally forecasting seasonal, 
hyperproductive, grid-stratified, oviposition sites where these  foci would be more formally 
stated in other approaches. 

 
A robust  regression analyses employing  geo-spectrotemporally uncoalesced,  immature, 

Ae.aegypti,  sub-meter resolution, eco-epidemiological, LULC productivity  data as quantitated 
on geoclassifiable,  sub-meter resolution, geo-spatiotemporal LULC, sylvatic,  endmember 
estimators using nonparametric bootstrap percentile confidence intervals may infer the observed 
significance level of the discontinuous, forest-canopied, regression effects when correlating YF 
with  expanding, agro-irrigated, agro-ecosystem, riceland complex estimators. The multiple 
linear regression may be performed with 1000 bootstrap replications, for example, by fixing the 
design matrix and resampling from the possible responses conditional on each treatment 
combination. The bootstrap orthogonal distribution of each endmember, specified, African, 
riceland, dscontinuous, forest-canopied,  sub-meter resolution, geoclassifiable,  LULC, 
regression coefficient may be compiled, and the 5th and 95th percentiles of the empirical 
distribution may be employable to form the limits for the 95% bootstrap percentile confidence 
interval for  seasonally targeting hyperproductive, oviposition, Ae aegypti, LULC sites for 
quantitating YFV transmission based on geolocations of capture points in a expanding irrigated, 
African, riceland environment. Plots for the effects may be described in an ArcGIS 
cyberenvironment. If the confidence interval fails to include 0, then the p-value may be deemed 
to be less than or equal to 0.05, and the effect of the closer interface between the forest-canopied, 
inhomogeneous LULCs and the iririgated, agro-riceland, ecosystem complex. 
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Bootstrapping allows for estimation of statistics through the repeated resampling of 
LULC data (e.g., eco-georeferenceable,eco-epidemiological, seasonal, hyperproductive,  geo-
spectrotemporal or geo-spatiotemporal,  autoregressive, sub-resolution, forest-canopy  and or 
riceland corridor,  sylvatic, Ae aegypti, forecast, vulnerability, sub-meter resolution, endmember 
estimators). An arbobiologist, a medical entomologist or YFV researcher may demonstrate 
several methods of bootstrapping a confidence interval about an R-squared statistic in SAS. The 
hsb2 dataset may be usable. The sub-meter resolution, YFV, eco-epidemiological, forecast, 
vulnerability model construction may begin with running an OLS regression for optimally 
regressively predicting LULC, weather variables and levels of forest-canopy geo-
spatiotemporally or geo-spectrotemporally associated with immature capture point, Ae. aegypti, 
oviposition, eco-georeferenecable, eco-epidemiological,  seasonal, hyperproductive, immature 
habitat and saving the R-squared value in a dataset called t0. The R-squared value in this 
regression would be  0.5189.   

ods output FitStatistics = t0; 
proc reg data = hsb2; 
  YFV model = Ae egypti LULC; 
run; 
quit; 
 
The REG Procedure 
Model: MODEL1 
Dependent Variable: read reading score 
 
Number of LULC habitat  Observations        200 
 
                             Analysis of Variance 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     4          10855     2713.73294      52.58    <.0001 
Error                   195          10064       51.61276 
Corrected Total         199          20919 
 
Root MSE              7.18420    R-Square     0.5189 
Dependent Mean       52.23000    Adj R-Sq     0.5090 
Coeff Var            13.75493 
 
 
                               
 
 
   Parameter Estimates 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > |t| 
Intercept    Intercept         1        6.83342        3.27937       2.08      0.0385 
Ae.egypti                         1       -2.45017        1.10152      -2.22      0.0273 
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LULC          score        1           0.45656         0.07211       6.33      <.0001 
weather       w score     1           0.37936          0.07327       5.18      <.0001 
levels of canopy                            1        1.30198        0.74007       1.76      0.0801 
*store the estimated r-square; 
data _null_; 
 set t0; 
 if label2 =  "R-Square" then  
 call symput('r2bar', cvalue2); 
run; 

To bootstrap a confidence interval about this R-squared value, an arbovirologist, a 
medical entomologist or YFV reseachist may first need to resample the empirical, geo-
spectrotemporal or geo-spatiotemporal, eco-epidemiologically geosampled data.  This step 
would involve sampling with replacement from the original empirical YF dataset to generate a 
new optimizable, eco-epidemiological, eco-georeferenceable, forecast dataset (e.g., seasonal, 
hyperproductive,  geo-spectrotemporal or geo-spatiotemporal,  autoregressive, sub-resolution, 
forest-canopy  and or riceland corridor,  sylvatic, Ae aegypti, forecast, vulnerability, endmember, 
LULC, risk model estimators) which optimally should be the same size as the original dataset.  
For each of these samples, the same regression as above must be run for quantitating the R-
squared value.  PROC SURVEYSELECT allows resampling in one step (www.sas.edu).   

Before carrying out the risk model  tabulations, it may be important for an arbobiologist, 
medical entomologist or YFV researchist to outline the assumptions about the geosampled, 
endmember, LULC data (e.g., eco-georeferenceable,eco-epidemiological, seasonal, 
hyperproductive,  geo-spectrotemporal or geo-spatiotemporal,  autoregressive, sub-resolution, 
forest-canopy  and or riceland corridor,  Ae. aegypti, forecast, vulnerability, endmember, model 
estimators). For example, it may be assumed that the LULC observations in the YF dataset are 
independent. Further, it may be assumed that the statistic are being estimated is asymptotically 
normally distributed in the YF model.     

An output sylvatic, YFV, eco-epidemiological sub-meter resolution, LULC geoclassifed, 
empirical, grid-stratified, sub-meter resolution, orthogonal, wavelength frequency dataset may 
reveal a seed, a sampling method, and the number of replicates in SAS/GIS.  The sampling 
method may indicate, unrestricted random sampling, or sampling with replacement.  The 
samprate may indicate how large each YF regression sample should be relative to the input eco-
epidemiological, grid-stratified, orthogonal dataset.  A samprate of 1 means that a geosampled 
entomological, sub-meter resolution, LULC-oriented,  endmember, parameterizable, covariate 
estimator dataset should be of the same size as the input dataset (Jacob et al. 2007).  So in this 
eco-georeferenceable, YFV –related, capture point, eco-epidemiological, LULC forecast, 
vulnerability, eco-georeferenecable, uncoalesced, spectral, wavelength, frequency model 
example below 500  covariates were generated  for   multiple endmember, sub-meter resolution, 
estimator datasets, so our output dataset bootsample had over 100,000 observations.  
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%let rep = 500; 
proc surveyselect data= hsb2 out=bootsample 
     seed = 1347 method = urs 
  samprate = 1 outhits rep = &rep; 
run; 
ods listing close; 
 
The SURVEYSELECT Procedure 
 
Selection Method    Unrestricted Random Sampling 
 
Input Data Set                   HSB2 
Random Number Seed               1347 
Sampling Rate                       1 
Sample Size                       200 
Expected Number of Hits             1 
Sampling Weight                     1 
Number of Replicates              500 
Total Sample Size              100000 
Output Data Set            BOOTSAMPLE 

We used these African, riceland, Ae aegypti, ovisposition, sub-meter resolution, grid-
stratified, orthogonal, endmember LULCs Specifying by replicate allowed the model  to be run 
separately for each of the 500 sample datasets. After that, a data step may be employable to 
convert the R-squared values to numeric values (e.g., finite discrete integers of immature, 
sylvatic, Ae aegypti in forecasted, seasonal, African, riceland, oviposition sites along a forest-
corridor).   

 
ods output  FitStatistics = t (where = (label2 =  "R-Square")); 
proc reg data = bootsample; 
  by replicate; 
  model read =  yellow fever write ses; 
run; 
quit; 
* converting character type to numeric type; 
data t1; 
  set t; 
  r2 = cvalue2 + 0; 
run; 

An arbovirologist, medical entomologist or YFV researchist may create a confidence 
interval in an endmember , sub-mter resolution, African, riceland, Ae aegypti, oviposition model 
using the normal distribution theory. This assumes that the R-squared values follow a t 
distribution, so a 95% confidence interval can be optimally rendered about the mean of the R-
squared values based on quantiles from a t-distribution with 499 degrees of freedom, for 
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example.   It may be found, for example, the critical t values for the confidence interval may be 
robustly multiplied by the standard deviation of the R-squared values that arose from the 500 
replications in an endmember, YF, remotely sensed, grid-stratified, eco-epidemiological, 
forecast, vulnerability model.  A confidence interval employing this method may be symmetric 
about the R-squared value in a forecast, vulnerability, LULC, sub-meter resolution, regression  
model.  The 95% confidence interval (0.432787, 0.605013) may be parsimoniously detremined. 
Calculating the bias in the original value of R-squared rendered from the YF, sub-meter 
resolution, LULC, African, riceland environment, the difference between that value and the 
mean of the 500 R-squareds in a bootstrap sample may reveal an  elucidative, explanatorial, 
covariate estimator for targeting hyperproductive, sylvatic, Ae. aegypti, oviposition geolocations 
along an expanding African, ricleland, agro-village complex.   

 
* creating confidence interval, normal distribution theory method; 
* using the t-distribution; 
%let alphalev = .05; 
ods listing; 
proc sql; 
  select  &r2bar as r2, 
          mean(r2) - &r2bar as bias,  
    std(r2) as std_err, 
          &r2bar - tinv(1-&alphalev/2, &rep-1)*std(r2) as lb, 
          &r2bar + tinv(1-&alphalev/2, &rep-1)*std(r2) as hb 
  from t1; 
quit;  
 
      r2      bias   std_err        lb        hb 
  0.5189  0.006616  0.043829  0.432787  0.605013 

Another way to generate a bootstrap 95% confidence interval from the sample of 500 R-
squared values in an eco-epidemiological,  YF forecast, eco-georferenceable, LULC, 
vulnerability model for optimally targeting seasonal, hyperproductive, Ae. aegypti, oviposition, 
sub-meter resolution, LULC sites in an expanding agro-village complex is to look at the 2.5th 
and 97.5th percentiles in this distribution.  (i.e., the percentile confidence interval). This 
approach to the confidence interval has some advantages over the normal approximation used 
above.  This interval  may  not be symmetric about the original estimate of the R-squared in a 
YF, forecast, vulnerability model and this method may be hence unaffected by monotonic 
transformations on the estimated statistic ( e.g., forecasted, hypeproductive, sylvatic, Ae. aegypti, 
immature, riceland habitat sub-meter resolution, density count). The first advantage is relevant 
because of the original, eco-epidemiological, diagnostic, YFV, orthogonally regressable, LULC 
regression estimate may be subject to bias.  Bias in an entomological, regression, orthogonally 
forecastable, vulnerability, uncoalesced, signature model can render misspecications ( Hosmer 
and Lemeshew 2000). The second advantage is less relevant in the example provided ascompatd 
with  an instance where the estimate might be subject to a transformation in the eco-
epidemiological risk model.  The bootstrap estimates that form the bounds of the interval in a  
geo-spectrotemporal, endemic, YFV, geo-spatiotemporal, eco-epidemiological, forecast, 
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vulnerability, sub-meter resolution, geoclassified, endmember, LULC signature, African, 
riceland, agro-ecosystem, grid-stratified, risk model may be transformed in the same way to 
create the bootstrap interval of the transformed estimate.  

An arbobiologist, medical entomologist or YFV reseachist can easily generate a 
percentile confidence interval in SAS using PROC UNIVARIATE after creating some clicnal, 
field or remote, geo-spectrotemporal or geo-spatiotemporal, endmember, YFV –related, LULC 
macro variables for optimally quantitating the percentiles of interest and using them in the output 
statement. In so doing, the confidence interval from this method may be quantitated (0.436, 
0.6017). This information may be placed into a new dataset, method. The standard output may 
then be omitted in PROC UNIVARIATE as: 

%let alphalev = .05; 
%let a1 = %sysevalf(&alphalev/2*100); 
%let a2 = %sysevalf((1 - &alphalev/2)*100); 
* creating confidence interval, percentile method; 
proc univariate YFV data = t1 alpha = .05; 
  var r2; 
  output out=pmethod mean = r2hat pctlpts=&a1 &a2 pctlpre = p pctlname = _lb _ub ; 
run; 
 
<... output omitted ... > 
 
data t2; 
  set pmethod; 
  bias = r2hat - &r2bar; 
  r2 = &r2bar; 
run; 
ods listing; 
proc print data  = t2; 
  var r2 bias p_lb p_ub; 
run; 
 
Obs      r2        bias       p_lb     p_ub 
 1     0.5189    .0066164    0.436    0.6017 
 

An arbovirologit, medical entomologist or YF experimenter   can also correct for bias 
when calculating confidence interval in an eco-epidemiological, sub-meter resolution, sylvatic, 
Ae. aegypti, oviposition, geoclassified LULC, African, riceland, YF eco-epidemiological, model. 
We have calculated bias in the previous method as the difference between the R-squared in the 
example provided. We observed in our initial regression and the mean of the 500 R-squared 
values from the bootstrap samples.  The R-squared estimate from the initial regression may thus 
be assumed to be an unbiased, explanative, orthogonal estimate of the true R-squared.  If an 
arbovirologist, medical entomologist or YF experimenter desires to correct for the bias in 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

62 
Copyright © acascipub.com, all rights reserved.  

calculating a confidence interval, he or she could go through the steps below.  These have been  
described by Cameron and Trivedi in Microeconomics Using Stata. 

Initially there would be a requirement to calculate the proportion of the bootstrap R-
squareds that are less than the original value in an endemic, forecast vulnerability probabilistic, 
YF, sub-mter resolution, African riceland, forest-canopied, sub-meter resolution, LULC model.  
Thereafter the percentiles would have to readjusted and then employed to define  the confidence 
interval trasnmission-oriented, sub- LULC model based on how this proportion differs from 0.5.  
Henceforth, calculating the probit of this proportion (z0) and the proportion associated with a 
alpha level (zalpha) would be necessitated in order to optimally define seasonal, 
hyperproductive, sylvatic, Ae. aegypti, oviposition sites on transitional, inhomogenous, partially 
forest-canopied, sub-meter resolution, grid-stratifiable  LULCs  Next, an abovirologist, medical 
entomologist or YF experimenter may calculate the percentiles that may be applicable  to 
quantiate a confidence interval, p1 and p2, from these regressed values.  Thereafter, PROC 
UNIVARIATE would calculate   an interval.  From this method, for the example provided, the 
interval rendered would be  (0.40575, 0.5936). 

 
%let alphalev = .05; 
%let alpha1 = %sysevalf(1 - &alphalev/2); 
%put &alpha1; 
proc sql; 
  select sum(r2<=&r2bar)/count(r2) into :z0bar 
  from t1; 
quit; 
 
    0.44 
 
data _null_; 
  z0 = probit(&z0bar); 
  zalpha = probit(&alpha1); 
  p1 = put(probnorm(2*z0 - zalpha)*100, 3.0); 
  p2 = put(probnorm(2*z0 + zalpha)*100, 3.0); 
  output; 
  call symput('a1', p1); 
  call symput('a2', p2); 
run; 
 
* creating confidence interval, bias-corrected method; 
proc univariate data = t1 alpha = .05; 
  var r2; 
  output out=pmethod mean = r2hat pctlpts=&a1 &a2 pctlpre = p pctlname = _lb _ub ; 
run; 
 
<... output omitted ...> 
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data t2; 
  set pmethod; 
  bias = r2hat - &r2bar; 
  r2 = &r2bar; 
run; 
 
ods listing; 
 
proc print data  = t2; 
  var r2 bias p_lb p_ub; 
run; 
 
Obs      r2        bias        p_lb      p_ub 
 1     0.5189    .0066164    0.40575    0.5936 

 

      If the oviposition, African, riceland, ecosystem, sylvatic, forecast, vulnerability, eco-
epidemiological, geo-spectrotemporal or geo-spatiotemporal, sub-meter resolution, Ae aegypti 
immature productivity series has a strong seasonal,  eco-epidemiological, ecogeoreferenceable,  
LULC pattern this  may be constant from year to year; thus,  seasonal adjustment may be an 
appropriate way to estimate and extrapolate the pattern in an eco-epidemiological,  YF, forecast, 
vulnerability model. The advantage of seasonal adjustment is that it models the seasonal pattern 
explicitly while providing  the option of studying the seasonal indices and the seasonally 
adjusted grid-stratified, orthogonal, endmember, LULC data. The disadvantage is that this 
decomposition process would  require the estimation of a large number of additional parameters 
(particularly for monthly meteorological, sub-meter resolution data), and it provides no 
theoretical rationale for the calculation of "correct" confidence intervals. In any statistcal 
geodatabase Out-of-sample validation is especially important to reduce the risk of over-fitting 
the past data through seasonal adjustment (Neter, 1990).     

   If the the regressed, grid-stratfied, orthogonal, oviposition, eco-epidemiological, 
endmember, uncoalesced, signature  LULC, data representing the ecogeorefernceable,  
immature, seasonal hypeproductive, Ae.aegypti,  riceland, agro-village, ecosystem  model 
estimators geosampled on geoclassifiable, sub-meter resolution, forest-canopied, discontinuous 
LULCs  along an expanding  agro-irrigated, African,  riceland cosystem is strongly seasonal but 
the arbrovirologist, medical entomologist or  YFV experimenter does not choose an adjustment 
in a SAS or R ethe alternatives  may then be to either (i) employ  a seasonal autoregressive 
integrated moving average (ARIMA) model, which implicitly may forecast the seasonal pattern 
using lags and differences, or (ii) use a model, which estimates time-varying seasonal indices. 

       In statistics and econometrics, and in particular in time series analysis, an autoregressive 
integrated moving average (ARIMA) model is a generalization of an autoregressive moving 
average (ARMA) model. These models are fitted to time series data either to better understand 
the data or to predict future points in the series (forecasting). They are applied in some cases 
where data show evidence of non-stationarity (e.g., seasonal transitioning ,oviposition, 
hyerproductive,  Ae. aegypti habitats in geoclassified, forest canopy LULCs in peripheral 
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AGRO-irrigated, African, riceland, agro-village ecosystems), where an initial differencing step 
(corresponding to the "integrated" part of the model) can be  applied to reduce the non-
stationarity in the empricial datasets. 

      Non-seasonal, time series, YF, explanatorial, ARIMA models may be denoted 
ARIMA(p,d,q) where endmember,orthogonal, grid-stratifiable LULC, sylvatic, Ae. aegypti,  geo-
spectrotemporal or geo-spatiotemporal  parameters p, d, and q may be  non-negative integers, p  
the order of the autoregressive model, d the degree of differencing, and q  the order of the 
moving-average model. Seasonal ARIMA forecast models are usually denoted 
ARIMA(p,d,q)(P,D,Q)m, where m could refer to the number of sample  periods in each agro-
irrigated, riceland,  seasonal paradigm  and the uppercase P,D,Q could  refer to the 
autoregressive, differencing, and moving average terms for the seasonal part of the ARIMA, 
vulnerability  model representing the immature oviposition,  productivity, Ae. aegypti, 
geosampled count data.When two out of the three terms are zeros, the model may be referred to 
based on the non-zero,explanatory parameters, dropping "AR", "I" or "MA" from the acronym 
describing the model ( Cressie 1993)  For example, ARIMA (1,0,0) is AR(1), ARIMA(0,1,0) is 
I(1), and ARIMA(0,0,1) is MA(1). ARIMA models can be estimated following the Box-Jenkins 
approach. In time series analysis, the Box–Jenkins method, applies autoregressive moving 
average ARMA or ARIMA models to find the best fit of a time-series model to past values of a 
time series (Neter et al. 1990). 

       In Jacob et al. (2013b) results from both a Poissonian and a negative binomial (i.e., an 
explanatorial, Poisson random variable with a gamma distrusted mean) revealed that malaria 
related, district-level,  time series, sub-meter resolution, regressively parameterizable covariates 
rendered from a predictive vulnerability endemic model for Uganda were significant, but 
furnished virtually no predictive power. Inclusion of indicator explanatory variables denoting the 
time sequence and the district geolocational spatial structure was then articulated with Thiessen 
polygons in ArcGIS which also failed to reveal meaningful iterative, quantitatively, 
interpolatable, LULC diagnostic  covariates. Thereafter, an ARIMA model was constructed in 
PROC ARIMA which revealed a conspicuous but not very prominent first-order, temporal, 
autoregressive structure in the individual, district-level, eco-epidemiological, time-series, 
endmember, LULC, dependent data. A random effects term was then specified employing 
monthly, Box-Jenkins,  time-series,  modeling methodology to explicatively regressively 
quantitate, geo-spectrotemporal and geo-spatiotemporal, endmember, dependent data. This 
specification included a district-specific intercept term that was a random deviation from the 
overall intercept term which was based on a draw from a normal frequency distribution. The 
notation indicated an autoregressive model of order p which was defined 

as where  were  the unbiased parameter estimators of the 
model, was a constant, and  was white noise. The latter variable was equivalently written 

optimally employing the backshift operator B as  By moving the 
summation term to the left side of the equation a polynomial notation was rendered as 

. In so doing, the autoregressive model was viewed as the output of an all-pole 
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infinite impulse response filter whose input was white noise. Infinite impulse response (IIR) is a 
property applying to many linear time-invariant systems (Cressie 1993). 

     The random effects specification revealed a non-constant mean across the Ugandan 
geosampled districts. This random intercept represented the combined effect of all omitted 
descriptive covariates that caused districts to be more prone to the malaria prevalence than other 
districts. Additionally, inclusion of a random intercept assumed random heterogeneity in the 
districts’ propensity or, underlying risk of malaria prevalence which persisted throughout the 
entire duration of the time sequence under study. This random effects term displayed no spatial 
autocorrelation, and failed to closely conform to a bell-shaped curve. Autocorrelation is the 
correlation among values of a single variable strictly attributable to their relatively close 
geolocational positions on a two-dimensional surface, introducing a deviation from the 
independent observations assumption of classical statistics (Griffith 2003).  The model’s 
variance, however, implied a substantial variability in the prevalence of malaria across districts 
in the Ugandan, eco-epidemiological, study site. The estimated model contained considerable 
overdispersion (i.e., excess Poisson variability): quasi-likelihood scale = 76.565. The following 
equation was then employed to forecast the expected value of the prevalence of malaria at the 
district-level: prevalence = exp[-3.1876 + (random effect)i]. 

          Exponential smoothing is a rule of thumb technique for smoothing time series LULC data, 
particularly for recursively applying as many as three low-pass filters with exponential window 
functions. Such techniques have broad application that is not intended to be strictly accurate or 
reliable for every geospatial modelling, sub-mtyer resolution, LULC situation. It is  an applied 
procedure in most statistical packages  for approximately calculating or recalling some value, or 
for making some determination based on prior assumptions by the user (seasonality of 
hyerproduction of Ae. aegypti, oviposition, capture points density counts, overlaid  on sub-meter 
resolution geoclassifiable, discontinuous, forest-canopied, sparse shaded LULCs along an 
expanding  irrigated, African,  riceland agroecosystem corridor). Like any application of 
repeated low-pass filtering, the observed phenomenon may be an essentially random process, or 
it may be an orderly, but noisy, process. Whereas in the simple moving average the past 
observations are weighted equally, exponential window functions assign exponentially 
decreasing weights over time (Griffith 2003). The use of three filters is based on empirical 
evidence and broad application (Cressie 1993). 

         Exponential smoothing is commonly applied to smoothed vector entomological data ( 
Jacob et al. 200, Griffith 2005) LULC  data, as many window functions are in signal processing, 
acting as low-pass filters to remove high frequency noise. This method parrots Poisson's use of 
recursive exponential window functions in convolutions from the 19th century, as well as 
Kolmogorov and Zurbenko's use of recursive moving averages from their studies of turbulence 
in the 1940s.  

        The Kolmogorov–Zurbenko (KZ) filter is a series of iterations of a moving average filter of 
length m, where m is a positive, odd integer. The KZ filter belongs to the class of low-pass 
filters. The KZ filter has two parameters, the length m of the moving average window and the 
number of iterations k of the moving average itself. It also can be considered as a special window 
function designed to eliminate spectral leakage (spatially overflow of geo-spectrotemporal. 
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uncoalesced, sub-meter resolution, Ae. egypti oviposition sites along a forest canopied LULCs 
from an agro- irrigated, riceland expanding ecosystem). The impulse response function of the 
product of filters would be the convolution of impulse responses. The coefficients of the KZ 
filter can be interpreted as a distribution obtained by the convolution of k uniform discrete 
distributions on the interval [ −(m − 1)/2 , (m − 1)/2 ] where m is a regressable LULC discrete 
integer value. Therefore, the coefficient forms a tapering window which has finite support [ (m − 
1)k + 1]. The KZ filter a has main weight concentrated on a length of m√k with weights 
vanishing to zero outside. The impulse response function of the KZ filter has k − 2 continuous 
derivatives and is asymptotically Gaussian distributed. Zero derivatives at the edges for the 
impulse response function make from it a sharply declining function, what is resolving in high 
frequency resolution. 

        The KZ filter is robust and nearly optimal. Because its operation is a simple moving 
average, the KZ filter performs well in a missing data environment, especially in 
multidimensional time and space where missing data can cause problems arising from spatial 
sparseness. Another nice feature of the KZ filter is that the two,  eco-epidemiological, YF geo-
spectrotemporal or geo-spatiotemporal, LULC parameters each have clear interpretations so that 
it can be easily adopted by an arbovirologist, medical entomologist or YFV experimenter in 
different LULC area interreptations in a single sampled riceland seasaon. Software 
implementations for time series, longitudinal and spatial data have been developed in some  
popular statistical package R which can then facilitate the use of the KZ filter and its extensions 
for robustly regressively quantitating uncoalesced, sub-meter resolution, oviposition, Ae egypti, 
LULC riceland agro-irrigated, sites along a partially forest-canopied LULCs from a irrigated, 
African, expanding agroecosystem 

        KZ filter can be used to smooth the periodogram. In statistical signal processing, the goal of 
spectral density estimation (SDE) is to estimate the spectral density (also known as the power 
spectral density) of a random signal from a sequence of time samples of the signal. Intuitively 
speaking, the spectral density characterizes the frequency content of the signal (Jensen 2005). 
Spectrum analysis, also referred to as frequency domain analysis or spectral density estimation, 
is the technical process of decomposing a complex signal into simpler parts. Many bio-
geophysical, explanative, geospatial processes of geo-spectrotemporally uncoalesced, sub-meter 
resolution, Ae aegypti oviposition sites along a forest-canopied, discontinuous, LULCs from a 
irrigated, African, expanding agroecosystem  may be  optimally  described as a sum of many 
individual frequency  components. Any process that quantifies the various amounts (e.g. 
amplitudes, powers, intensities, or phases), versus frequency can be called spectrum analysis. 

Spectrum,  endmember, sub-meter resolution,  orthogonal, LULC  sgnature analysis can 
be performed on the entire sub-meter resolution, Ae aegypti oviposition ,capture point, along a 
forest-canopied, discontinuous, LULCs from an agro-irrigated, African, expanding, 
agroecosystem, signature signal. Alternatively, the riceland signal can be broken into short 
segments (sometimes called frames), and spectrum analysis may be applied to these individual 
endmember LULC segments. Periodic functions are particularly well-suited for sub-division 
analyses (Cressie 1993). A function is said to be periodic (or, when emphasizing the 
presence of a single period instead of multiple periods, singly periodic) with period if 

for , ( Equation 1.3) (Hazewinkle 2001) For example, the sine function , 
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for the equation 1.3 would be  periodic with least period (often simply called "the" period) (as 
well as with period , , , etc.). The constant function  would then also be  
periodic with any period for all nonzero geosampled,geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiological, frequency, wavelength, YF, forecast, vulnerability, sub-
meter resolution, discontinuous, forest-canopied or riceland, agrovillage, capture point, sylvatic, 
Ae .aegypti , seasonal, hyperproductive foci , so there is no concept analogous to the least 
period for constant functions.  

General mathematical techniques for analyzing non-periodic functions fall into the 
category of Fourier analysis.  The Fourier transform of a function produces a frequency spectrum 
which contains all of the information about the original signal, but in a different form( Griffith 
2003). This means that the original function in an oviposition, forecast vulnerability, Ae egypti, 
epidemiological, sub-meter resolition LULC, signature, YF model for targeting hyerproductive, 
seasonal habitats in an agro-iririgated, expanding, African, riceland agroecosystem can be 
completely reconstructed (synthesized) by an inverse Fourier transform.  

         The Fourier transform is a generalization of the complex Fourier series in the limit as 
.Fourier series is an expansion of a periodic function in terms of an infinite sum of 

sines and cosines. (Hosmer and Lemeshew 2002). Using the method for a generalized Fourier 
endmeber LULC series, the usual Fourier series involving sines and cosines may be  obtainable 
by taking and . Since these functions form a complete orthogonal system 
over , the Fourier series of any eco-epidemiological,   YF sub-meter resolution,LULC, 
oviposition, seasonal, hypeproductive, foci,,  function  may be regressively optimally geo-
spectrotemporally or geo-spatiotermporally rendered by 

where = , = ,and = 

 and , 2, 3, . 

          By replacing the discrete with the continuous while letting  in a sub-meter 
resolution, remotely sensed, forecasting vulnerability, probabilistic,oviposition, Ae egypti, LULC 

paradigm,  the sum to an integral, and the equation would  become =  and 

= Here, = = would be  called the forward 

( ) Fourier transform, and = =  which would be the inverse ( ) 
Fourier transform. The notation  was  introduced in Trott (2004), and and are 
sometimes also used to denote the Fourier transform and inverse Fourier transform, respectively.  

         For perfect construction of a sylvatic, sub-meter resolution, LULC, Ae. aegypti, forecast, 
vulnerability, eco-epidemiological, signature, endmember model to optimally target 
hyperproductive, georefernceable, oviposition sites on  sparsely canopied, LULC along an 
expanding, agro-irrigated, African, riceland agroecosyem, a spectrum analyzer must preserve 
both th wamplitude and phase or each  frequency component reflected from the geoclassified 
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LULCs. These pieces of sub-meter resolution LULC information may  represent as a 2-D vector  
as a complex number of a magnitude for optimally phasing in ground corrdinates of 
discontinuous forest canopy which may be gelocations of hypeproductive seasonal Ae. aegypti 
ovispoition sites along expanding irrigated, African, riceland agroecosystems.  

A common technique in signal processing is to consider the squared amplitude, or power; 
in this case the resulting plot is referred to as a power spectrum. For a given signal, the power 
spectrum gives a plot of the portion of a signal's power (energy per unit time) falling within 
given frequency bins. The most common way of generating a power spectrum is by using a 
discrete Fourier transform, but other techniques such as the maximum entropy method can also 
be used.  

           In practice, nearly all software and electronic devices that generate frequency spectra 
apply a fast Fourier transform (FFT), which is a specific mathematical approximation to the full 
integral solution. Formally stated, the FFT is a method for computing the discrete Fourier 
transform of a sampled signal. The continuous Fourier transform is definable as 

= =   Now consider generalization to the case of a discrete 
function,  in a YF eco-epidemiological, signature, sub-meter resolution, LULC model 
by letting , where , with , ..., . Writing this out would render the discrete 

Fourier transform as The inverse transform 

would then be Discrete Fourier transforms (DFTs) are 
extremely useful because they reveal periodicities in input data as well as the relative strengths 
of any periodic components(Griffth 2003). There are however a few subtleties in the 
interpretation of discrete Fourier transforms for a YF endmeber African riceland agro-irrigated, 
forecast, vulnerability, sub-meter resolution, LULC model. In general, the discrete Fourier 
transform of a real endmember sequence of discrete integer values will be a sequence of complex 
numbers ( gfeo-spectrotemporally or geo-spatiotemporally geosampled, sylvatic, seasonal 
hypeproductive, eco-epidemiological, eco-georeferenceable, Ae. aegypti, riceland, predicted, 
larval sites) of the same length. In particular, if are real, then and  in a YF model then 
the geoclassified LULCs ( e.g., agro-irrgated tillering habitats or forest, inhomogeenously 
canopied, capture points) may be  related by for , 1, ..., , when denotes the 
complex conjugate in the remotely sensed, sub-meter resolution  optimizable model. 

         Because of reversibility, the Fourier transform is called a representation of the function, in 
terms of frequency instead of time; thus, it is a frequency domain representation (Cressei 1993) . 
Linear operations that could be performed in the time domain od a YF eco-epidemiological, eco-
georeferenceable, sub-meter resolution, geo-spectrotemporal or geo-spatiotemporal , 
endmember, LULC signature paradigm  may have counterparts that can often be performed more 
easily in the frequency domain. Frequency analysis simplifies the understanding and 
interpretation of the effects of various time-domain operations, both linear and non-linear ( 
Griffith 2003). For instance, only non-linear or time-variant operations can create new 
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frequencies in the frequency spectrum of a sub-meter resolution, YF, forecast, vulnerabilitym 
signature, eco-epidemiological,  LULC model. 

           The Fourier transform of a stochastic (random) waveform (noise) is also random. Some 
kind of averaging is required in order to create a clear picture of the underlying frequency 
content (frequency distribution)( Cressie 1993). Typically,a forecast. vulnerability, eco-
epidemiological, uncoalesced, sub-meter resolution, signature,  LULC frequency, wavelength, 
endmember, sylvatic, Ae. aegypti, data would be  divided into time-segments (e.g., 
hyperproductive, capture points) of a chosen seasonal duration, and henceforth transformed onto 
each one. Then the magnitude or (usually) squared-magnitude components of the transforms are 
summed into an average transform. This is a very common operation performed on digitally 
sampled time-domain data, using the discrete Fourier transform.  

          In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally 
spaced samples of a function into the list of coefficients of a finite combination of complex 
sinusoids, ordered by their endmember wavelength frequencies, that has those same sample 
values. It can be said to convert the sampled function from its original domain (often time or 
position along a line) to the frequency domain. 

           The input samples are complex numbers (dicrete integer value rendered from a forecast, 
vulnerability, eco-epidemiological, YF model), and the output coefficients would be complex as 
well. The frequencies of the output sinusoids are integer multiples of a fundamental frequency, 
whose corresponding period is the length of the sampling interval (Cressie 1993). The 
combination of sinusoids obtained through the DFT is therefore periodic with that same period. 
The DFT differs from the discrete-time Fourier transform (DTFT) in that its input and output 
sequences are both finite; it is therefore said to be the Fourier analysis of finite-domain (or 
periodic) discrete-time functions. 

          The DFT is the most important discrete transform, used to perform Fourier analysis in 
many practical applications. In digital signal processing, the function is any quantity or signal 
that varies over time, such as the pressure of a sound wave, a radio signal, or daily temperature 
readings, sampled over a finite time interval (often defined by a window function). In image 
processing, the samples can be the values of pixels along a row or column of a raster image ( 
www.esri.com). The DFT may be used to efficiently solve partial differential equations, and to 
perform other operations such as convolutions or multiplying large integers when constructing a 
robust, YF, forecast, vulnerability, eco-epidemiological, riceland, Ae egypti, sub-meter reolution, 
LULC, ecoepidemiological  model for remotely targeting, seasonal, hypeproductive habitats on 
transitioning inhomogeneous, forest-canopied, peripheral corridors in these African agro- 
irrigated ecosystems. 

          Since it deals with a finite amount of data, it can be implemented in computers by 
numerical algorithms or even dedicated hardware. These implementations usually employ 
efficient fast Fourier transform (FFT) algorithms so much so that the terms "FFT" and "DFT" are 
often used interchangeably. Prior to its current usage, the "FFT" initialism may have also been 
used for the ambiguous term "finite Fourier transform". 
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For a class of diagnostic, geo-spatiotemporal, geospectrotemporal, explanatorial, 
diagnostic, stochastic, YFV-related, grid-stratified, LULC processes, the only information 
available may be African, riceland, Ae. aegypti –related, variable, spectral density and 
smoothness which may be quantified by Hölder condition. A function  may satisfy the Hölder 
condition on two orthogonal, Ae.aegypti capture points and on an arc when 

 with and positive real constants. In some literature, functions 
satisfying the Hölder condition are sometimes said to be (locally) -Hölder continuous; 

moreover, and are sometimes called the Hölder exponent and Hölder constant of , 
respectively. The Hölder condition comes up frequently in several branches of mathematics, 
notable among which is the study of Brownian motion in probability.  

          A real-valued stochastic process is a Brownian motion which starts at if 
the following properties are satisfied: 1. . 2. For all times , the 
increments , , ..., , are independent random variables. 3. For all , , the 
increments are normally distributed with expectation value zero and variance . 4. 
The function is continuous almost everywhere. The Brownian motion is said to be 
standard if . It is easily shown from the above criteria that a Brownian motion has a 
number of unique natural invariance properties including scaling invariance and invariance under 
time inversion. Moreover, any Brownian motion satisfies a law of large numbers so that 

almost everywhere. Moreover, despite looking ill-behaved at first glance, Brownian 
motions are Hölder continuous almost everywhere for all values . Contrarily, any 
Brownian motion is nowhere differentiable almost surely. The above definition is extended 
naturally to get higher-dimensional Brownian motions. More precisely, given independent 
Brownian motions which start at , one can define a stochastic process 

by Such a is called a -dimensional Brownian motion which starts at 
.  

 If the series shows compound growth and/or a multiplicative, oviposition, eco-
epidemiological, YF, African riceland, agro-village environment, syvaltic,  Ae. aegypti, 
discontinuous, capture point, eco-epidemiological, seasonal pattern, a logarithm transformation 
may be helpful in addition to or lieu of deflation. Logging the grid-stratifiable, orthogonal, 
LULC data will not flatten an inflationary growth pattern, but it will straighten it out it so that it 
can be fitted by a linear model (e.g., a random walk or ARIMA model with constant growth, or a 
linear exponential smoothing model). Also, logging will convert multiplicative, transitional, 
African, agro-irrigated, riceland,  seasonal patterns ( flooding, post-tillering) to additive patterns, 
so that if  an arbovirologist, medical entomologist or YF researcher performs seasonal 
adjustment after logging, he or she  should use the additive type for regressively quantiating vital 
diagnostic forest-canopied, sub-meter resolution, transitioned. Ae aegypti, oviposition 
geolocations. Logging deals with inflation in an implicit manner; if  a inflation is to be modeled 
explicitly (i.e., if  if  an arbovirologist, medical entomologist or YF researcher wants the inflation 
rate to be a visible LULC, parameter in the time series, Ae aegypti , forecast, vulnerability, 
LULC model), or if plots of deflated data need to be viewed. In th elater case deflating rather 
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than logging would be more vital for optimally regressively ge-spectrotemporal, or geo-
spatiotemporal  quantitate sub-meter resolution, newly transitioned, African, riceland, Ae. 
aegypti, immature habitats to forest-canopied, hyperproductive foci.   

         Another important use for the log transformation in an African agro-village,  YF eco-
epidemiological, endemic, transmission-oriented,  vulnerability-oriented, predictive  model, is 
linearizing relationships amongst the uncoalesced, forest canopy, inhomogeneous and riceland, 
Ae. aegypti, predictor  variables  in the model.  For example, if the explanatory, dependent 
variable is a multiplicative rather than additive function of the independent variables, or if the 
relationship between dependent and independent variables is linear in terms of percentage 
changes rather than absolute changes in an oviposition, YF, eco-epidemiological,  forecast, 
orthogonal, vulnerability-related, entomological, endmember, sub-meter resolution, riceland, Ae. 
aegypti, LULC  model then applying a log transformation to one or more variables may be 
appropriate for geolocation, seasonal, hyperproductive foci.  

 By logging rather than deflating,  the need to incorporate an explicit entomological, 
residual, explanative, iterative,  interpolative, epidemiological, forecast ( e.g., targeted), Ae. 
aegypti, hypeproductive, forest-canopied, discontinuous, eco-georeferenceable, capture point 
along an agro- irrigated, expanding, African, riceland ecosystem   is unnecessary : merely 
lumping the geosampled data  together with any other sources in the original data would be 
suffice. Logging the data before fitting a random walk model yields a so-called geometric 
random walk—(i.e., a random walk with geometric rather than linear growth) ( Cressie 1993). A 
geometric random walk is the default forecasting model that may be applicable for optimizing an 
eco-epidemiological, eco-georeferenceable,  YF-related, diagnostic, riceland model targeting, 
forest-canopied, hyperproductive, grid-stratified, Ae. aegypti seasonal, oviposition, sub-meter 
resolution,  LULC sites. 

Regressively probabilistically quantitated targeted, hyperproductive, 
ecogeoreferenceable, explanative, ovisposition, Ae. aegypti, forest canopied, discontinuous, 
capture point data may show periods of increased or decreased volatility over time. This is 
normal and is often modeled with so-called ARCH (auto-regressive conditional 
heteroscedasticity) models in which the error variance is fitted by an autoregressive model. Such 
models are beyond the scope of this discussion, but a simple fix would be to work with shorter 
intervals of YF geosampled  data in which volatility is more nearly constant. Non-quantitated, 
remotely sensed, endmember, heteroskedastic, immature, productive, count data  can also be a 
byproduct of a significant violation of the linearity and/or independence assumptions in an  eco-
epidmiological, YF, geo-spectrotemporal, geospatial, forecast, vulnerability, entomological, 
probabilistic. Regression, time series, orthogonal paraidgm, in which case it may also be fixed as 
a byproduct of fixing those problem. During immature stages, vector species differ in their 
priorities for habitat (Gu and Novak 2005). 

      Changes in land-use such as those experienced in growing agro-irrigated, riceland, African 
agro-villages due to anthropogenic pressue may also permit the colonization of new riceland, 
oviposition, Ae. aegypti habitats in forest-canopied LULCs thereby causing expansion or 
reduction of the range of the vector. The LULC transitions   may also modify the composition of 
the mosquito vector community in these transitional eco-zones. Agriculture is the largest driver 
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for land-use change across the earth (Patz et al. 2008). Croplands and pastures together have 
become one of the largest terrestrial biomes on the planet, rivaling forest, and cover in extent of 
40% of the land surface area (Ramankutty and, Foley 1999). Land-use/land-cover patterns and 
socio-cultural practices have a strong relation with vector, arthropod-related, seasonal, immature 
habitats (Wood and Washino 1994). Seasonal, explanatorial, geospectrotemporally uncoalesced, 
LULC characteristics can influence the risk of contracting YF as they modify mosquito 
populations along agro-irrigated, expanding, African, riceland   agro-ecosystem, peripheral 
paddies and canals (Jacob et al. 2007). Land-use change is a major constituent of global 
environmental change that can potentially affect human health in relation to mosquito borne 
diseases by influencing the mosquito’s habitat (Patz et al. 2008). The distribution and abundance 
of vectors concomitantly mediates human-mosquito interactions including biting rate (Gu et al. 
2006).  

 
Ideal Aedes larval habitats include artificial or natural water containers (water storage 

containers, flower pots, discarded tires, plates under potted plants, cemetery vases, flower pots, 
buckets, tin cans, clogged rain gutters, ornamental fountains, drums, water bowls for pets, 
birdbaths, etc.) that are all ( www.cdc.gov). This species has also been found in underground 
collections of water such as open or unsealed septic tanks, storm drains, wells, and water meters. 

    Yellow fever virus pathogens may respond to changing seasonal, sub-meter resolution,   
geoclassifiable, grid-stratified, LULC dynamics  on multiple transmission levels and appear to 
increase in disturbed systems, yet current knowledge of mosquito diversity and the relative 
abundance of vectors as a function of immature habitat, capture point, is limited for 
implementing seasonal control strategies in agro-irrigated, expanding African riceland 
ecosystems.  Describing seasonal, Ae. aegypti, time series, mosquito-community diversity 
employing geoclassifiable, sub-meter resolution, LULC change, site data with other covariates ( 
meterological, census etc) may aid in implementation of an eco-epidemiological, seasonal, YF 
signature, surveillance system in  these ecosytems. Additionally SAS or R may be employable   
for identification of  prolific, eco-georeferenceable, seasonal, eco-epidemiological,  LULC, 
capture point, geoclassified, habitat types and  immature productivity of the oviposition site, 
especially in landscapes experiencing different levels of anthropogenic and economic  pressures 
(e.g., partially canopied, forested, LULC eco-zones along peripherial, African agro-irrigated, 
riceland agro-villages). The modification of the urban landscape influences the local 
(microscale), mesoscale, and even the macroscale climate (Brazel et al., 2000; Quattrochi et al., 
2000; Voogt and Oke, 2003).  

Assumptions of a general larval population or identical habitats are untenable for a 
realistic evaluation of larval control interventions or the development of models to be empirically 
tested under field conditions (Gu and Novak 2005). Diverse spatial LULC sub-meter data exist, 
varying in extent and resolution. Remotely-sensed, sub-meter, resolution, mosaicked data 
provides the most robust  extensive coverage for  unveiling heterogeneity and endmember 
signatures (Jensen 2005) of disturbed landscapes where seasonally explanatorial, 
hyperproductive, vector, arthropod-related, immature habitat, data points are commonly  
georeferenced (Jacob et al. 2011, Jacob et al. 2007). An endmember LULC can reflect the 
spectrum of a pure ground component (e.g., vegetation, soil, water); thus these sub-mixed pixel 
(mixel) fractions are typically interpreted as ground components ( Jensen 2005).  
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It is well documented that urbanization results in increased amount of impervious 
surfaces (Brabec et. al., 2002) that augment the intensity, volume, temperature, and duration of 
irrigated, storm water runoff (Booth and Reinfelt, 1993; Schueler, 1994). Urban rice-agro-village 
complex, seasonal, storm water runoff may cause or contribute to water quality degradation by 
changing natural  eco-geohydrologic, explanative, seasonal,  LULC patterns (Driver and 
Troutman, 1989), accelerating natural stream flows (Booth and Jackson, 1997), decreasing 
stream bank erosion (May et al., 1997), increasing  aquatic habitat (Booth and Reinelt, 1993; 
Horner et. al., 1997), degrading stream water quality (Schueler, 1994; Booth and Jackson, 1997; 
May et al., 1997), increasing temperature (Galli, 1990), and elevating pollutants. Hence, different 
land uses can modify contact of susceptible humans with infectious vectors (e.g., YFV) which 
can modify human cases distribution. Biodiversity loss affects infectious disease risk by 
disrupting normal relationships between hosts and pathogens on specific landscapes (Patz 2000).   

 
Combining publicly available data on sub-resolution, explanatively, iterative 

interpolative, seasonal, geoclassfiable, LULC, geo-spectrotemporal, sylvatic, YF, 
parameterizable covariates and anthropogenic, geo-spatiotemporal, grid-stratified, population 
data with Ae. aegypti surveillance data may produce a spatially disaggregated, YF-related, time 
series, endemic, transmission, forecast, vulnerability, eco-georeferenceable  map representing the 
vector-to-human host ratio, a common quantity originating from process-based, eco-
epidemiological, time series, forecasting, vulnerability models. The vector-to-host ratio allows an 
evaluation of the level of risk of contact even in the absence of the pathogen since it does not 
rely on sparse epidemiological data (www.who.gov). Thus, understanding geospatial, seasonal, 
LULC patterns may enable quantitating  human risk of exposure to  YFV in SAS or R which 
may be  critical for targeting limited prevention, surveillance, and control resources (e.g., spatial 
targeting of vaccination, drug administration, or education campaigns; use of sentinel sites to 
monitor vector abundance; and identifying areas for most effective use of pesticides). Treatments 
of habitat perturbations should be based on surveillance of larvae in themost productive areas of 
an ecosystem (Gu and Novak 2005). These evaluations may be particularly important in areas 
that experience occasional, YF ,epidemic transmission such as in  an expanding irrigated, 
African riceland agro-village ecosystem due to more contact with the sylvatic vector.  

One essential element leading to eradication  of sylvatic,YF in an expanding, agro-
irrigated African, riceland ecosystem may be  an real-time, statistical, geodatabase 
cyberenvironment, surveillance system capable of providing uncoalesced,  geoclassfiable, 
endmember, LULC, sub-meter, wavelength  frequencies [visible and near infra red (NIR) 
measurements] of uncoalesced, time series, eco-epidemiological, vulnerability eco-
georeferenecable  forecasts detailed, from sub-meter resolution, cartographic and  logistic 
regression models. These parmeterized renderings may regard the human host, the parasite, and 
the Aedes, mosquito, oviposition site on a specific, newly transitioned, sub-meter resolution, 
geoclassified LULC (e.g., ploughing habitats along side a periperial, agro-irrigated, 
discontinuous,  forest canopied, partially canopied, seasonal eco-zone border. Probabilistically 
regressed distributions of vector-borne diseases tend to be highly spatially heterogeneous, 
varying according to the often-heterogeneous distribution of transmission systems components: 
vectors, pathogens, and hosts (Gu and Novak 2005). Regression-related, real-time seasonal, 
logistic, LULC patterns,  eco-cartographically quantized  in a SAS/GIS geodatase, statistical 
cyberenvironment can reval  human risk of exposure to arthropod vectors and their associated 
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pathogens  which may be  critical for targeting limited prevention, surveillance, and control 
resources (e.g, Jacob and Novak  2014, Gu et al. 2006). 

Yellow Fever disease risk may be modeled with high predictive accuracy by employing 
regression models constructed in SAS, R or other geostatistcal packages employing abundances 
of Ae. aegypti, immature, syvalitic habitat, optimally regressively parameterizable, time series, 
covariate coefficients and their eco-epidmiological, oviposition, LULC, wavelength frequency  
distribution data. In these probabilistic paradigms the explanative, dependent variable may either 
be a   clinical, field or remote, unbiased, YFV specified, logistic/Poission, regression, response, 
remotely sensed LULC estimator (e.g., prevalance or incidence, seasonal,  larval count, capture 
point,  sub-meter resolution, geoclassified LULC, waveband, iterative, interpolative,  
transmittance signature). Hence, pathogen, reservoir, quantitative, LULC data may be 
mathematically exploitable as these estimators may be employeable as exogenous or 
endegenous, explanatory, independent, eco-epidemiological, time series, explicative, diagnostic 
regressors in a linear framework. Linear and non-linear, forecasting, vulnerability, eco-
epidemiological,  geo-spectrotemporal, probabilistic, unmixed models constructed in a real-time, 
geostatistical  cyberenvironments  can model human exposure to vector-borne pathogens, which  
can have high  accuracy for robustly forecasting LULC areas of elevated risk without 
overestimating risk coverage, based on regressable, time series, unbiased, eco-epidmiological, 
grid-stratified, orthogonal, endmember descriptors of abundance and distribution  of vectors 
(Jacob and Novak 2014).Such models  may be  employable to geolocate eco-georeferenceable, 
seasonally eco-epidemiological, capture point, hyperproductive, sylvatic, Ae. aegypti, sub-meter 
resolution, LULC, time series, oviposition sites within a residual, explicative, optimally  
diagnostic, geostatistical dataset of endmember, sub-meter resolution, iterative, stochastic or 
deterministic, fractionalized, endmember, signature variables in an iterative interpolator (e.g., 
weighted, inerse distance matrix) for remotely optimally distinguishing unknown, ungeosampled,  
hyperproductive, forest-canopy,immature  habitats along an agro-irrigated, African, riceland, 
peripheral, geoclassifiable, geosampled eco-zone. 

           Unfortunately, currently in literature two major geostatistical algorithmic approaches have 
only been employed to investigate seasonal eco-environmental, eco-epidemiological factors 
related to endmember, YF, endemic, transmission: empirical statistical models and mechanistic 
models. Empirical geostatistical models are based on inductive approaches and quantitative 
statistical analyses, including in a spatially explicit context (Vanwambeke et al., 2007a, 
Vanwambeke et al., 2010. Eisen and  Lozano-Fuentes, 2009). The drawback of these models is 
that their inference is limited  due to propagational, unquantiated probabilistic, geo-
spectrotemporal LULC uncertainties associated with violations of regression assumtpions ( e.g., 
multicolinear or heteroskedastic residuals) and the inefficient domains  employed to construct the 
paradigms. 

          SPSS is employed often by applied researchers for constructing  eco-epidmiological, 
vulnerability, forecasting sylvatic, grid-stratified, forecast, vulnerability, YF models from 
remotely sensed, geoclassifiable  LULCs and other parameterizable,clinical, remote and field, 
covariate   uncoalesced, data points. SPSS has many built-in functionalities for managing, 
analysing and visualizing, YFV-related, eco-georeferenceable, geo-spectrotemporal 
geoclassified, sub-meter resolution, African riceland or discontinuous, forest-canopied, 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

75 
Copyright © acascipub.com, all rights reserved.  

oviposition, geoclassified covariates. It is also possible to write syntax code and make some 
personal scripts for remotely targeting hyperproductive, seasonally eco-georeferenceable, 
riceland, Ae. aegypti, oviposition, sub-meter resolution, LULC, discontinuous, forest -canopied 
sites.  However, it definitely has limitations when it comes to advanced modelling and 
development of statistical approaches for targeting unknown, ungeosampled, eco-
georeferenceable, geoclassifiable, hyperproductive,  uncoalesced, agro-irrigated, African, sub-
meter resolution, LULC sites along discontinuous, forest canopied, sparsely canopied LULCs.  
Running  tests in SPSS 11.5 on a very large geospatialized, time series, eco-epidemioloigical, 
sub-meter resolution,  elucidative dataset of YF , clinical cases in an agro-irrigated, expanding, 
riceland, agro-village African ecosystems may  be  efficient  in mid-high level computers (e.g., 1 
GB RAM,Files set to 2 GB min and max, dual core processors each 3 GHz).  
         

   The point-and-click stage of SPSS may be less tedious for the arbovirologist, medical 
entomologist or YF experimenter than iteratively quantitatively interpolating an uncoalesced, 
sub-meter resolution, discontinuous, forest-canopied, sparsely shaded, sub-meter resolution, 
seasonal spectral, sub-meter resolution,  LULC, oviposition, endmember, signature geosampled 
along the periphery of an African,  agro-irrigated, eco-georeferenced, riceland, expanding 
complex due to anthropogenic pressures. However, without scripting there would be covariance 
matrix weight limtations in the forecast, vulnerability, unmixing algorithmic, geo-
spectrotemporal, probabilistic paradigm. A random vector is a variable with multiple dimensions 
where each element of the vector is a scalar random variable (Cressie 1993). Each element may 
have either a finite number of explicative, observed, geometric, endmember uncoalesced, sub-
meter resolution, geoclassifiable, orthogonal, grid-stratified, LULC, empirical values or a finite 
or infinite number of potential values which may be subsequently specified by a joint probability 
distribution. In a geo-spectrotemporal, forecast, vulnerability, sylvatic, Ae aegypti, oviposition, 
signature, seasonal, sub-meter resolution, eco-epidemiological, capture point, immature, 
hyperproductive, sub-meter resolution, LULC site on an  ecogeoreferenecable, geoclassifiable, 
discontinuous, forest canopy, sparsely canopied,  LULC along an agro-irrigated, riceland, 
peripherally, grid-stratified polygon. In a joint probability distribution table, numbers in the cells 
of the table eco-cartographically and/or regressively specifying the probability that particular 
LULC values ( (e.g., targeted,  forest canopied, sparsely shaded, ecogeoreferenceable, 
hyperproductive, seasonal, Ae. aegypti oviposition, geoclassified, LULC, eco-epidemiological, 
capture point along the peripheral of an agro-irrigated, African, riceland agro-ecosystem) i of X 
and Y may occur together in geospace. 

  An arbovirologist, medical entomologist or YF experimenter could construct  a robust 
covariance matrix  for an eco-epidemiological, forecasting, vulnerability, probabilistic, sub-
meter resolution, uncoalesced LULC, wavelength, frequency  paradigm to remotely optimally, 
identify, seasonal, hypeproductive, Ae. aegypti, oviposition sites, on geoclassifiable, sub-meter 
resolution, grid-stratified, forest-canopied, inhomogeneous LULCs along an agro-irrigated, 
African, riceland, peripheral corridor. He or she could do so by employing the Reliability 
procedure, the Correlation procedure, or the Regression procedure in SAS which could help  
quantitate uncoalesced, iteratively interpolative, geo-spectrotemporal, fractionizalied,sub-meter 
resolution, geoclassified, endmember, wavelength, frequency LULC habitat signatures 
geosampled along the periphery of the agrovillage complex. The Reliability procedure is 
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somewhat simpler in that the covariance matrix is automatically printed as a separate table 
(www.ibm.com/SPSS_Statistics). The Correlation procedure would combine the correlation, 
significance, cross-product deviations, covariance, and the quantitated expanatorial, LULC, 
delineated, orthogonal, sub-meter resolution,  grid-stratified polygons with   an eco-
georeferenecable, uncoalesced dataset of endmember empirical, geosampled, clinical, field or 
remote-specified,  geospecrotemporal or geo-spatiotemporal, YFV predictior explanatory 
variable pair into a single table cell. There is a way to re-organize this table so that the model 
covariance matrix is printed as a separate table or sub-table. It should be noted that the 
Reliability procedure employs listwise deletion of cases with missing values, (e.g.,  the 
covariances will be computed with only those YF cases that have no missing values on the 
variables in the analysis). The correlation procedure would employ pairwise deletion by default, 
whereby each covariance would be optimally calculated with all cases that have valid values on 
that explicative, eigen-decomposable, predictor variable pair and each variance would be 
therafter calculated with all cases that have valid values on that variable. Listwise deletion is 
available as an option in the Correlation procedure. (See SPSS Technote 1475199, which 
addresses this distinction between the options). The Regression procedure must be run from 
syntax for the covariance matrix option to be included in the forecasting, vulnerability, 
probabilistic, endmember, YFV, signature, LULC paradigm. If an arbovirologist, medical 
entomologist or YF experimenter wants listwise deletion in the model output and deires the 
covariance matrix to be printed in a separate table, then the Reliability procedure may be the 
simplest solution.  The Covariance matrix will print as a subtable in the Correlations table. Note 
that regression employs  listwise deletion by default but pairwise deletion in a  seasonal, African, 
riceland, eco-epidemiological, YF, forecast, oviposition, vulnerability model can be requested 
from the "Regression: Options" dialog or by replacing "LISTWISE" with "PAIRWISE" in the 
REGRESSION command. 

 Unfortunately with large cyberenvionment geodatabases of continuous, geo-
spectrotemporal or geospatiotemporal, geosampled, eco-georeferenceable, uncoalesced, agro-
irrigated, riceland, African ecosystem, iterative, interpolative, seasonal, LULC, sub-meter 
resolution, parameterizable, explanative, forecasting vulnerability, forest canopied, 
discontinuous, grid-stratified    diagnostic model, endmember estimators may not have unique 
values. SPSS limitations would be hard to avoid when regression modeling sub-meter resolution, 
frequency wavelength, endmember, explicative, time series,  unmixed, geo-spectrotemporal, 
wavelength frequencies and other time series, endmember,geo-spatiotemporal, YFV-
related,explanatorial, clinical, field or remote LULC data for optimally identifying 
hyperproductive, sylvatic, Ae egypti, oviposition  sites along forest canopied peripheral borders 
in agro-irrigated, African, riceland, agroecosystem environments employing Analysis of variance 
(ANOVA).  

     Analysis of variance is a collection of statistical models used to analyze the differences 
among group means and their associated procedures (such as "variation" among and between 
groups). The ANOVA procedure automatically produces graphics as part of its ODS output 
(www.sas.edu). In the ANOVA setting, the observed variance in a particular observational, 
signature, endmember, predictor, sub-meter resolution, geoclassified, sub-meter resolution, 
LULC variable ( e.g.,  seasonal, geosampled, Ae.  aegypti, oviposition, hyperproductive foci 
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along a discontinuous, forest-canopied, LULC adjacent to to an expanding, agro-irrigated, 
African, riceland village complex)  may be partitioned into frequency wavelength components. 
In so doing, different sources of eco-geographical, seasonal variation attributable to 
hypeproductive, Ae aegypti, capture point, oviposition sites may be remotely identifiable 
employing sub-meter resolution data. In its simplest form, ANOVA could provide a statistical 
test of whether or not the  discontinuous, forest-canopied, hyperproductive immature habitats 
along the expanding African, riceland, agro-village corridor tabulated means of several 
regression groups are equal, and thereafter generalize the t-test to more than two groups. 
ANOVAs are useful for comparing (testing) three or more means (groups or variables) for 
statistical significance in a vector entomological, forecast, vulnerability, endemic, transmission-
oriented, model ( Jacob et al. 2007). It would be conceptually similar to multiple two-sample t-
tests, but would render less conservative (e.g., less Type I error) and thus would be suitable to a 
wide range of practical problems in a prognosticative, hyperproductive, sub-meter resolution, 
LULC, Ae. aegypti, ovipoistion, vulnerability model. 

           The ANOVA procedure is one of several procedures available in SAS/STAT software for 
quantitating the analysis of variance for a forecasting, eco-epidemiological, probabilistic 
endmember, vulnerability, sub-meter resolution, signture LULC paradigm for  seasonally 
targeting ecogeoreferenceable, hypeproductive, Ae.aegypti, geoclassifiable, oviposition, 
ecological sites on geoclassifiable,  forest-canopied LULCs along an agro-irrigated, African, 
riceland, peripheral corridor. The ANOVA procedure is designed to handle balanced data (that 
is, data with equal numbers of observations for every combination of the classification factors), 
whereas the generialized linear model (GLM) procedure can analyze both balanced and 
unbalanced data. Because PROC ANOVA would take into account the special structure of a 
balanced design in the oviposition, sylvatic, Ae aegypti, remotely sensed, forecast, vulnerability, 
LULC model, it would be  faster and uses less storage than PROC GLM for balanced data.  

          PROC ANOVA may be employable for the analysis of balanced geosampled, eco-
georeferenceable, sylvatic, YFV-related clinical, field or remote-specified, geo-spectrotemporal 
or geo-spatiotemporal, eco-epidemiological, LULC , sub-meter resolution data only, with the 
following exceptions: one-way analysis of variance, Latin square designs, certain partially 
balanced incomplete block designs, completely nested (hierarchical) designs, and designs with 
cell frequencies that are proportional to each other and are also proportional to the background 
population. These exceptions have designs in which the factors are all orthogonal to each other.  
For further discussion, see Searle (1971, p. 138). 

 PROC ANOVA works for designs with block diagonal matrices where the elements 
of each block all have the same value. The procedure would partially test the eco-
epidemiological, probabilistic endmember, sub-meter, resolution, signture paradigm  for equal 
cell means. However, this test is imperfect: some LULC designs for targeting Ae aegypti  
oviposition sites along inhomogeneous, forest-canopy sites in expanding, African, agro-irrigated 
ecoystems that cannot be analyzed correctly might pass the test, and designs that can be analyzed 
correctly might not pass. If the model design does not pass the test, PROC ANOVA will produce 
a warning message to tell an arbovirologist, medical entomologist or YF experimenter that the 
design is unbalanced and that the ANOVA analyses might not be valid. Complete validation of 
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designs for a robustifiable, sylvatic, Ae. aegypti, sub-meter resolution, eco-epidemiological, 
forecasting, vulnerability, endmember model may not be performed, in PROC ANOVA since 
this would require the whole matrix; Alternatively, if PROC ANOVA is employed  for the 
YF analysis of unbalanced, time series, clinical, field or remote, LULC data, an arbovirologist, 
medical entomologist or YF experimenter must assume responsibility for the validity of the 
results (e.g., remotely targeted, Ae. aegypti, seasonal, eco-georeferenecable, eco-
epidemiological, oviposition, capture point on a geoclassified, partially canopied,  forested 
LULC along an expanding African riceland agro-village complex).  

          Further, if an arbovirologist,  medical entomologist or YF experimenter constructs an 
ANOVA employing eco-epidemiological,  uncoalesced, sub-meter resolution, Ae egypti, 
oviposition, sub-meter resolution, wavelength, trasmittance frequencies  for optimally targeting 
hyperproductive,immature habitats along geoclassifiable, forest-canopied LULCs along an 
African, ricefield, peripheral eco-zone in SPSS, the resulting F value and significance level 
would only detail one group in  the analysis as different from at least one other. Analysis of 
Variance, is a statistical method employed to compare the means of more than two sets of data, 
to see if they are statistically different from each other (www.spss.com). 
       SPSS would allow the use of a one-way ANOVA for quantitating the, inhomogeneous, 
forest-canopied, Ae. aegypti, immature, seasonal productivity, non-homogenous, LULC counts 
along a peripheral, expanding, African,  riceland corridor for regrerssively predicting, high risk 
eco-zones in theses schemes. Unfortunately, SPSS will not detail how many geoclassifiable 
LULCs or other geoclassfied group, or groups, of parameterizable, time series, regression 
covariates differ statistically. In order to determine this, follow-up comparisons must be 
performed. This is rarely a problem in small analyses, but the higher the number of groups 
included in the follow-up test, the greater the chance of making a Type I error in the eco-
epidemiological, YFV model, which is like assuming an effect where there is not one in the 
paradigm. In statistical hypothesis testing, a Type I error is the incorrect rejection of a true null 
hypothesis (a "false positive", i.e., accepting a false hypothesis as correct), while a Type II error 
is the failure to reject a false null hypothesis (a "false negative", i.e., rejecting a true hypothesis 
as incorrect) (Sheskin, 2004). 

  Another limitation of ANOVA is that it would assume that the testable, YFV, 
entomological and land cover, geo-spectrotemporally or geo-spatiotemporally, geoclassified 
groups may have the same, or very similar, standard deviations. The greater the difference in 
standard deviations between groups, the greater chance that the conclusion of the test is  
inaccurate ( Hosmer and Lemshew 2002). Like the normal distribution assumption, this would 
not  be a problem  in  an prognosticative, vulnerability, geometric, endmember, LULC  model as 
long as the standard deviations of the uncoalesced, capture point (i.e, seasonal, hyperproductive, 
eco-georeferenceable, African, riceland, Ae. aegypti, capture point, immature habitat) are not 
hugely different, and the sample sizes of each group are roughly equal in a sub-meter resolution, 
eco-epidemiological, forecasting, vulnerability, spectral, wavelength, frequency transmittance 
model. If this is not the case, a Welch test is a better option. 

  In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test 
which is employable to test the hypothesis that two populations have equal means. For 
conducting a  YF –related Welch’s  t-test an arbovirologist, medical entomologist or other 
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experimenter may employ an uncoalesced, iteratively qualitatively interpolative, quantitative,e 
co-epidemiological, orthogonal dataset of eco-georeferenceable, sub-meter resolution, 
endmember LULC, signature variables of forest, discontinuously canopied, capture point, Ae. 
aegypti, oviposition sites in an expanding, agro-irrigated riceland environment, if   1) the first 
sample of size n1 in the LULC, forecast, vulnerability, orthogonal, eco-epidemiological, 
probabilistic paradigm is drawn from a normal population with mean μ1   and variance σ 2 , 2)the 
second sample of size n2  is also drawn from a normal population with a mean μ2 : and, 3) the 
two samples are independent. (see Welch 1947).  Welch's t-test is an adaptation of Student's t-
test, that is, it has been derived with the help of Student's t-test and is more reliable when the two 
samples have unequal variances and unequal sample sizes (Hosmer and Lemeshew 2002). 

  A t-test is any statistical hypothesis test in which the test statistic follows a Student's t-
distribution under the null hypothesis. In probability and statistics, Student's t-distribution (or 
simply the t-distribution) is any member of a family of continuous probability distributions that 
arises when estimating the mean of a normally distributed population in situations where the 
sample size is small and population standard deviation is unknown (Fotheringham 2002). The 
distribution  may be employable to determine if two sets of geosampled LULC datasets  (e.g., 
uncoalesced, sub-meter resolution, geometric, endmember, coefficients extracted from an eigen-
decomposition of a discontinuous, forest-canopied, geospectral wavelength frequency,  
hyperproductive, seasonal, Ae egypti, oviposition, capture point, and  its neighboring agro-
irrigated, African riceland ecosystem, foci)  are significantly different from each other in 
sampled immatures. Whereas a normal distribution describes a full population, t-distributions 
describe samples drawn from a full population; accordingly, the t-distribution for each sample 
size is different, and the larger the sample, the more the distribution resembles a normal 
distribution The t-distribution plays a role in a number of widely used statistical analyses, 
including Student's t-test for assessing the statistical significance of the difference between two 
sample means, the construction of confidence intervals for the difference between two 
population means, and in linear regression analysis (Hosmer and Lemeshew 2002). The Student's 
t-distribution also arises in the Bayesian analysis of data from a normal family (Gelman et al 
1995), A t-test is most commonly applied when the test statistic would follow a normal 
distribution if the value of a scaling term in the test statistic were known. When the scaling term 
is unknown and is replaced by an orthogonalized grid-stratified, Ae. aegypti, oviposition, 
geoclassified, sub-meter resolution, expanding African, riceland, regression  estimate along a 
forest corridor based on the LULC data, the test statistics (under certain conditions) may follow a 
Student's t distribution.  

         NORPAR CORR in SAS can store the entire array of uncoalesced, endmember, geo-
spectrotemporal, sub-meter resolution, fractionalized, geosampled, eco-georeferenceable, 
intermittently canopied, LULC, orthogonal, wavelength frequencies rendered from an eco-
georefernced, capture point, Ae. aegypti, oviposition, site geosampled in an irrigated, African, 
riceland expanding ecosystem. NONPAR CORR stores the entire array of variables requested in 
memory to get their rank (www. sas.edu). If explanatory, discrete, YFV, geosampled, numerical, 
finite integer values exist in a geosampled, LULC dataset an arbovirologist, medical 
entomologist or  YF experimenter may optimally regressively quantitate, nonparametric 
correlations using CROSSTABS which may or may not store all the  time series, explanative, 
YFV data in memory. Note that standard Perason correlation tests take very little memory for 
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constructing a forecast, vulnerability, probabilistic, endmember paradigm (see Jacob et. al. 
2011).  
 
         In statistics, the Pearson product-moment correlation coefficient  (sometimes referred to as 
the PPMCC or PCC or Pearson's r) is a measure of the linear correlation between two variables 
X and Y, giving a value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is 
no correlation, and −1 is total negative correlation [ Kendall and  Stuart, (1973)]. It is widely 
employed in entomological sciences as a measure of the degree of linear dependence between 
two geoampled, field-operational, LULC variables. Pearson's correlation coefficient is the 
covariance of the two variables divided by the product of their standard deviations (Kenney,and 
Keeping 1951). The form of the definition involves a "product moment", that is, the mean (the 
first moment about the origin) of the product of the mean-adjusted, time series, random 
variables; hence, the modifier product-moment in the name.The absolute values of both the 
sample and population Pearson correlation coefficients are less than or equal to 1. Correlations 
equal to 1 or −1 may correspond to hyperproductive, Ae. aegypti, oviposition, seasonal, capture 
points in expanding, African, riceland, agro-irrigated ecoystems lying exactly on a line (in the 
case of the sample correlation), or to a bivariate distribution entirely supported on a line (in the 
case of the population correlation). The Pearson correlation coefficient is symmetric: 
corr(X,Y) = corr(Y,X) (Hosmer and Lemeshew 2002). 

A key mathematical property of the Pearson correlation coefficient is that it is invariant to 
separate changes in location (e.g., seasonal hypeproductive, Ae. aegypti, capture point, sub-meter 
resolution and LULC scale in the two variables). That is, a arbovirologist, medical entomologist 
or YF experimenter may transform X to a + bX and transform Y to c + dY, where a, b, c, and d 
are constants with b, d ≠ 0, without changing the correlation coefficient in a vulnerability, 
orthogonal, forecast model for targeting, prolific, seasonal, oviposition sites. This fact would 
holds for both the geosampled, geo-spatiotemrpoal or geo-spectrotemporal, mosquito, vector 
population and sample Pearson correlation coefficients. Note that more general linear 
transformations would change the correlation coefficints of the regressors in the eco-
epidemiological, time series, YF model.  The correlation coefficients would range from −1 to 1. 
A value of 1 would imply that a linear equation can optimally describe the relationship between 
X and Y perfectly, with all geosampled oviposition, LULC, data points lying on a line for which 
Y increases as X increases. A value of −1, on the other hand would imply that all geosampled, 
African, riceland, forest-canopied capture points converted to agro-irrigated habitat lie on a line 
for which Y decreases as X increases. A value of 0 would imply that there is no linear correlation 
between the geo-spectrotemporally or geo-spatiotemporally geosampled,  YF,  predictor 
variables. 

More generally, note that (Xi − X)(Yi − Y)employed for regressing an empirical dataset 
of eco-georeferenceable sub-meter resolution, geoclassifable  LULCs employed for optimally, 
remotely, targeting hyperproductive, seasonal, Ae. aegypti in an expanding, African, riceland 
environment is positive if and only if Xi and Yi lie on the same side of their respective means. 
Thus, the correlation coefficient is positive if Xi and Yi tend to be simultaneously greater than, or 
simultaneously less than, their respective means in the eco-epidemiological, YF, forecast 
vulnerability, eco-georferenceable model. Conversely, the correlation coefficient would be  
negative if Xi and Yi tend to lie on opposite sides of their respective means in the YF model. 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

81 
Copyright © acascipub.com, all rights reserved.  

Moreover, the stronger the tendency in either direction in the model, the larger is the absolute 
value of the correlation coefficient rendered. 

           The Pearson correlation is +1 in the case of a perfect direct (increasing) linear relationship 
(correlation), −1 in the case of a perfect decreasing (inverse) linear relationship (anticorrelation), 
and some value between −1 and 1 in all other cases, indicating the degree of linear dependence 
between the variables ( Fotheringham 2002). As it approaches zero there is less of a relationship 
(closer to uncorrelated). Hence, the closer the coefficient is to either −1 or 1 in a YF model for  
optimally targeting, prolific, oviposition, Ae aegypti sites in an expanding, African, agro-village 
into inhomogeneous, forest-canopied, geoclassified LULCs, the stronger the correlation between 
the variables. 

           If the geo-spectrotemporal and or geo-spatiotemporal LULC variables are independent in 
a YF, forecast, vulnerability,time series,  eco-epidemiological, sub-meter resolution model, the 
Pearson's correlation coefficient would be 0, but the converse is not true because the correlation 
coefficient would detect only linear dependencies between any two geosampled Ae. aegypti 
variables. For example, suppose a agro-irrigated geosampled immature habitat explanatorial, 
time series, random variable X is symmetrically distributed about zero, and Y = X2. Then Y 
would be completely  responsive to X, since X and Y are perfectly dependent, but their 
correlation in the YF model would be zero; (i.e., uncorrelated). However, in the special case 
when X and Y are jointly normal, uncorrelatedness would be equivalent to independence in the 
YF model. 

          Unfortunately, the Pearson correlation in a forecast, YF, vulnerability model for targeting 
seasonal hyperproductive, sylvatic, Ae. aegypti oviposition, sub-meter resolution, LULC sites 
would be  optimally definable only if both of the standard deviations are finite and nonzero. It 
would be a corollary of the Cauchy–Schwarz inequality that the correlation realized by the eco-
epidemiological, remotely sensed  YF, model cannot exceed 1 in absolute value. The correlation 
coefficient is symmetric: corr(X,Y) = corr(Y,X) (Hosmer ande Lemeshew 2002). In 
mathematics, the Cauchy–Schwarz inequality, also known as the Cauchy–Bunyakovsky–
Schwartz inequality, is a useful inequality encountered in many different settings, such as linear 
algebra, analysis, probability theory, vector algebra and other areas. It is considered to be one of 
the most important inequalities in all of mathematics 

          The Cauchy-Schwarz inequality is an elementary inequality and at the same time a 
powerful inequality which can be stated as follows: Theorem. Let (a1, a2, . . . , an) and (b1, b2, . 
. . , bn) be two sequences of real numbers ( e.g., geosampled, sylvatic,  Ae aegypti oviposition 
finite, riceland agro-irrigated integer values  then Xni=1a2i! Xni=1b2i!_Xni=1aibi!2, (1)with 
equality if and only if the sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn) are proportional, [i.e., 
there is a constant _ such that ak = _bk for each k 2 {1, 2, . . . , n}]. 
 
           There is a way to construct an eco-epidemiological, YF forecast, vulnerability model in 
SPSS although it is a little tricky and, must use the syntax window. The partial correlation 
command can take a matrix as its input, so an arbovirologist, medical entomologist or YF 
exprimneter must calculate the rank-order correlation matrix without partialling any geo-
spectrotemporal or geospatiotemporal, time series, explanatory, LULC variables out. In such 
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circumstances an input rank-order matrix into the partial correlation procedure would optimally 
remotely target, hyperproductive, Ae. aegypti, oviposition, seasonal sites on sub-meter reolution, 
inhomogeneous, regressively, forst-canopy data.  

Further, for plotting normal or non-Gaussian probability distributions rendered from a 
YF, forecast, vulnerability, oviposition, time series model for optimally targeting prolific, 
sylvatic, Ae. aegypti habitats on transitional remotely demarcated, forest-corridor,  LULC sites  
with viable confidence intervals a individual score( e.g, 95% pseudo R2 value)  in SAS could 
render  diagnostic, explanative, uncoalesced, geo-spectrotemporal wavelength, frequencies  X  
which may be optimally adjusted in regression space  such that the tabulated scores  may be 
qualitatively quantized,geo-spectrotemporally or geo-spatiotemporally. The only way  
to adjust the scores however in the YF model would be to run a regression in which the 
covariates predict the X and thereafter save and the diagnotstic  plot with residual variance. In 
that case, software packages such as R and Matlab may be much more helpful than SPSS. These 
packages, however, would require additional effort from an arbovirologist, medical entomologist 
or YF investigator since there would be no longer a "point-and-click" orientation.  

In applications of classic, linear regression, explanative,  metamodels and their 
concomitant seasonal, experimental designs  for  explicatively, probabilistically regressing, time 
series, forecastable, ecogeoreferenceable, heuristically optimizable, YF, endemic transmission, 
uncoalesced, LULC, iteratively interpolative, signature covariates,the  assumumptions of  a 
univariate (not multivariate) simulation response may not include  white noise.  A medical 
entomological, explanatively regressable, random vector (i.e., a partially indeterminate process 
that produces vectors of optimally parameterizable, sub-meter resolution, diagnostic, time series, 
elucidative,  YFV clincial, field or remote specfied, geo-spectrotemporal or geo-spatiotemporal 
autoregressive  explanator) is said to be a white noise vector or white random vector if its 
fractionalizable, reference, target, sub-mixel signature components each have a probability 
distribution with zero mean and finite variance. Additionally,statistically independence would be 
mandatory that is, their joint probability distribution  would have to be the product of the 
distributions of the individual geo-spectotemporal or geo-spatiotemporal, sub-meter reolution, 
endmember, LULC components (see Jacob 2007).  

         In the study of probability in a forecasting, eco-epidemiological, geo-spectrotemporal and 
or geo-spatiotemporal,  explanative, diagnostic, seasonal, linear, probabilistic, uncoalesced, YF, 
vulnerability-oriented, eco-epidemiological, regressively  optimizable, forecast  model, given at 
least two explictively, randomized,  exogenous,oviposition, African riceland, expanding  
geosampled   regressands constructed from   sub-meter resolution, geoclassifiable, 
ecogeoreferenceable,  Ae. aegypti, iteratively, quantatively, explanatively, diagnostically 
interpolative,  uncoalesced, LULC,endmember signature  variables X, Y, ..., that are defineable 
on a probability space, the joint probability distribution for X, Y, ... would be  a probability 
distribution that effectively renders the probability that each of X, Y, ... falls in any particular 
range or explicit, discrete, parameterizable, coefficient values. A probability space in an  eco-
epidemiological,  seasonal, regression-related, predictive,  medical entomological, probabilistic, 
eco-epidemiological, endmember, sub-meter resolution, LULC risk model can be a measure 
space such that the measure of the whole space is equal to 1 ( Gu and Novak 2005, Griffith 2005, 
Jacob et al. 2009). 
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          If a regression-related, probabilistic-oriented, time series, geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiological, YF, forecasting, vulnerability, sub-meter resolution, 
LULC, endmember  model is multivariate and some sub-meter resolution, descriptive, iterative, 
quantiative,  interpolative, explicatively uncoalesced,  LULC time series, explanatorial, African, 
expanding  agro-irrigated agro-ecoystem,  predictor covariates  are measured with some error, 
the effects of the measured parameterizable data may be be biased, (see Carroll et al., 1985; 
Gleser et al., 1987). The direction of the bias would then depend on the correlation amongst the 
time series, eco-epidemiological, YFV, African riceland geo-spatiotemporal or geo-
spatiotemporal, geosampled, geoclassified LULC covariates. Moreover,  heteroskedastic, 
undiagnosed varaiables may cause a loss of power for detecting signals amongst the uncoalesced,  
quantitatable, endmembers and may mask important features of the regressed, 
ecogeoreferenceable, sylvatic, Ae. aegypti, oviposition, LULC,capture point, immature site 
productivity counts  on ArcGIS geoclassifiable, forest-canopied,  sub-meter resolution, 
peripheral, grid-stratfiied LULCs along a, sparsely shaded, agro-irrigated, African, expanding 
riceland corridor due to anthropogenic pressure.  Regression error is often completely ignored or 
not treated properly. One reason might be that abovirologists, medical entomologists, or YF 
experimenters, often pay very little attention to violation of regression assumptions in eco-
epidemiological, vector, arthropod-related, geo-spatiotemporal or geo-spectrotemporal, 
forecasting, vulnerability, eco-epidemiological  endmember , sub-meter resolution, models 
although the problems have been recognized for a long time 

 
Virus pathogens of YF may respond to changing seasonal, sub-meter resolution,   

endmember, grid-stratifiable,sub-meter resolution, LULC dynamics  on multiple endmeic, 
transmission levels  which may increase in disturbed agro-irrigated, ecosystems, yet current 
knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat 
capture point  is limited for implementing seasonal control strategies in expanding, African, 
riceland ecosystems.  Describing seasonal, Ae. aegypti, mosquito-community diversity 
employing geoclassifiable, sub-meter resolution, endmember, oviposition LULC, change site 
data with other covariates ( e.g., meteorological, census etc) in ArcGIS may aid in 
implementation of a sylvatic, YF, oviposition, endmember signature, LULC, surveillance system 
in  these expanding agro-irrigated ecosytems. Additionally SAS or R may be optimally  
employable   for identification of  prolific, eco-georeferenceable, seasonal capture point, 
immature habitat types and  immature productivity of the foci, especially in landscapes 
experiencing different levels of anthropogenic and economic  pressures (e.g., partially canopied, 
forest-canopied LULC eco-zones along peripherial, agro-irrigated, riceland agro-villages). The 
modification of the urban landscape influences the local (microscale), mesoscale, and even the 
macroscale climate (Brazel et al., 2000; Quattrochi et al., 2000; Voogt and Oke, 2003).  

Assumptions of a general, aquatic, larval population or identical habitats are untenable 
for a realistic evaluation of larval control interventions or the development of models to be 
empirically tested under field conditions (Gu and Novak 2005). Diverse spatial data exist, 
varying in extent and resolution, but sub-meter, remotely-sensed,  mosaicked sub-meter 
resolution, geocalssified, LULC data  in ArcGIS provides the most robust  extensive coverage 
for  unveiling heterogeneity and quantitated endmember signatures(Jensen 2005) of disturbed 
landscapes where seasonally explanatorial, hyperproductive, vector, arthropod-related, immature, 
habitat data are commonly  eco-georeferenced (Jacob et al. 2011, Jacob et al. 2007). An 
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endmember is the spectrum of a pure ground component (e.g., vegetation, soil, water); thus, 
these sub-mixed pixel (mixel) fractions are typically interpreted as ground LULC components.  

It is well documented that urbanization results in increased amount of impervious 
surfaces (Brabec et. al., 2002) which can augment the intensity, volume, temperature, and 
duration of irrigated, storm water runoff (Booth and Reinfelt, 1993; Schueler, 1994). Urban, 
African, riceland, agro-village complex, seasonal, storm water runoff may cause or contribute to 
water quality degradation by changing natural,  geohydrologic, seasonal,  LULC patterns (Driver 
and Troutman, 1989), accelerating natural stream flows (Booth and Jackson, 1997), decreasing 
stream bank erosion (May et al., 1997),increasing  aquatic habitat (Booth and Reinelt, 1993; 
Horner et. al., 1997), degrading stream water quality (Schueler, 1994; Booth and Jackson, 1997; 
May et al., 1997), increasing temperature (Galli, 1990), and elevating pollutants. Hence, different 
land uses can modify contact of susceptible humans with infectious vectors (e.g., YFV) which 
can modify human cases distribution. Biodiversity loss affects infectious disease risk by 
disrupting normal relationships between hosts and pathogens on specific landscapes (Patz 2000).   

        Landscape patterns in seasonal, vector, arthropod-related, uncoalesced, remotely sensed, 
explanative dataset of observational endmember predictors are a common source of 
heteroscedasticity in the errors ( Jacob et al. 2006, Jacob et al. 2005) due to unexplained 
variations in dependent variables throughout the course of an  African rice-cycle season. The 
response variable may be consistent in percentage rather than absolute terms, in which case 
larger uncertainty errors in the regressed Ae aegypti, sub-meter resolution, endmember dataset  
may occur in eco-epidemiological, residual, explicative, diagnostic forecasts in ArcGIS ( e.g., 
targeted, ovisposition, hyperproductive, LULC sites in  a partially shaded, forest-canopied, sub-
meter resolution, geoclassifiable LULC along the periphery of an expanding, agro-irrigated, 
African, riceland environment where activity is greater, which could show up as a LULC pattern 
of changing variance on the residual-vs-time plots in PROC LOGISTIC.  A log transformation 
may be employable to address this problem.  For example, if the seasonal, YF, endemic, 
topological pattern is being modeled through the use of dummy variables for months or quarters 
of the year, a log transformation applied to the dependent variable (e.g.,  incidence of of YF 
cases)will convert the LULC coefficients of the dummy variables to multiplicative adjustment 
factors rather than additive adjustment factors. In so doing, the errors in prognosticated logged 
LULC variables will be roughly interpretable as percentage errors  based on the original 
geosampled, geo-spectrotemporal or geo-spatiotemporal, geoclassifiable, hypeproductive, Ae 
aegypti, oviposition, sub-meter resolution, geoclassifiable, endmember, grid-stratifiable, 
orthogonal, sub-meter resolution, LULC, diagnostic variable.  Seasonal adjustment of all 
geosampled riceland and or inhomogenous, forest-canopied, endmember,  grid-
stratfiable,orthogonal  LULC data prior to fitting the regression model might be another option 
when targeting hyperproductive, seasonal, Ae aegypti oviposition, LULC sites in an expanding 
African rice-agro-village complex. If a log transformation has already been applied to an eco-
georeferenceable,  explanatorial, eco-epidemiological,geo-spectrotemporal, or geo-
spatiotemporal, sub-meter resolution, diagnostic, clinical, field or remote-specified, exogenous, 
endemic, YFV  transmission-oriented, explanatory regressor, then additive rather than 
multiplicative seasonal adjustments  may be employable in PROC LOGISTIC for targeting, 
seasonal, hyperproductive, capture points along   the forest canopy periphery of the  expanding 
ecosystem. 
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 Homoscedasticity of the errors would have to exist in the endemic, forecast, 
vulnerability,  YF , eco-georeferenceable,  eco-epidemiological, real-time, ArcGIS or SAS 
model which would be included in the estimates  of the sylvatic, Ae. aegypti, hyperproductive, 
seasonal, explanative, capture point, forest canopies, LULC sub-meter imaged, ovipositions sites 
nearest to  the agro-irrigated, expanding borders of the African, riceland agro-village ecosystem, 
if: (a) common variance versus time in the time series, explanatory, geo-spectrotemporal or geo-
spatiotemporal, YFV, eco-epidemiological, diagnostic data is equal  (b)  common variance  in 
the predictions ( e.g., seasonally targeted, eco-georeferenceable, hyperproductive, grid-stratified, 
capture point, agro-irrigated, immature habitat) (c) geomorphological, terrain-related, 
explanatory independent variable,  three (3) –dimensional (D) catchment watershed, 
parameterizable, covariate estimator. Finally, the eco-epidemiological, forecast, vulnerability YF 
model would have to display normality of the error distribution.  

  Violations of normality in an explanatory,  residual, YF explicative, time series, 
diagnostic, forecast, paradigm output remotely targeting, sub-meter resolution, forest canopied, 
sparsely shaded, Ae. aegypti seasonally hyperprodutive,  capture point, seasonal, eco-
georeferenceable,  immature habitats  can create problems for optimally  determining whether 
vulnerability,  probabilistic, iteratively, interpolative, uncoalesced, sub-meter resolution, model 
coefficients are significantly different from zero when calculating confidence intervals. 
Sometimes the error distribution may be "skewed" by the presence of a few, large, geospatial 
outliers ( i.e, “extereme” Ae. aegypti capture point, immature habitat observations)   in a 
forecasting vulnerability, seasonal, vector, arthropod-related, eco-epidemiological, LULC, 
regressively  predictive, probabilistic, YF model. Since parameter estimation would be  based on 
the minimization of squared error in the regressed,  geo-spectrotemporally geosampled, 
fractionalized, geometric, endmember datset of  time series, clinical, field or remote, diagnostic, 
explanative, YFV geosampled, sub-meter resolution, geo-spectrotemporal or geo-spatiotemporal, 
eco-epidemiological, endmember, LULC variables, a few extreme observations can exert a 
disproportionate influence on optimal parameter estimation. Calculation of confidence intervals 
and various significance tests for LULC coefficients  in most entomological, immature, capture 
point, habitat-based, reference, signature, targeted, intervention models are all based on the 
assumptions of normally distributed errors (Gu and Novak 2005). If the error distribution is 
significantly non-normal, confidence intervals may be too wide or too narrow, the targeted,  
sylvatic, forest-canopied, hyperproductive, seasonal, Ae. aegypti oviposition, endmember, LULC 
sites  in geo-specifically geoclassified,  sub-meter resolution, agro-irrigated, African, expanding 
riceland LULCs, due to anthropogenic or economic pressure,  may be misspecified.   

          Technically, the normal distribution assumption is not necessary if an arbovirologist, 
medical entomologist or other YF experimenter  are willing to assume that the eco-
epidmiological, regression, grid-stratified, orthogonal, eigen-decomposable, vulnerability model 
geo-spectrotemporal or go-spatiotemporal iterative, frequency, wavelength, sub-meter resolution, 
endmember, signature  predictive risk equation is correct when field-verifying ( “ground 
truthing’) remotely sensed LULC targets where the primary goal is to quantitate oviposition, 
paramterizable  covariate coefficients to generate robust, stochastic or deterministic, signature 
explanators   ( e.g., hyperproductive, Ae. aegypti sites) in such a way as to minimize mean 
squared error.  The formulas for optimally estimating heuristically parameterizable, YF, time 
series, uncoalesced, sub-meter resolution, iteratively, qualitatively interpolative,  LULC 
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signature coefficients would require no more than that, since normally distributed errors is 
amongst the key regression assumption. Generally an arbovirologist, medical entomologist  or 
other YF experimenter  may be  interested in making inferences about  an empirical dataset of 
diagnostic, forecasting, vulnerability, endmember, latent model descriptors for optimally 
approximating the probability that a given residual, explanative, geo-spatiotemporal or geo-
spectrotempoeal propogagtional, diagnostic,  probabilistic, uncertainty estimate error will exceed 
some threshold in a particular direction, in which case distributional assumptions would be 
pertinent.  Also, a significant violation of the normal distribution assumption is often a "red flag" 
indicating that there is some other problem with the model assumptions and/or that there are a 
few unusual data points that should be studied closely such that a better model may be 
constructed( Fotheringham 2002) . 

The optimal test for determining normally distributed error in a eco-epidemiological, eco-
georefereneceable, YFV, forecast, vulnerability, regression, eco-epidemiological, LULC, 
geometric, endmember, quantiative model for targeting hyperproductive, eco-georeferenceable, 
sylvatic, Ae aegypti, seasonal, capture point, immature habitats and senteniel sites in a forest-
canopied, geoclassifiable, sub-meter resolution, ArcGIS map of an expanding agro-irrigated, 
African riceland, agro-village complex,  is a normal probability plot or normal quantile plot of 
the residuals. These are plots of the fractiles of error distribution versus the fractiles of a normal 
distribution having the same mean and variance. If the distribution is normal in the forecasting 
YF, endmember, time series paradigm,  the points on the residual, diagnostic, explanative, 
diagnostic, regression plots should fall close to the diagonal reference line. A bow-shaped pattern 
of deviations from the diagonal would indicate that the YF-related, clinical, field or remote 
specified, geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological, eco-georferenceable, 
sub-meter resolution, explanative, endmember LULC regressed residuals have excessive 
skewness (i.e., they are not symmetrically distributed, with too many large errors in one 
direction). An S-shaped pattern of deviations would indicate that the riceland, ovisposition, 
iterative residuals have excessive kurtosis—(i.e., there are either too many or two few large 
errors in both directions). Sometimes the problem may be that there are a few data points on one 
or both ends that deviate significantly from the reference line ("outliers"), in which case they 
should get close attention ( Griffth 2003).   

         There are a variety of statistical tests for normality, in SAS for testing, predictive, YF, sub-
meter resolution, LULC, seasonal models for optimally geostatistically delineating 
hyperproductive, Ae aegypti, oviposition, sub-meter resolution, geocalssified LULC  sites along 
an agro-irrigated, African, riceland ecosystem expanding  periphery including the Kolmogorov-
Smirnov test, the Shapiro-Wilk test, the Jarque-Bera test, and the Anderson-Darling test.  The 
Anderson-Darling test (which is the one used by RegressIt) is generally considered to be optimal 
for seasonal, vector, arthropod-related, endmember, iterative stochastic or deterministic, time 
series, iterative quantitative interpolators, as it is specific to the normal distribution (unlike the 
K-S test) and it would  study whole YF, Ae aegypti covariate regressed distribution rather than 
just the skewness and kurtosis (like the J-B test).   

 The unfortunate assumptions by previous  arbovirologists, medical entomologists and 
other YF experimenters   is that they have assumed, rather unwisely, that diagnostic, time series, 
clinical, field or remote Ae. aegypti, oviposition, geo-spectrotemporal or geo-spatiotemporal, 
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eco-epidemiological, sub-meter resolution,  LULC explanators rarely have probabilistic 
endogenous  errors. Thus, the variables selected for regression for optimally remotely targeting, 
seasonal, hyperproductive, Ae. aegypti, oviposition, hypeproductive sites  in an expanding 
African, riceland environment are assumed to be perfectly normally distributed.  This 
justification of the authors in these contributions have in most circumstances fit the eco-
georeferenceable, YF, forecast, vulnerability, endmember, sub-meter resolution, LULC,  eco-
epidemiological, model whose errors did not violate the normality assumption at the 0.05 level of 
significance. However a backward stepwise multicolinarity diagnostic check in PROC REG may 
reveal non-homoskedacistic,  normalized, Ae. aegypti, ovispoition African riceland 
geosasampled parameters. According to Griffth (2005), frequency and non-frequency tests 
conducted on, time series endmember, vector arthropod-related, iteratively quantitatively 
interpolative, eigen-decomposable, descriptive, LULC regressors contain inconspicuous 
probabilistic propagational non-normalities ( e..g, latent negative autocorrelation).   These hidden 
violations of non-linear regression assumptions can influence the generation of few outliers. 
Thus, normality assumed in the unquantitated eco-epidemiological, eco-georeferenceable, 
forecast datatsets of endmember,   seasonal, hyperproductive, Ae aegypti, oviposition, sites on 
sub-meter resolution, parameterizable, orthogonal,  geoclassified, forest-canopied, grid-stratified  
LULCs along an agro-irrigated, expanding, African, riceland community would be 
mathematically erroneous.   

A PROC REG normal probability plot or normal quantile plot could draw  precise 
conclusions about whether  a regression parameter estimation problem is serious  in an eco-
epidemiological, endmember, YF forecast, vulnerability geo-spectrotemporal or geo-
spatiotemporal, signature model  employing a backward analyses If any of regression 
assumptions is violated in a YF model (i.e., if there are nonlinear explanative, relationships 
between dependent and independent explanatory variables, or the diagnostic errors exhibit 
correlation, heteroscedasticity, or non-normality) then the residually forecasted, confidence 
intervals, yielded by the  regression model may be (at best) inefficient or (at worst) seriously 
biased or misleading.  Ideally, mathematical software automatically provide charts and statistics 
that test whether  regression assumptions are satisfied for any given LULC model.  
Unfortunately, many software packages do not provide such outputs by default (i.e., additional 
menu commands must be executed or code must be written) and, some such as Excel’s built-in 
regression add-in offer only limited options.  Unfortunately, many seasonal, vector, arthropod-
related, real-time,  geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological, iteratively 
quantitatively  interpolative, sub-meter resolution, forecast, vulnerability  LULC models violates 
most  regression assumptions yet they exist in literature as they are accepted by a naïve user on 
the basis of a large value pseudo R2. 

   The normal quantile plots from seasaonal, forecasting, YF, vulnerability probabilistic, 
endmember, uncoalesced,  orthogonal, grid-stratfied paradigms constructed from Ae. aegypti 
riceland, geosampled, geo-spectrotemporal or geo-spatiotemporal,  sub-meter resolution, LULC 
covariate estimators  may be shown employing quantile-quantile (Q-Q) plots for determing 
geolocatons of Ae aegypti immature, capture point, hyperproductive habitats along an expanding 
African agro-irrigated environment. A Q–Q is a probability plot, which is a graphical method for 
comparing two probability distributions by plotting their quantiles against each other. First, the 
set of intervals for the quantiles is chosen. A point (x, y) on the plot may be correspond to one of 
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the quantiles of the second distribution (y-coordinate of a geo-spectrotemporal or geo-
spatiotemporal,  endmember, YF, geometric model) plotted against the same quantile of the first 
distribution (x-coordinate). Thus, the line is a parametric curve in the forecast, vulnerability, eco-
epidemiological YF, model for optimally targeting partially discontinuous, diagnostic,  
explanatory probabilistic, sub-meter, resolution, African, riceland, sylvatic, Ae. aegypti, 
oviposition, inhomogeneous, forest-canopied, LULC, parameterized estimators would be  the 
(number of the) interval for the quantile. If the two YF distributions being compared are similar, 
the points in the Q–Q plot will approximately lie on the line y = x. If the distributions are linearly 
quantiatively related, the geosampled oviposition, eco-epidemiological, LULC, signature, sub-
meter resolution, capture points in the Q–Q plot will approximately lie on a line, but not 
necessarily on the line y = x. Q–Q plots can also be used as a graphical means of estimating 
geosampled geo-spatiotemporal or geo-spectrotemporal,  oviposition, endmember parameters in 
a capture point, seasonal, hyperproductive, geolocation-scale family of  distributions ( Anselin 
1995). 

        The QQPLOT statement can create and compare ordered variable medical entomological 
oviposition, optimally regressable, sub-meter resolution, African, riceland,  grid-stratfiable, 
endmember, LULC  values in a sub-meter resolution, geo-spectrotemporal or geo-
spatiotemporal, eco-epidemiological, YF-related, iterative, quantiatively, interpolative, 
ecogeoreferenceable, risk model  with quantiles of a specified theoretical distribution. If the 
geosampled orthogonal LULC data distribution matches the theoretical distribution, the 
forecasted  prolific, eco-epidemiological, seasonal, hyperproductive, immature habitat,  capture 
points on the plot would form a linear pattern. Thus, an arbovirologist, medical entomologist or 
other YF experimenter may employ a Q-Q plot to quantitate how well a eco-epidemiological 
prognosticative, LULC  distribution, model could optimally render a set of ovisposition, 
immature habitat  measurements for targeting hyperproductive, Ae aegypti, sites in geoclassified 
empirical dataset of  eco-georeferenceable, geolocations along a forest canopy corridor on the 
periphery of a agro-irrigated, African, riceland, agro-village ecosystem. 

        Q-Q plots are similar to probability plots, which can be created with the PROBPLOT 
statement. Q-Q plots may be preferable for graphical estimation of endmember LULC 
distribution parameters related to geo-spectrotemporal or geo-spatiotemporal, eco-
epidemiological, eco-georeferenceable, sub-meter resolution, Ae. aegypti, prolific, seasonal sites 
on sub-meter resolution, geoclassified data; whereas, probability plots are preferable for 
graphical estimation of percentiles.  Any number of QQPLOT statements in the UNIVARIATE 
procedure  can generate an explanatorial,  residual, diagnotic, graphical, regression test for 
optimally deducing if an empirical endmember LULC dataset of time series dependent, clinical, 
field or remote geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological,  geosampled, 
eco-georeferenceable, uncoalesced, iteratively quantitatively  interpolative variables can 
optimally delineate a  seasonal,  hyerproductive, Ae. aegypti, oviposition LULC site, on an 
forest-canopied, sub-meter resolution, geoclassifiable LULC along a peripherial geolocation of 
an expanding, agro-irrigated, African, riceland, ago-village community due to anthropogenic 
pressure. 
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         The UNIVARIATE procedure may render the following: descriptive statistics based on 
moments for parimoniously, robustly, regressively, prognosticating, experimental, time series, 
dependent, orthogonal, residual forecasts of targeted hyperproductive, sylvatic, Ae. aegypti, 
oviposition, seasonal, grid-stratieid, LULC sites in transitional expanding, African, agro-village 
ecosystem into inhomogeneously, forest-canopied, sub-meter resolution geoclassified LULCs 
with high statistical significance ( e.g.,confidence interval of 95%). The model diagnostic eco-
epidemiological, output would   include skewness and kurtosis, quantiles or percentiles (such as 
the median), frequency tables, and extreme valued histograms that optionally can be fitted with 
probability density curves for quantitating visually various distributions ( e.g., regressed 
ecogeoreferenceable, oviposition, capture point, hyperproductive, foci, signature geolocations  
with kernel density estimates and cumulative distribution function plots  of diagnostic, 
geosampled, clincial, field or remote geospectrotemporal or geo-spatiotemporal,  YFV,  
geosampled, sub-meter resolution, geoclassified  LULCs. Optionally, these can be superimposed 
with probability distribution curves for various distributions. Q-Q plots, probability plots, and 
probability-probability plots (P-P plots) may aid in unveiling inconspicious, propagational, 
probabilistic, erroneous, time series, capture point, Ae aegypti, immature habitat, seasonal 
variables geosampled along an expanding,  African, riceland eco-environment, peripheral, 
discontinuous, forest-canopy, LULC  corridors  

          A Q–Q plot is used to compare the shapes of endmember LULC distributions, providing a 
graphical view of how properties such as location, scale, and skewness are similar or different in 
the two distributions (Anselin 1995). Q–Q plots can be employed to compare collections of 
endmember geo-spectrotemporal or geo-spatiotemporal eco-epidemiological, geosampled, YF 
data, or theoretical distributions geosampled in expanding African, riceland, discontinuous  
corridors as they geospatially spillover into inhomogeneous partially canopied, peripheral 
forestlands. The use of Q–Q plots would then compare two samples of the data which may be 
viewed with a non-parametric algorithm to compare their underlying distributions. A Q–Q plot is 
generally a more powerful approach than the common technique of comparing histograms of the 
two samples, but requires more skill to interpret (Anselin 1995). Q–Q plots are commonly used 
to compare a data set to a theoretical model (Griffith 2003). The indictaive signature , sub-meter 
reoslution, eco-epidemiological, signature, oviposition paradigms can provide an assessment of 
"goodness of fit" that is graphical, rather than reducing to a numerical summary which would not 
necesarily remoptely target, prolific, sylvatic, seasonal, hyperproductive, Ae. aegypti, immature 
habitats along an eco-georeferenceable partially, canopied forest, peripheral corridor.  Q–Q plots 
are also usable to compare two theoretical distributions to each other (Anselin 1995) . Since Q–Q 
plots would compare regressed YF distributions in an expanding, African, agro-rice-village 
complex there is no need for the geo-spatiotemrpoal or geo-spectrotemporal oviposition 
signature LULC sub-meter resolution values to be observed as pairs, as in a scatter plot, or even 
for the numbers of parameterizable, endmember, sub-meter resolution,  LULC, endmember, 
covariate values in the two groups being compared to be equal. 

        The term "probability plot" sometimes refers specifically to a Q–Q plot, sometimes to a 
more general class of plots, and sometimes to the less commonly used P–P plot. The probability 
plot correlation coefficient is a quantity derived from the idea of Q–Q plots, which measures the 
agreement of a fitted distribution (Cressie 1993). These plots may facilitate the comparison of a 
regression-related, capture point, seasonal, hyperproductive, Ae. aegypti, oviposition,eco-
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epidemiological, eco-georeferenceable, eigen-decomposable, LULC distribution with various 
theoretical distributions. Goodness-of-fit tests for a variety of regressed YF, signature, 
endmember,  LULC  distributions including the normal has the ability to yield summary statistics 
on plots which could include the ability to analyze empirical geosampled, geo-spectrotemporal 
or geo-spatiotemporal,  uncoalesced wavelength, sub-meter resolution frequencies. This 
diagnostic fit could enable arbovirologist, medical entomologist or YF experimenter  employing 
a geoclassifiable, sub-meter resolution, African, riceland, forest-canopy, discontinuous, LULC,  
explicative, predictor variable the ability to create output endmember datasets containing 
summary statistics, histogram intervals, and parameters of fitted curves on with observed 
expanding agro-village data which may be usable as a means of fitting a YF case  distribution to 
geosampled sylvatic, Ae. aegypti, oviposition dataset. 

       For optimally tabulating precise quantiles for obtaining comparative distributions typically 
the formula k / (n + 1) is used. Several different formulas have been proposed as affine 
symmetrical plotting positions for LULc model. Such formulas have the form (k − a) / (n + 1 − 
2a) for some iteratively quantiatively interpolative, sub-meter resolution signature-related YF 
value of a in the range from 0 to 1/2, which  would render a range between k / (n + 1) and (k − 
1/2) / n.Other expressions include:(k − 0.3) / (n + 0.4)., k − 0.3175) / (n + 0.365), (k − 0.326) / (n 
+ 0.348).,,(k − ⅓) / (n + ⅓), (k − 0.375) / (n + 0.25), (k − 0.4) / (n + 0.2), (k − 0.44) / (n + 0.12).,(k 
− 0.5) / (n), (k − 0.567) / (n − 0.134), (k − 1) / (n − 1). For large eco-epidemiological, time sreies, 
YF case sample size, n, there may be little difference between these various LULC expressions 
especially for targeting, seasonal, hyperproductive, Ae. aegypti, oviposition, African, riceland, 
expanding, agro-village, geoclassifiable, LULC, capture points on geoclassified sub-meter 
resolution. 

Non-noisy, Poissonian and autorgressive, iterative, Bayesian, estimation paradigms have 
been successfully employed in eco-epidemiological, vector-borne, disease, grid-stratified, sub-
meter resolution, orthogonal regression, forecast, vulnerabiltiy models particularly for mapping 
vector or disease case distribution. (see Griffith 2005, Jacob et al. 2005), In probability theory 
and statistics, the Poisson distribution  theory is a discrete probability distribution that expresses 
the probability of a given number of events occurring in a fixed interval of time and/or space if 
these events occur with a known average rate and independently of the time since the last event 
(Haight 1967). Inferencial Bayesian orthogonal  paradigms belongs to the category of evidential 
probabilities which may evaluate the a hypothesis (e.g., expanding anthropogenic, African, agro-
village,  agro-irrigated, ecosystems geospatial LULC  spillovers into bordering, forest canopy 
peripheral corridors can generate hyperproductive, seasonal, Ae. aegypti, oviposition,  sites  
seasonally).  Bayesian probabilist specifies some prior probability, which is then updated to a 
posterior probability in the light of new, relevant evidence (Cox 2001). These models unbiasing 
techniques (e.g., stepwise backward analyses, latent autocovariate weighted, orthogonal grid 
matrices) may be optimal for treating propogational regression spatial error  ( e.g., 
autoccorelation) in an YF, forecast, vulnerability mathematical, grid-stratified, orthogonal  model 
for optimally targeting, prolific, seasonal, Ae. aegypti, oviposition, eco-geographic, LULC sub-
meter resolution, geoclassified sites. In statistical classification, the Bayes error rate is the lowest 
possible uncertainty rate for any classifier of a random outcome (one of two, diagnostic, eco-
georefernceable, time series, eco-epidemiological, sub-meter resolution, uncoalesced, riceland, 
African, expanding, time series, grid-stratified, LULC categories such as post-harvesting and 
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tillering) which would be  analogous to the irreducible error. The stochastic nature of most 
computational, vector, arthrpod-related, eco-epidemiological, forecast vulnerability models 
would gives rise to an instance of the Probabilistic Model Checking (PMC) problem. Suppose M 
is a stochastic Ae aegypti, sub-meter resolution, forecasting vulnerability, geo-spectrotemporal or 
geo-spatiotemporal, geosampled, eco-epidemiological, sub-meter resolution geoclassifiable, eco-
georeferenceable, LULC model over a set of states S, s0 would be then a starting state, whenst φ 
is a dynamic property expressed as a formula in temporal logic, andθ ∈ [0, 1] is the  probability 
threshold. The PMC problem would then render the 4-tuple(M, s0, φ, θ), to decide 
algorithmically whether M, s0 |= P≥θ(φ) which could be usable to regressively target seasonal, 
hyperproductive, immature, seasonal, Ae. aegypti, ovisposition, capture points in African, 
riceland agro-village ecosystems along inhomogeneous, forest canopied geocalssified corridors. 

Existing algorithms for solving the PMC problem may fall in a predictive, grid-stratified, 
algorithmic, orthogonal YF, endmember, orthogonal, eigen-decomposable, sub-meter resolution 
LULC paradigm into one of two categories. The first category would comprise of  numerical 
methods which ma compute the probability with which the property holds with high precision in 
an eco-epidemiological, YF signature, iterative, interpolative,endmember model. In a deforested, 
sylvatic, capture point, Ae. aegypti, sub-meter resolution, uncoalesced, forecast, vulnerability, 
African. riceland, inhomogeneous,  LULC, probabilistic, signature model for optimally targeting, 
hyperproductive, immature, eco-epidemiological,YF, capture point, seasonal, oviposition sites,   
the number of states can  be excessive. As such an arbovirologist, medical entomologist or other 
YF experimenter may seek  alternative, geo-statistical, endmember algorithms for solving the 
PMC problem in an approximate fashion in a  grid-stratifiable, sub-meter resolution, geo-
spectrotemporal or geo-spatiotemporal, eco-epidemiological, LULC model. Approximation 
probabilistic, residual, algorithmic methods in SAS may work by sampling a set of traces from 
the model. In so doing, ecogeoreferenceable  endmember, itearatively interpolative, LULC 
targets, (e.g., hyperproductive, sylvatic, Ae. aegypti oviposition sites) may be  optimally rendered 
from the paradigm summary statement.  

          For example, an arbovirologist, medical entomologist or YF experimenter may employ 
PROC CALIS to fit some measurement error, regression eco-epidemiological, forecast, 
vulnerability  signature models. Latent, explicative, diagnostic, sub-meter resolution, grid-
stratifiable, orthogonal, time series,  LULC variables rendered from these paradigms may 
optimally define "true" scored, uncoalesced,  geo-spectrotemporal or geo-spatiotemporal, 
iteratively quantitatively, krigable variables that are measureable without errors. In statistics, 
originally in geostatistics, Kriging or Gaussian process regression is a method of interpolation for 
which the interpolated values are modeled by a Gaussian process governed by prior covariances, 
as opposed to a piecewise-polynomial spline chosen to optimize smoothness of the fitted values 
(Cressie 1993).  
 
           A prior distribution may be optimally  assigned to the varying sylvatic, YFV, clinical, 
field or remote-specified, geo-spectrotemporal, regression LULC coefficients, and the 
oviposition, grid-stratifiable, endmember parameters of that prior distribution themselves may be  
given as a hyperprior. In Bayesian statistics, a hyperprior is a prior distribution on a 
hyperparameter, that is, on a parameter of a prior distribution. As with the term hyperparameter, 
the use of hyper is to distinguish it from a prior distribution of a parameter of the model for the 
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underlying system (Gelman 1995). These may arise particularly in the use of conjugate priors in 
a time seies, eco-epidemiological, YF forecast, vulnerability, signature, iteratively interpolative, 
sub-mter resolution LULV model. 
 
  Orthogonal, Bayesian, geometric, endmember, YF, sylvatic, Ae aegypti, African, 
riceland, agro-village, sub-meter resolution, signature, eco-epidemiological, LULC  models can 
be constructed in PROC MCMC in general terms as follows: data ingroups j = 1, . . . , J. For each 
group j, there would be  response vector yj ( e.g., targeted, forecast, of an African, riceland, Ae 
aegypti, oviposition, sub-meter, seasonal hyperproductive, eco-georeferenceable LULC  along 
with two data matrices, Xj and Zj), that may  have fixed and varying oviposition, endmember, 
signature,  parameterizable, covarite coefficients, respectively. The data model would be p(yj 
|Xj_ + Zjbj), where the vector of fixed coefficients and bj is the vector of regression coefficients 
that varies by group. The vectors bj would then be optimally modeled as independent draws from 
a prior distribution, p(bj), given some hyperparameters when  targeting seasonal, 
hypeproductive, discontinuous, forest-canopied, sylvatic, Ae aegypti, oviposition sub-meter 
resolution, grid-stratifiable  LULCs, in expanding, African, riceland environments.   By 
assuming a Gaussian model for the varying geosampled, geo-spectrotemporal or geo-
spatiotemporal eco-epidemiological, eco-georeferenceable, endmember,  LULC sub-meter 
resolution, riceland coefficients, so that bj ∼ N(0,_), the model could also include a nonzero 
mean vector or a group-level regression structure for the tabulated, hyperprior, sylvatic, endemic, 
YF distribution, but these can be folded into the fixed coefficients in the entomological, forecast, 
vulnerability model without loss of generality. 
 

There is a rich literature on full Bayesian inference for hierarchical regressions.There is 
also an empirical Bayes version in which the hyperparameters (e.g, seasonal, hyperproductive, 
eco-georferenced, capture point, sylvatic, Ae. aegypti , sub-meter resolution LULC oviposition 
sites in an expanding African riceland environment due to anthropogenic influences)are 
estimated via ML . In such circumstances the inference for the endmember LULC coefficients 
may be regressively conditionally performed on the estimated prognosticators. In so doing,  
seasonal, prolific, Ae. aegypti, capture point, habitats may be remotely distinguished on sub-
meter resolution geoclassified LULCs along inhomogeneous, partially forest canopied peripheral 
corridors in these ecosystems. From this perspective, the empirical Bayes approach would be 
sub-optimal (e.g., eco-georeferenceable, vulnerability, eco-epidemiological,  forecasts of 
hyperprpoductive, Ae. aegypti, capture point, immature, hyperproduictive , seasonal habitats 
would reveal only < than 50% in a sensitivity and or specificity test) , because  the Bayesian 
perspective avoids the use of any prior information and because the model  would understate the 
posterior uncertainty.  
      
      When fitting hierarchical, grid-stratified, orthogonal, time series, regression endmember 
models, ML estimation has computational (and, for some users, philosophical) advantages 
compared with full Bayesian inference, but whenst the number of groups is small, estimates of 
the covariance matrix of group-level varying coefficients are often degenerate.  An 
arbovirologist, medical entomologist or YF experimenter can  get a better performanace in a 
Bayesian estimation model employing a purely point-estimation perspective,  and a prior 
distribution or penalty function. In this paper, we use a Bayes model estimation to obtain positive 
definite covariance matrix estimates. A class of Wishart (not inverse-Wishart) priors with a 
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default choice of hyperparameters was employed to regressively distinguish, seasonal, 
hyperproductive, sylvatic, Ae. agypti oviposition, capture point,  LULC  sites along an expanding 
forest corridor.  The degrees of freedom in the model was  set equal to the number of varying 
geosampled LULC coefficients plus 2, and the scale matrix was the identity matrix multiplied by 
a value that was large relative to the scale of theimaged oviposition, seasonal hypeproductive Ae. 
aegypti. This prior was equivalent to independent gamma priors for the eigenvalues with a shape 
parameter 1.5 and rate parameter close to 0. It was also equivalent to independent gamma priors 
for the variances with the same hyperparameters multiplied by a function of the signature 
correlation coefficients. With this default prior, the posterior mode was positive definite in the 
sylvatic,YF model.  We noted that the resulting uncertainty for the fixed coefficients in the 
model was less underestimated than under classical ML or restricted ML. An extension of was 
used with prior information which was available for some of the variances or correlations in the 
eco-epidemiological YF, forecast, vulnerability, signature, LULC model. 
 

Therefater the sylvatic, Ae egypti hypeproductive, immature, capture point, explanative, 
erroneous residual ovipositionparameterized,uncoalesced, sub-meter resolution, geoclassified 
LULC covariates (  e.g.,  size of densely shaded tillers) ,on sub-meter resolution, seasonally 
geoclassifiable, deforested, peripheral, agro-irrigated, African, rice- village LULCs may be 
identified, in an ArcGIS geodatabase cyberenvironment  employing, endmember, parameter 
estimators  fixed values in the PATH model specification.  

          Consider a simple linear regression, Ae. aegypti, eco-georeferenceable, geo-
spectrotemporally, geo-spatiotemporally geosampled, sub-meter resolution, forecasting, 
vulnerability, eco-epidemiological, unmixed, sub-meter resolution,  LULC model with 
dependent variable y and predictor variable x. The path diagram for this simple linear regression 
model would be depicted as follows:  

Suppose the following SAS –based, time series, geo-spectrotemproally or geo-
spatiotemporally, geosampled, sub-meter resolution, endmember, Ae. aegypti,  grid-stratified, 
LULC dataset for the endmember, regression analysis is presented for  y  for quantitating 
statistical significance values ( pvalues at a 95% confidence interval) for x:  

 
data measures; 
   input x y @@; 
   datalines; 
 7.91736    13.8673    6.10807    11.7966    6.94139    12.2174 
 7.61290    12.9761    6.77190    11.6356    6.33328    11.7732 
 7.60608    12.8040    6.65642    12.8866    6.26643    11.9382 
 7.32266    13.2590    5.76977    10.7654    5.62881    11.5041 
 7.57418    13.2502    7.17305    13.3416    8.23123    13.9876 
 7.17199    13.1750    8.04604    14.5968    5.77692    11.5077 
 5.72741    11.3299    6.66033    12.5159    7.14944    12.4988 
 7.51832    12.3588    5.48877    11.2211    7.50323    13.3735 
 7.15814    13.1556    7.35485    13.8457    8.91648    14.4929 
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 5.37445     9.6366    6.00419    11.7654    6.89546    13.1493 
; 
This YF data set contains 30 agro-irrigated, African, riceland, deforested, discontinuous 

observations for the x and y variables. The experimenter may fit the simple linear regression 
model to the measured data varaibles by the PATH model specification of PROC CALIS, as 
shown in the following statements:  

proc calis data=measures; 
   path  
      x ---> y; 
   run; 

         In so doing, each explciative, independent variable would be evaluated to determine 
whether it satisfied the properties of regression. The forecasts may also be employable for 
satisfying traces used to(approximately) to decide whether M, s0 |= P≥θ(φ) could be employable 
to remotely target seasonal, hyperproductive, Ae. aegypti, oviposition geolocations on sub-meter 
resolution, geoclassifiable, grid-stratifiable, LULC, African, riceland, agro-village, ecosystem. 

      Approximate PMC methods can be further divided into two sub-categories:(i) those that 
seek to estimate the probability that the property holds and then compare that estimate to θ (e.g., 
[26,39]), and (ii) those that reduce the PMC problem to a hypothesis testing problem (e.g., 
[46,47]). In terms of an Ae egypti, sub-meter resoluton, georeferenceable, oviposition LULC 
vulnerability, forecasting, eco-epidemiological,  linear model this would be ascertained by 
deciding between two hypotheses — H0 : P≥θ(φ) versus H1 : P<θ(φ). Hypothesis-testing eco-
epidemiological based YF regression methods  may be  more efficient than those based on 
estimation when θ (which may be specified by  a sub-meter resolution LULC experiment ) which 
may be  significantly different than the true probability that the property holds which may be  
determined by M and s0 for targeting  seasonal, hyperproductive, Ae. aegypti, African, riceland, 
inhomogeneous, sub-meter resolution, forest-canopy, geoclassified  LULCs. 

We assumed such data could provide a higher level of detail than census-like data, which 
would geo-spatiotemporally or geo-spectrotemporally aggregate heterogeneous LULC variables 
( e.g., hyperproductive,  Ae. aegypti capture points on agro-irrigated, African, deforested,  sub-
meter resolution, geoclassified LULCs) at the level of administrative units. We also assumed that 
census-like optimally regressed, time series, uncoalesced, iteratively quantitative, interpolative, 
grid-stratifiable data may be focused on residence (e.g., eco-georeferenceable, agro-irrigated, 
African, rice–village complexes) where seasonal, hyperproductive, immature, capture point, sub-
meter resolution, LULC habitat existed. Quantizing temporal variables of humans who spend 
time data in other neighboring LULCs  ( e.g., discontinous forested-canopy) than their residence 
may have  potentially profound implications for  YF epidemiological, forecast, vulnerability 
modelling in expanding African agro-irrigated, riceland  environments. 

Regression and PMC checking may be performed in PROC REG  to determine the best 
scale for  optimal, capture point, Ae aegypti, rice-cycle, seasonal, LULC observations to 
determine  influential sub-meter resolution, uncoalesced, optimizable,  endmember, LULC 
variables associated with immature hyperproductivity. A radius buffer was determined in 
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Geospatial Analyst TM for cartographically  quantitating the sub-meter resolution, imaged, 
seasonal, iterative, interpolative, geo-spectrotemporal, geospatialized LULCs and  mosquito 
abundance relationship, Ae. aegypti presence  may be positively associated with structure and 
medium height trees and negatively associated with bare earth, for example in an agro-irrigated, 
African, riceland, immature, capture point, eco-georeferenceable forecast, vulnerability analyses. 
Such findings may emphasize quantitating vegetation, impervious surfaces, and soil influences 
on Aedes mosquito presence in an urban expanding agro-irrigated, African ricleand  agro-
ecosystem due to anthropogenic pressure. The land cover mosquito abundance relationships was 
quantititated in ArcGIS to produce precise, eco-epidemiological, sub-meter resolution, 
geoclassified,orthogonal, grid-stratfiable, LULC maps of seasonal presence that highlight high 
risk areas ( e.g., eco-georeferenecable geolocations of hyperproductive, oviposition, eco-
epidemiological,  LULC sites) which may can be useful for focusing mosquito control program 
actions. 

 Inventory of georeferenced, sparsely canopied, forestland corridor, agro-irrigated, 
inhomogeneous,  riceland, seasonal, aquatic, habitats of sylvatic, Ae aegypti, regarding their 
larval productivity  may be also  regressed within autoregressive forecasting paradigm 
covariance matrices employing elucidative, eco-georeferenceable, time series, parameterizable, 
geoclassifiable, uncoalesced, iteratively interpolative, uncoalesced,  ovisposition, endmember, 
LULC signature, uncoalesced, covariate coefficient values in ArcGIS. These probabilistically 
regressed explanative time series, eco-epidemiological, endmember residuals can provide critical 
information for optimally characterizing species-specific oviposition, LULCs sites on 
geoclassified sub-meter resolution, satellite imagery.  In so doing, selection and planning of 
integrated mosquito managements may be optimally targeted. Larval control will probably have 
little impacts on incidence, if interventions are untargeted and levels of coverage limited Gu and 
Novak 2005).  

        The strategy of sub-meter resolution, LULC-oriented, capture point, habitat-based, ArcGIS 
based oviposition, geostatistically  targeted, eco-epidemiolgical interventions for an expanding 
agro-irrigated, African, riceland, agro-village complex due to anthropogenic and economic 
pressure  may be   to recognize the importance of  variation employing time series,  regression 
models  for quantitating   immature, mosquito production amongst peripheral, transitioned,  
geoclassifiable, eco-geographically discontinuous, sparsely inhomgeneous, forest-canopy to rice 
agriculture,  LULCs. The intimate relationship between the schedule of rice husbandry and 
mosquito breeding has long been recognized in several countries( Surtees1970, Grainger 1947, 
Russell and Rao 1940). Sen (1948) attributed the  immature  habitat patterns of Anopheles spp. to 
rice cultivation practices which Jacob et al. 2005 remotely quantitated at the habitat level 
employing QuickBird visible and NIR 061 meter (m) data. In Japan, Makiya (1967) related 
breeding densities of Culex tritaeniorhynchtts Giles to increase in rice height, and 
Reuben(1971)observed a similar  pattern in the breeding of culicines in rice fields of Madras, 
India. In Californian rice fields, Womeldorf and Whitesell (1922) demonstrated the relationship 
between Culex tarsalis Coq. and Anopheles freeborni Aitken and water depth and height of the 
rice 
 
        In more recent  studies on mosquitoes of the the Mwea rice scheme (Kenya),  Muturi et al. 
(2007) indicated that in the rice field environments, numbers of the main malaria vector in the 
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region Anopheline arabiensis s.s. were higher than in agro-irrigated geoclassified LULC zones 
specifically in post-tillering habitats. Mwangangi  et al. (2007) assessed  the impact of rice 
husbandry on mosquito, immature productivity and identified indigenous biocontrol agents with 
potential for controlling malaria and filaraisis mosquito  habitats and in the scheme. The study 
established a close relationship between the schedule of the farming practices (particularly the 
the post-tillering phase) and seasonal, anopheline, immature hyerproductivity. 

Exploring the relationship between mosquito, vector, relative abundance and 
uncoalesced, geo-spectrotemporal, seasonal, LULC characteristics of eco-georeferenceable, geo-
spatiotemporal, Ae. egypti immature habitats in agro-irrigated, riceland and discontinuous, 
partially shaded, inhomogeneous, forest-canopied,  sub-meter resolution, geoclassified, LULC 
changes sites employing specific cyberenvironments (e.g., ENVI  C++) may allow optimizing 
predictive  YF maps for remote targeting sub-meter resolution imaged, hyperendemic unknown, 
un-geosampled, hyperproductive, targeted LULC geolocations  employing stochastic or 
deterministic, iteratively, quantitative interpolators ( e.g, co-kriging, invese distance matrix) 
which may  in turn facilitate  implementing control intervention. Ultimately, mosquito and host 
distribution and diversity can affect vector behaviour and vector-borne disease endemic 
transmission risk on, seasonally agro-irrigated, satellite detected, LULC change sites( Jacob et al. 
2007, Griffith 2005, Hay 2000). Understanding vector community dynamics in the face of 
anthropogenic shifts in irrigated African, riceland environments could form the basis for 
understanding the emergence and persistence of YF in various ecosystems. 

          Unfortunately, one of the major barriers to developing an accurate YFV surveillance 
program  in an agro-irrigated African, expanding, riceland environment into forest-shaded, 
canopy LULC may be the design and implementation of a orthogonal or non-orthogonal  grid-
stratified, non-noisy, time series, ArcGIS, weighted spatial matrix for optimally regressively 
monitoring, Aedes aegypti eco-geographically geosampled quantitatvely eigen-decomposable,  
optimally parameterizable, explanatorial, geo-spectrotemporally  uncoalesced, sub-meter 
resolution, geoclassifiable, endmember, LULC, covariates. For regressively forecasting seasonal 
transitions in discontinuous, deforested, canopied, sub-meter resolution, imaged landscapes 
caused by  expanding agro-irrigated, African, agro-village riceland anthropogenic pratices,  grid 
cell information may be pertinent. Studies on mosquito communities have mainly focused on 
either medically important genera such as Aedes spp. or specific habitats such as rice fields 
swamp forests  and rural villages.  
 

Overlaying an ArcGIS grid on remotely sensed, sub-meter, resolution data can help 
organize and characterize mosquito larval habitats (Jacob et. al. 2006). A grid is constructed by 
applying a mathematical algorithm in order to fit a continuous and bounded surface consisting of 
equidistant estimates of a quantity from a field geosampled LULC attribute. ArcGIS grid-based 
data files consist of columns and rows ofuniform cells coded according to data values( 
www.esri.com). Each grid cell within a weighted matrix contains an attribute value as well 
aslocation coordinates ( Griffith 2003). The spatial location of each cell is hence implicitly 
contained within the ordering of the matrix in a YF regression-related, Ae.aegypti, oviposition, 
LULC model. As such, riceland,  African,  aquatic habitat, capture points  containing the same 
spatial attribute value are easily recognized. Regular grids or lattices are frequently used to study 
ecosystems, for observations, experiments and simulation predictive, vulnerability  modeling  
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(www.esri.com).   A sub-meter resolution (e.g., panchromatic QuickBird at 0.61m spatial 
resolution)  digitized, orthogonal, grid cell data was  employed to determine abundance riceland 
An. arabiensis s.s.  larvae in the paddy and canal habitats in the Mwea riceland agro-ecosyetem 
study site in Jacob et al. 2006.    
 
     Unfortunately, a thorough literature search does not reveal any studies that have 
investigated the diversity of Aedes mosquito communities remotely optimally employing the 
relative abundances of vectors, and their vertebrate communities across productive or  non-
productive, ecogeoreferenceable oviposition, sub-meter resolution, geoclassifiable  LULC sites  
for  cartographically or regressively quantitating seasonal clustering tendencies in  newly, 
deforested, sparsely discontinuously canopied, immature, Ae egypti, capture points in  
expanding, irrigated, agro-cosystem rice –village into discontinuous forest canopied LULC in 
Africa. Thus, forecasting, georeferenceable, geo-spectrotemporal, eco-epidemiological, capture 
point, seasonally prolific, oviposition sites of aquatic, immature habitats associated with Ae 
aegypti  in literature  is currently  non-existent 

          Four factors that make the implementation of a YF surveillance programs a logistical 
challenge in  expanding, African, irrigated, riceland agro-ecosystems due to anthropogenic 
pressures  may be 1) the magnitude of the Aedes habitats [i.e., variable sizes of habitat, eco-
epidemiological capture point, and sentinetinel sites within a single ecosystem (e.g., pre-
flooded,rice agriculture, sparsely shaded  forest canopied); 2) the low density of mosquito larvae 
and pupae in specific geolocations (e.g., posted-harvest. peripheral riceland deforested, immature 
habitats)) 3) the short duration of the mosquito vectors’ aquatic life cycle; and, 4) limited 
georeferenced data on seasonal, immature, habitat productivity. This underscores the need to 
develop new strategies for estimating both Aedes larval and pupal density distributions and adult 
vector productivity from their immature, aquatic habitats as well as cooperative geoclassified, 
sub-meter resolution, LULC imaged areas and georeferenceable, communal, prolific, 
oviposition, habitat sites.  

Developing the basic elements for a surveillance system for detection of endemic and 
exotic zoonotic pathogens carried and transported by Ae. egypti mosquitoes  on newly 
transitioned, sub-meter resolution discontinuously, deforested, sparsely or dense canopied,  
employing sub-meter, satellite, remote sensing information, eco-epidemiological, 
georeferenceable,  field-geosampled, empirical data and  linear/ non-linear, geo-statistical 
algorithms in ArcGIS, ENVI and C++. may identify and regressively quantitate, probabilistic 
regressors that regulate the abundance and distribution of Aedes mosquito habitats in  expanding, 
irrigated, African, riceland areas. In so doing, the geo-spectrotemporal, geo-spatiotemporal, 
explanative, seasonal, ecogeoreferenceable distribution of immature and adult, Aedes mosquitoes 
and their association with sub-meter resolution, geoclassifiable, ovipositions, aggregation areas 
within  the LULC may be employed to elucidate patterns and specific seasonlly hyperoductive 
foci. Targeted environmental management interventions in these anthropogenically influenced, 
ArcGIS geoclassifiable newer, irrigated, deforested,  riceland aquatic, immature habitats  may be 
thus based on a sound understanding of the heterogeeity in mosquito productivity.  
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However, deficiencies in field methodology for predictively measuring productivity 
hamper our progress in understanding of immature Aedes mosquito productivity on newly 
transitioned , sub-meter resolution, eco-epidemiological, georeferenceable, geo-spectrotemporal, 
geospatial,  capture, point imature habitats. To address these issues,  an experimenter may 
develop a framework of habitat-based interventions initially in ArcGIS and the data may then be   
exported into other statistical geodatabase statistical cyberenvironments (e.g., PROC REG)  
employing a landscape logistical cartographic approach to elucidate mechanisms underlying 
immature, seasonal, mosquito productivity on neowly trasnistioned deforested, irrigated African 
riceland agro-ecosystem, hypeproductive , seasonal, proilic, habitats of  sylvatic, immature Ae 
egypti. The importance of vigorously quantitative estimation of the immature Ae egypti 
productivity geolocations may be  seasonally highlighted . Spatial models may be  proposed to 
examine the interrelationship between mosquito productivity and oviposition of gravid 
mosquitoes in newly transitioned, forest, discontinuously canopied, sub-meter resolution, LULC 
to rice agriculture LULC. Environmental management approaches must take into account 
variability in productivity, in efforts to improve feasibility, cost-effectiveness, and sustainability 
of such approaches, particularly when implemented along with other malaria control measures 
(Gu et al. 2006). 
       
        Species sanitation is defined as environmental management of the main vector species by 
targeting the preferred habitats based on an understanding of the characteristic breeding habitats 
(Takken et al. 1991). For example, selective elimination of Anopheles umbrosus, the main vector 
in Malaysia, was achieved by targeting the preferred shaded habitats in wooded areas. Malaria 
control was obtained without having to eliminate all larval habitats. This successful strategy was 
abandoned once dichlorodiphenyltrichloroethane (DDT) and other powerful insecticides were 
discovered and became the backbone of the global malaria eradication era during the 1950s and 
1960s(Bradley 1994.) Substantial variabilities in productivity of An. gambiae should be explored 
to form the basis of habitat-based intervention programs (Gu and Noval 2006). 
     

    For implementing newer remote strategies for catographically  regressively , elucidatively  
quantitating hyperproductive seasonal, sylvatic,Ae egypti , ovipoistion sites on a newly 
transitioned, sub-meter resolution, georeferenceable, rice-agriculture, geoclassifiable LULC site 
and , several critical issues need to be addressed. First of all, immature deforestes riceland 
oviposition sites should be evaluated on the basis of quantitative measures of mosquito 
productivity. Nevertheless, this task is complicated because the notion of Ae .aegypti 
productivity has been conceived differently among experimeneters. Evidently, “productivity” is 
nothing but the rate of adults emerging from individual habitats. Indices of the productivity 
currently  employed include presence/absence or density/abundance of larvae or pupae. 
However, the accuracy of these indices is largely unknown for taregting newlky deforeasted, 
irrigated riceland agro-ecosyustem, seasaonl immature habitats. Second, understanding of 
mosquito productivity cannot be formulated without properly accounting for mosquitoes’ 
foraging for oviposition.  Currently habitat surveys in  literature of sylvatic, Ae. aegypti focus on 
inherent physicochemical, explanative, time series  variables of  habitat sites, such as size, 
turbidity, vegetation coverage, etc. Because egg-laying is a spatial process depending upon the 
geolocation of the focal habitat relative to sources of gravid mosquitoes, habitats closer to human 
inhabitations may tend to receive more eggs of  Ae. aegypt , and thus are more productive if 
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conspecific competition is negligible in newly ntrasnitioned irrigated riceland habitats. 
Therefore, elucidation of variability in mosquito productivity requires spatial accounts of 
seasoanl, oviposition processes which may be optimally deterimined in  explicative, 
probabilistic, vulnerability geo-spectrotemporal, geospatial, diagnostic, clinical, field or remote 
YFV-related,  regression-oriented, paradigms  Thereafter, forecasted  areas of seasonally 
hyperproductive seasaonl capture points  based on iteratively interpolated, sub-meter resolution, 
georeferenceable, fractionalized, endmember  biosignature may be extensively ground-truthed to 
determine the validity of the model outputs. On a long-term basis, a pilot study may seek to 
expand yellow fever surveillance systems throughout other urban ecosystems using interpolated, 
sub-meter resolution, biosignatures attained from irrigated, hyperproductive, ovipoistion habitats 
in  iterative interpolative stochastic or deterministic geo-cyberenvironments. The proposed 
modeling methods and resulting information ( e.g., targeted, hyperpoductive, georeferenceable, 
Ae egypti, eco-geographic, geolocations  on a transitioned, discontinuous, sparsely or dense, 
shaded, forest-canopied,  pre-flooded  LULC to rice plot which  may provide public health 
officials in Africa with the tools to accurately identify factors regulating outbreaks of yellow 
fever in expanding irrgated ecosystems due to anthropogenic pressures.  

 
    A web-based interface may be developed in SAS/GIS for  public health officials in Africa 

which may include:1)Real-time, syndrome-based reporting tool, 2)Automated, immediate 'Alerts' 
to public health officials, 3)Health 'Alerts' to doctors, hospitals and  schools, 4) A web-based tool 
for data entry and communication, 5) Geographic mapping of  yellow fever outbreaks, 6) 
Environmental predictive maps determining the areas at risk based on locations of Aedes 
mosquito and their resvoirs (e.g., wild monkey populations). Oviposition, sub-meter resolution, 
geo-spectrotemporally imaged, geoclassified, ArcGIS-derived,  LULC  sites  may be quantified 
based on land cover types, (e.g., dense forest canopied, elevated areas), specific areas (e.g.,waste 
tire dump sites) and meterological uncoalesced, iteratively interpolative, endmember, proxy 
covariates such as evaporation demand for determining length of time for standing water present 
to allow mosquitoes to complete life cycle which may be optimally deduced within a regression 
matrix in SAS. 

       By regressively qualitatively quantitating precise probability space of discretely, geo-
spectrotemporal geosampled, Ae egypti hypeproductive, georeferenceable, immature  habitats 
along peripheral irrigated, African,  agro-ecosystems, the oviposition, habitat, seasonal  
immature productivity may be  ideally measured from  paramterizable, sub-meter resolution, 
covariate estimates of emerging adults from  individual habitats in SAS/GIS  delineated, 
immature, prolific, eco-epidemiological, capture point maps.  In most situations, a practical 
approach may be  to employ larval density as a dependent ( response ) variable in  a regression 
equation ( e.g., PROC LOGISTIC statement)  as an alternative for obtaining robustly, 
parsimoniously,  regressed probabilistic estimates of emerging sylvatic,Ae. aegypti  adults from 
newly transitioned, discontinuous, forest-canopy to irrigated, riceland, agro-village  
discontinuous, geo-classifiable LULCs. However, experimental studies show that An. gambiae 
Giles display density-dependent regulations with delayed developmental rates of larvae and 
smaller body sizes of emerging adults when they reared in crowding conditions in artificial 
habitats (Novak et al. 2012)  although this phenomenon may be uncommon in natural habitats  of 
Ae egypti-related African irirgated ricefield, seasonal  ovipoistion sites. It may be emphasized for 
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a particular irrigated African, georeferenceable agro-ecosystem, seasonal  LULC that large 
habitats with low density of emerging adults may  be more productive than small water bodies 
with high density (e.g., a  post-havested capture point of low larval density probably ranking 
higher than a  pre-flooded habitat with high density). In large habitats like rice paddies, 
elucidative distribution patterns of larvae are useful to accurately estimate productivity (Gu and 
Novak 2005, Mwangangi et al. 2008, Muturi et al. 2007, Mururi et al. 2007). For example, Ae 
egypti larvae may tend to aggregate along edges of   deforested newly transitioned immature 
ricefield thus estimation of seasoanl productivity could be optimally quanatiated by regressivelly 
probabilsitically stratifying gridded, georeferenceable immature capture points in terms of larval 
density and obtaining corresponding estimates from each strata.        

It should be noted that geo-spectrotemporally geosampled, ArcGIS and SAS-based, 
explanatively quantitative, georeferenceable, optimal predictions rendered from sub-meter 
resolution, LULC models   have a combination of adopted assumptions and values of parameters. 
For example, assuming  contacts between hosts and blood feeding mosquitoes in a robust, 
cartographic, regression sub-meter resolution, eco-epidemioloigical, diagnostic, clinical, field or 
remote, YFV model constructed  for revealing seasaonlly hyperproductive immature  Ae egypti 
habitats in newly transitioned, deforested, geoclassifiable LULCs along peripheral edges of 
irrigated African, riceland expanding communities  may reveal uniformly distributed focal area ; 
whereas,  AUTOREG probabilistic paradigm outputs ( e.g., decomposed eigenfunction values)    
of  blood feedings of sylvatic, Ae egypti mosquitoes in these landscapes may  reveal  prolific, 
aggregations of  sparse or densely shaded, forest-canopied, iteratively interpolative, LULC 
seasonal geolocations in  geospace Various assumptions of  cartographic and regressively 
probabilistically spatially weighted values of some parameterizable, immature, decomposeable 
YFV-related  covariate estimators (e.g., the daily mortality rates and the recovery rates), may 
substantially alter numerical predictions rendered from  vulnerability, forecasting, eco-
epidemiological, sub-meter resolution, explicative models for  precisely, remotely targeting  
georferenceable, hyerproductive, Ae egypti, oviposition sites. Using noiseless, linear and non-
linear, eco-epidemiological, non-Gaussian/ Gaussian distribution, probabilistic, regression 
models in ArcGIS and SAS may provide qualitative understandings of larval interventions from 
the habitat perspective, which should hold when productivity parameterized, endmember LULC 
values remotely quantizable in African rice fields.  

Although targeted, remotely sensed, sub-meter resolution, larval interventions have a 
great potential in helping to reduce transmission intensity and incidence of yellow fever in 
georeferenceable, irrigated, African, riceland agro-agrosystems, it should not be proposed that a 
geodatabase statistical or logistic, cartographic cyberenvironment forecasted, specied  larval 
control is a panacea for combating  the disease in all settings of iririgated expanding African 
agro-ecosystems. Combined with other interventions in an integrated manner, larval 
interventions  for yellow fever prevention may be successful in situations where major habitats 
are limited and manageabls in these ecosystems especially in peripheral arease where agro-
village  anthropogenic pressure may reval more contact with sylvatic Ae egypti by farmers and 
their family members. Emphasizing informed larval interventions guided by remotely sensed, 
habitat-based, cartographic and regression, eco-epidemioloigical, ArcGIS and SAS  models  may 
play an important role in managing entomological features of local  yellow fever transmission in 
newly transitioned discontinuous, deforested, sparsely or dense  canopied, geo-classifiable, 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

101 
Copyright © acascipub.com, all rights reserved.  

LULCs to  rice agriculture, hyperproductive, sylvatic,Ae egypti,  oviposition sites. Given the 
constraint of resources throughout Africa, targeted remotely sensed larval interventions  have a 
great potential for combating  yellow fever trasnmission especially in areas of low to 
intermediate transmission in irrigated expanding agroecosystems, due to anthropogenic 
pressures. 

 Logistically specified, predictive, immature, entomological population models 
constructed in  other relational datbased ( Python, C++) employing georeferenced, Ae. egypti, 
sub-meter resolution, eco-epidemiological, transitioned LULC,  capture point, decomposeable 
data collections  may also be a useful tool to provide qualitative and quantitative understandings 
of influences of larval interventions on yellow fever transmission. For these purposes, a  
predictive modeling framework may be developed for conceiving a quantity of the total 
productivity of Ae. aegypti ovipoistion sites on  in a new peripheral African irrigated, 
deforeseted, rice landscapes, which, in turn, may be partitioned into its constituent parts in 
ArcGIS based on data geo-spectrotemrpoally geosampled from  georeferenceable, individual, 
oviposition sites.  

Three field-operational simulated scenarios of larval interventions were evaluated in 
relation to impacts on parasitological indicators of malaria transmission  in Gu and Novak 
(2005). Their results revealed that it is unnecessary to manage all aquatic habitats to obtain 
significant reductions in incidence and prevalence of malaria in situations of low and 
intermediate levels of transmission. The authors highlight that informed larval interventions by 
identifying and targeting prolific habitats can play a critical role in combating malaria in Africa. 

 Jacob et al. (2015) employed the modeling tactics of Gu and Noval (2005) to construct a 
robust, onchocerciasis-related, geo-spectrotemporal, probability-oriented, explanatory, endemic 
transmission, sub-meter resolution, heterogenous spatial filter,orthogonalizable, eigenvector, 
entomological, oviposition, foci, hyperproductive,sub-meter resolution, LULC predictive, risk 
map in AUTOREG employing a prevalence responsible variable [i.e., aggregate counts over a 
riverine tributary, eco-geographical region subdivided by administrative boundaries (e.g., 
districts)] in  northern Uganda. Onchocerciasis, or river blindness, is historically one of the most 
important causes of blindness worldwide. (Thylefors 1978). The parasite is transmitted by black 
flies (Simulium damnosum s.l.) that breed in fast running rivers and streams. In linear algebra, an 
eigenvector or characteristic vector of a linear transformation T from a vector space V over a 
field F into itself is a non-zero vector that does not change its direction when that linear 
transformation is applied to it. In other words, if v was a vector that is not the zero vector in a  
vulnerability, vector arthropod-related, explicative, probabilistic,  eco-epidemiological, 
forecasting stochastic or deterministic interpolator model then it would be  an eigenvector of a 
parameterizable, linearizable, seasonal, covariate explataive estimator, log transformation T if 
T(v) is  a scalar multiple of v in the residual forecasts.  

  In Jacob et al. (2015) this condition was written in AUTOREG as the mapping 
where λ was a scalar in the field F,(i.e.,  known as the eigenvalue or characteristic 

value associated with the, riverine larval habitat synthetic eigenvector v. A generalized 
autoregressive conditional heteroscedasticity (GARCH) model  was employed to model the  time 
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series with heteroscedastic errors in the S. damnosum s.l. forecasting model. The GARCH 
regression model with autoregressive errors  was written in AUTOREG as  

 

This model combined the mth-order autoregressive error model with the GARCH  variance 
model in AUTOREG. It  was denoted as the AR -GARCH  regression model.  

The tests for the presence of ARCH effects (namely, Q and LM tests, tests from Lee and 
King (1993) and tests from Wong and Li (1995)) helped determine the order of the ARCH model 
appropriate for the data. For example, the Lagrange multiplier (LM) tests shown to be significant 

through order 12, which indicates that a very high-order ARCH model wasneeded to 
model the heteroscedasticity in the resiudl forecasts of the geo-spectrotemporal, endmember, 
forecasting S. damnosum s.l. immature habitat, vulnerability , forecasting model  

         The basic ARCH  model  was a short memory process in that only the most recent 
q squared, geosampled S. damnosum s.l. habitat, endmember LULC  residuals awere  used to 
estimate the changing variance. The GARCH model allowed long memory processes, 
which usd all the past squared residuals to estimate the variance in the geo-spectrotemrpoal, 
vector arthropod-related probahbistic paradidgm. . The LM tests suggested the use of the 
GARCH model instead of the ARCH model for remotely taregteing hypeproductive 
riverine tributary oviposition sites along a coordor of the Achwa r basin> .  

     The GARCH  model  was  specified with the GARCH=(P= , Q= ) option in the MODEL 
statement. The basic ARCH  model was the same as the GARCH  model and was specified 
with the GARCH=(Q= ) option.  The following statements fit an AR(2)-GARCH  model for 
the Y series that is regressed on TIME. The GARCH=(P=1,Q=1) option specifies the 
GARCH  conditional variance, S. damnosum s.l., endmember, sub-mter resolution,  model. 
The NLAG=2 option specifies the AR(2) error process. Only the maximum likelihood method is 
supported for GARCH models; therefore, the METHOD= option is not needed (www.sas.edu). 
The CEV= option in the OUTPUT statement stores the estimated conditional error variance at 
each geo-spectrotemporal,  time period in the variable VHAT in an output  eco-epidemioloigical, 
data set named OUT. The data set is the same as in the section Testing for Heteroscedasticity 
(www.sas.edu).  

  Initially, the GENMOD procedure fit a generalized linear model(GLM) to the geo-
spectrotemporally geosampled, time series, ovipoition, sub-mter resolution, S. damnosum s.l.  
geo-spectrotemporally geosampled, riverine tributary, endmember, entomological, sub-meter 
resolution, geoclassified LULC data  by maximum likilhood estimation of the parameter vector β 
using miultiple bio-geophysical, eco-epidemioliogical, time series, clinical, field and remote 
diganostic data geosampled in an agro-village, riverine tributary in northern Togo. The 
GENMOD procedure fit multiple S. damnsoum s.l.- generalized linear, immature habitat capture 
point, eco-epidemiolgical, forecasting , vulnerability models, similar in covariance-matrix of 
coefficients similar as those  designed by Nelder and Wedderburn (1972).) The linear models 
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allowed the mean of the geo-spectrotemporally , geospatially geosampled, immature Similium 
population to depend on an explanative, diagnosizable, linearizable, optimal, probabilistic, 
LULC predictor( e.g., percentage of partailly shaded trailing vegtation),  through a nonlinear link 
function which allowed  the response probability distribution to be any member of an 
exponential family of distributions. To use the method of maximum likelihood, in  GEN MOD 
the authors of Jacob et al. (2015) specified the joint density function for all the georeferenceable, 
S. damnsoum s.l. immature ,capture point, trailinmg vegatation immature habitat Precambrian 
rock observations. 

 

In the study of probability, given at least two random variables vector arthropod-related 
X, Y, ..., that are defined on a probability space, the joint probability distribution for X, Y, ... is a 
probability distribution that would render the probability that each of X, Y, ... falls in any 
particular range or discrete set of explanative values specified for that variable. In the case of 
only two random variables, this is called a bivariate distribution, but the concept generalizes to 
any number of entomological,  randomizable explanative  variables for rendering a multivariate 
distribution. The joint probability distribution can be expressed either in terms of a joint 
cumulative distribution function or in terms of a joint probability density function (in the case of 
continuous variables) or joint probability mass function in the case of discrete variables (Hosmer 
and Lemeshew 2002). These in turn can be employed to find two other types of distributions: the 
marginal distribution giving the probabilities for any one of the variables with no reference to 
any specific ranges of values for the other variables, and the conditional probability distribution 
giving the probabilities for any subset of the variables conditional on particular values of the 
remaining variables 

 For an independent and identically distributed YF, Ae .aegypti, ovispoition, geo-
spectrotermporal or geo-spectrotemrporal , eco-epidemiological, LULC sample, this joint density 
function may be optimally  quanatitated for rendering geolocations of seasonal, hypeproductive, 
Ae. aegypti , discontinuous , forest-canopied, or rice-agro-village, grid-stratified, capture points 
in an African expanding, agro-irrigation, eco-epidemiological study site.  This function came  
from  considering  the observed values x1, x2, …, xn to be fixed "parameters" of this function, 
whereas θ  was the function's variable which the authors  allowed to vary freely using the 

likelihood Note that " " denoted a separation 
between the two input arguments: and the geosampled,immature observations .In 
practice it is often more convenient to work  with the logarithm of the likelihood function in 
optimizable, regression forecast models, called the log-likelihood: 

or the average log-likelihood: ( Feller 1968).  

        In Jacob et al. (2015) the GENMOD procedure estimated the seasonal-geosampled, 
explicative, eigen-decomposeable, spatial filter, orthogonal, parameterizable, Similium immature, 
habitat covariates numerically through an iterative fitting process. The dispersion parameter was 
robustly  estimated by the residual deviance and by Pearson’s chi-square divided by the degress 
of freedom (df). Pearson's chi-squared test (χ2) is a statistical test applied to sets of categorical 
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data to evaluate how likely it is that any observed difference between the sets arise by chance 
(Hosmer and Lemeshew 2002) which may be regressively applicable  for unpaired eco-
epidemiological, yellow fever,  time series,  data anlyses  from large samples. Covariances, 
standard errors, and p-values were then computed for the geosampled S. damnosum s.l., capture 
point, immature, habitat uncoalesced, endmember, remotely sensed covariate coefficients based 
on the asymptotic normality derived from the maximum likelihood estimation. A sequence of 
parametric statistical models { Pn,θ: θ ∈ Θ } is said to be locally asymptotically normal at θ if 
there exist matrices rn and Iθ and a random vector Δn,θ ~ N(0, Iθ) such that, for every converging 
sequence hn → h, (Ibragimov, and Has’minskiĭ,  1981). 

          The standard asymptotics told  that the maximum-likelihood estimator in GEN MOD that  
√n-was consistent in the eco-epidemiological dataset of  uncoalesced, iteratively interpolative, 
,sub-meter resolution, S. damnosum s.l.,immature, eco-epidemiological,, eub-mter resolution,  
habitat model  and asymptotically efficient, meaning that it reached the Cramér–Rao bound: 

where I was the Fisher information matrix: 

The Fisher information matrix is a matrix with element 

defined (Rao,  and Radakrishna 
1994).The authors then let be an estimator of any vector function of the geosampled,  S. 
damnsoum s.l. habitat  regressors , and denoted its expectation 
vector by . The Cramér–Rao bound in GEN MOD then stated that the covariance 

matrix of satisfied  where t he matrix inequality  
was  intrepreted to mean that the matrix  was positive semidefinite in the paradigm.  In 
linear algebra, a symmetric n × n real matrix is said to be positive definite if the scalar 

is positive for every non-zero column vector of  real numbers( Hosmer and Lemshew 
2002). In the eco-epidemiological S. damnsoum s.l. habitat forecast, vulnerability, model, 

denoted the transpose of .{Horn 1990]. Further,  was the Jacobian matrix whose 
element I was given by .In vector calculus, the Jacobian matrix is the matrix of all 

first-order partial derivatives of a vector-valued function (Cressie 1993). If was an 
unbiased, geo-spectrotemporal, geosampled, georeferenceable, S. damnosum s.l. immature 
habitat, eco-epidemiological, explanative, time series, capture point, estimator of (i.e., 

), then the Cramér–Rao bound (CRB) reduced  any time series, parameterizable 
predictor ( e.g., percentage of shaded trailing vegetion) associated to any hypeproductive, 
riverine  tributary, agro-village, oviposition site.    In estimation theory and statistics, the CRB 
expresses a lower bound on the variance of estimators of a deterministic parameter.In, the 
targeted, seasonal, S. damnsoum s.l., eco-epidemiological,  residual forecasts  the bias of the 
maximum-likelihood estimator was equal to zero up to the order n−1/2. 

           Interestingly,   may be an explanative unbiased, georeferenceable, geo-
spectrotemporal, immature. habitat, paramterizable covariate estimator for the value based 
on the geosampled, .immature, capture point, eco-epidemiological ,geo-spectrotemporal, 
explicative time series, habitat, observations , and so . The goal was to prove that, 
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for all ,  Letting be a geo-spectrotemporally  geosampled,  randomized Ae 
egypti, irrigated, riceland oviposition, explanatorial,  predictor variable with probability density 
function , then   may be  a statistic which is  employable as an estimator in a 
yellow fever LULC, sub-meter resolution, forecasting, vulnerability model for . In so doing, 

may be defined as where the chain rule may be  used in the 
final equality tabulations. In calculus, the chain rule is a formula for computing the derivative of 
the composition of two or more functions. That is, if f and g are functions, in a forecasting, 
yellow fever, vulnerability, LULC agro-ecosystem model; then the chain rule expressed by the 
derivative of their composition f ∘ g (the function which maps x to f(g(x)) in terms of the 
derivatives of f and g and the product of functions maybe be optimally defined as  follows: 

 ( see Hazewinkle 2001). In so doing, the expectation of , written 
, in  GEN MOD was zero in the explanative, model georeferenceable, time series, 

lineraized, explicative, diagnostic, eco-epidemiological,residual forecasts. This is 

because:  where the integral and partial 
derivative are interchanged in GEN MOD which is justifiable by the second regularity condition 
.In order for a minimum point to satisfy the above regularity conditions, the problem should 
satisfy some regularity conditions linearity constraint qualification (Krantz,  2002), 

            Interestingly, and are affine functions which may be useable in a forecasting, 
vulnerability, eco-epidemiological, YFsub-meter resolution, probabilistic LULC,  paradigm,  
then no other condition may be  needed in order to obtain robust explanative time series 
estimator of seasaonlly hyeproductive, immature capture points on newly deforested, agro-
ecosystem, sub-meter resolution, geoclassifiable LULCs  In so doing,  linear independence 
constraint qualification (LICQ) may quanatites  the gradients of the active inequality constraints 
and the gradients of the equality constraints in the entomological, predictive, risk model  which 
may be  linearly independent at . A  Mangasarian–Fromovitz constraint qualification (MFCQ) 
where the gradients of the active inequality constraints and the gradients of the equality 
constraints occur may be positive-linearly independent at  in the paradigma. The MFCQ  is 
satisfied at ¯x ∈ C if(i) the system of vectors {∇fi(x), i ∈ I1} has constant rank in a 
neighbourhoodof ¯x;(ii) there exists a z ∈ Rn such that⟨∇fi(¯x), z⟩ = 0, i ∈ I1, ⟨∇fi(¯x), z⟩ < 0, i ∈ 
I2(¯x) van der Vaart, Aad W. (1998). 

A Constant rank constraint qualification (CRCQ) may be cartographically illustratable in 
an ArcGIS geodatabase cyberenvironment for each subset of optimizable LULC  gradients  in an 
eco-epidemioloigical forecast, vulnerability, geo-spectrotemporal,  yellow fever -related, eco-
epidemiological, time series, uncoalesced, LULC, sub-meter resolution paradigm of the active 
inequality constraints where the gradients of the equality constraints the rank at a vicinity of is 
constant. A constant, positive, linear dependence, constraint qualification for each subset of  
ArcGIS delineated gradients of the active inequality constraints and the gradients of the equality 
constraints, would be is positive-linear dependent at a vicinity of  in the targeted oviposition 
sites on LULC, time series,  change sites . Quasi-normality constraint qualification (QNCQ) may 
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be applicable for regressively quanatiting   the gradients of the active inequality constraints and 
the gradients of the equality constraints for determination of  positive-linearly quantitable latent 
dependeny at with associated multipliers for equalities and for inequalities in the 
resdiually forecasted estimates. In so doing  any non-sequenceable features ( e.g.,  ) 
such that and 7 may be herusitically optimized. 
Slater conditions may be evauted in the model for identifying any   convex problems, for 
example, where non-normalities exist at a  point such that and . 
(( ) is positive-linear dependent. This may be pertinent if there exists 

 such that . (see Nocedal and Wright, (2006). 
It may be shown that LICQ⇒MFCQ⇒CPLD⇒QNCQ, LICQ⇒CRCQ⇒CPLD⇒QNCQ (and the 
converses are not true) in a geo-spectrotemrpoally , geosampled, vector arthrpod-related , sub-
meter resolution , eco-epidemiological, forecast, vulnerability , probabilistic paradigm  although 
MFCQ may  not be equivalent to CRCQ ( see Boyd,  and Vandenberghe. 2004). In practice 
weaker constraint qualifications are preferred in seasonal, robustifiable, vector arthropod-related, 
iterative endmember interpolators since they provide stronger optimality conditions (see Jacob et 
al. 2005 and Griffth 2005). 

      The authors in Jacob et al.2013 then considered the covariance of and .in a 
forecasting vulnerability model very similar to Jacob et al. 2015 for determing district level 
malarial explanatorial georferenceable, time series, paramterizable, explicative covariates 
associated to sub-meter resolution geoclassified LULCs and other covariates associated to 
prevalance by districts in Uganda. Traditionally, univariate statistics and regression models have 
been generated from the satellite data to determine covariates (e.g., rainfall) related to monthly 
malarial prevalence rates ( Hay 1997, Washino and Wood 1994). Specific district-level 
prevalence measures however, can be forecasted using autoregressive specifications and 
spatiotemporal data collections for targeting districts that have higher prevalence rates( Jacob et 
al. 2007). In  Jacob et al. (2013)initially, case, as counts, were used as a response variable in a 
Poisson probability model framework for quantifying datasets of district-level covariates (i.e., 
meteorological data, densities and distribution of health centers, etc.) sampled from 2006 to 2010 
in Uganda. Results from both a Poisson and a negative binomial (i.e., a Poisson random variable 
with a gamma distrusted mean) revealed that the covariates rendered from the model were 
significant, but furnished virtually no predictive power. Inclusion of indicator variables denoting 
the time sequence and the district location spatial structure was then articulated with Thiessen 
polygons which also failed to reveal meaningful covariates. Thereafter, an Autoregressive 
Integrated Moving Average (ARIMA) model was constructed which revealed a conspicuous but 
not very prominent first-order temporal autoregressive structure in the individual district-level 
time-series dependent data. A random effects term was then specified using monthly time-series 
dependent data. This specification included a district-specific intercept term that was a random 
deviation from the overall intercept term which was based on a draw from a normal frequency 
distribution. The random effects specification revealed a non-constant mean across the districts. 
This random intercept represented the combined effect of all omitted paramterizable time series, 
district-level, sub-meter resolution ( i.e. panchromatic QuickBird) uncoalesced, iteratively 
quantitaively,  interpolable,  LULC covariates that caused districts to be more prone to the 
malaria prevalence than other districts. Additionally, inclusion of a random intercept assumed 
random heterogeneity in the districts’ propensity or, underlying risk of malaria prevalence which 
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persisted throughout the entire duration of the time sequence under study. This random effects 
term displayed no spatial autocorrelation, and failed to closely conform to a bell-shaped curve. 
The model’s variance, however, implied a substantial variability in the prevalence of malaria 
across districts. The estimated model contained considerable overdispersion (i.e., excess Poisson 
variability): quasi-likelihood scale = 76.565. The following equation was then employed to 
forecast the expected value of the prevalence of malaria at the district-level: prevalence = exp[-
3.1876 + (random effect)i] .  

 
 In Jacob et al. (2013) the district-level, predictive,  malarial, risk  model rendered 

, because . Expanding this expression in GEN MOD led to 

again because the 
integration and differentiation operations commute (i.e., second condition).The Cauchy–Schwarz 
inequality was  written in vector form  as In two-dimensions, which became 

which was  proven by solving If 
is a constant , then . If it is not a constant, then all terms cannot simultaneously 

vanish for real , so the solution is complex and can be found using the quadratic equation 

 ( homer and Lmeshew 2002) The model showed 

that therefore The Cauchy–
Schwarz inequality states that for all vectors and of an inner product space it is true 
that where is the inner product. (Gerard 1972). In linear 
algebra, an inner product space is a vector space with an additional structure called an inner 
productAxler, (Sheldon 1997). 

       Recall that the dimension of an inner product space in a regression forecasting model  is the 
cardinality of a maximal orthonormal system.which may be based on Zorn's lemma since it 
contains at least one, one maximal element.and any two will have the same cardinality. In 
mathematics, the cardinality of a set is a measure of the "number of elements of the set". For 
example, the set A = {2, 4, 6} contains 3 elements, and therefore A has a cardinality of 3. There 
are two approaches to cardinality – one which compares sets directly using bijections and 
injections, and another which uses cardinal numbers..  The cardinality of a set is also called its 
size, when no confusion with other notions of size is possible.The cardinality of a set A is usually 
denoted | A |, with a vertical bar on each side; this is the same notation as absolute value and the 
meaning depends on context. Alternatively, the cardinality of a set A may be denoted by n(A), 
A , card(A), or # A. 

Zorn's lemma was used to show that every nontrivial ring R with unity contains a 
maximal ideal in  a malarial district-level, geo-spectrotemporal, geospatial, eco-epidemiological, 
forecasting, vulnerability model for targeting paramterizable covariates associated to hyper/hypo 
prevalance, geoclassified  district level LULC areas. In the terminology the set P  consisted of all 
(two-sided) ideals in R except R itself, which was not empty since it contained at least the trivial 
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ideal {0}. This decomposition in an spatial filter, eigevector dataset of sub-meter resolution,  
eco-georeferenceable, cartographic, dataset of heuristically optimizable variables for a 
decomposed probabilistic sub-meter resolution, discontinuous forest canopy to rice agriculture 
LULC  may be partially ordered by set inclusion. Finding a maximal ideal in a geo-
spectrotemporal, vector, arthropod-related, forecast vulnerabilty model may be  the same as 
finding a maximal element in P. The ideal R may be excluded in the LULC model because 
maximal ideals by definition are not equal to R. 

       To apply Zorn's lemma  to a a non-empty totally ordered subset T of P catalytically in a geo-
spectrotemrpoal, geosmapled, vector arthropos-related, eco-epidmeioloigical, vulnerability, 
forecasting, probabilistic paradigm  It may be necessary to show that T has an upper bound in the  
model covariance that is, there exists an ideal I ⊆ R which is bigger than all members of T  in the 
LULC model but still smaller than R otherwise it would not be in P. (see Krantz, Steven 
G.(2002), If an expeimnter takes I to be the union of all the ideals in T in the vector artrhrpos-
related model  T contains at least one element, and that element would contain at leasta  0, thus 
the union I would contain at least 0 and would  not be empty (Zorn, 1935) To prove that I is an 
ideal, note in  a georeferenceable, sub-meter resolution, discontinuous, forest canopied, to an rice 
irrigated agriculture dataset of  uncoalesced, geo-spectrotemporal, LULCs a and b maut be 
elements of I, in  the eco-epidemiological, model then there would exist two ideals J, K ∈ T such 
that a is an element of J and b is an element of K. Since T may be totally ordered, J ⊆ K or K ⊆ 
J. In the first case, both a and b are members of the ideal K in the paradigm therefore their sum a 
+ b would be  a member of K, which may reveal  that a + b is member of Iin the LULC 
entomological, time series model. In the second case, both a and bwould be  members of the 
ideal J, and thus a + b ∈ I. Further, if r ∈ R, then ar and ra would be  elements of J and hence 
elements of I. Thus, I  would an ideal in R in a robust forecasting, vulnerability, endmeic, 
transmission-oriented, explicative, georeferenceable, Se egypti trageting, sub-meter resolution 
model  on newly trasnitioned, deforested canopied, LULCs to rice irrigated, agro-acosystem 
LULCs 

      Now, an ideal is equal to R if and only if it contains 1 ( Hazewinkle 2001)  . Thus it is clear 
that if an explanatorial, georeferenceable, residual,time series forecast rendered from a  a sub-
meter resolution LULC, explicative, bio-geophysical, model for regressively quantitating 
hypeproductive seasonl, Ae egypti immature, eco-epidemiological, capture points is equal to R, 
then it must contain 1; on the other hand, if it contains 1 and r is an arbitrary element of R, then 
r1 = r is an element of the ideal output and this ideal predictor would be equal to R. So, if I were 
equal to R, then it would contain 1, and that means one of the members of T ( i.e., an 
orthogonally explicatively decomposed, sub-meter resolution, uncoalesced, iteratively 
intrepolative, geoclassified, ArcGIS, deforested forest-canopied, seasonal LULC to rice 
agriculture LULC would contain 1 which then  would thus be equal to R – but R is explicitly 
excluded from P.  Based on Zorn's lemma thus there would be  a maximal element in P, in other 
words a maximal ideal in R. 

Note, that the  quantizable noise would  depend on the fact that the ring R has a 
multiplicative unit 1 in the residiual eco-epidemiological forecasts ( e.g., hypeproductive Ae . 
egypti oviposition sites on a newly deforested discontinuously canopied, georefernceable LULC 
to  riceland plots along the periphery of an expanding irrigated African ecosystem  due to 
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anthropogenic pressures  . Without this, the model would be misspecified  and wouldnot be able 
to remopte traget hypeproductive seasaonl habitats. For example, the ring with as additive with 
only proper usage of trivial multiplication (i. e. for all ) for remote deduction of  
hypeproductive,  explicative, seasaonlly hyperprodouctive, sylvatic,Ae egypti ,ovipoistion, 
seasonal LULC sites in an irrigated African, riceland agro-ecosystem  has no maximal ideal (and 
of course no 1). Thus, ideal forecasting model outputs would be precisely based on the additive 
subgroups in the regression framework.  

              Suppose that R is a prime ring with the center Z and the extended centroid C in a 
georeferenceable, geo-spectrotemrporal , sub-meter resolution deforested canopied LULC to rice 
agriculture LULC for regressively quanatiting Ae. egypti oviposition sites in an expanding 
African irrigated ecosystem  In abstract algebra, a nonzero ring R is a prime ring if for any two 
elements a and b of R, arb = 0 for all r in Rwhich may imply  that either a = 0 or b = 0. This 
definition may be remotely regarded as a simultaneous generalization of both integral domains 
and simple rings in diagnostic, newly transitioned, sub-meter resolution, sylvatic, Ae egypti,  
oviposition,   geoclassifiable, LULC site. An integral domain in ArcGIS  is a nonzero 
commutative ring in which the product of any two nonzero elements is nonzero ( www.esri.com)  
Integral domains are generalizations of the ring of integers and provide a natural setting for 
studying divisibility ( Hazewinkle 2001). In an integral domain the cancellation property may 
hold for multiplication by a nonzero element a in a vector, arthrpod-related, forecasting 
,vulnerability, eco-speidemiological, probabisltic paradigm that is, if a ≠ 0, an equality ab = ac 
implies b = c. A simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal 
and itself (Hazewinkle 2004). 

           The idempotents of R may have an important connection to decomposition of R modules  
in a remotely sesnitive deforested, ago-ecosystem, geoclassi3ed,  LULC , sub-mter resolution 
paradigm that is constructed in ArcGIS for  fporecasting hypeporductive, seasaonl Ae egeypti, 
oviposition sites in an expanding, African, agro- irrigation ecosyetm due to anthropogenic 
pressures. . If M is an R module and E = EndR(M) is its ring of endomorphisms, then A ⊕ B = M 
if and only if there is a unique idempotent e in E such that A = e(M) and B = (1 − e) (M) in the  
trasnitioned  deforested, non-continuous , geoclassifed sub-meter resol ution LULCs. Clearly 
then, M is directly indecomposable if and only if 0 and 1 are the only idempotents in E in the  
risk model for  optimally targeting prolific immature, georeferenceable, geo-spectrotemporal, 
geospatial,  eco-epidemioloigical, diagnostic, sylvatic, YFV-related, clinical, field or remote 
georefverenceabl, seasaonl  model. 

           In the case when M = R the endomorphism ring EndR(R) = R, where each endomorphism 
arises as left multiplication by a fixed ring element. In mathematics, an endomorphism is a 
morphism (or homomorphism) from a mathematical object to itself. For example, an 
endomorphism of a vector space V is a linear map f: V → V, and an endomorphism of a group G 
is a group homomorphism f: G → G. In mathematics, a linear map (also called a linear mapping, 
linear transformation or, in some contexts, linear function) is a mapping V → W between two 
modules (including vector spaces) that preserves (in the sense defined below) the operations of 
addition and scalar multiplication. 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

110 
Copyright © acascipub.com, all rights reserved.  

 Linear maps can often be represented as matrices, and simple examples include rotation 
and reflection linear transformations.An important special case is when V = W, in which case the 
map is called a linear operator, or an endomorphism of V. Sometimes the term linear function 
has the same meaning as linear map, while in analytic geometry it does not.A linear map always 
maps linear subspaces onto linear subspaces (possibly of a lower dimension); for instance it 
maps a plane through the origin to a plane, straight line or point.In the language of abstract 
algebra, a linear map is a module homomorphism. In the language of category theory it is a 
morphism in the category of modules over a given ring. 

Let V and W be vector spaces over the same field K. in a sub-meter resolution, 
hypeproductive, Ae. aegypti, geo-spectrotemrpoal or geo-spatiotemrpoal, African, riceland agro-
village complex, larval habitat, capture point, oviposiition, LULC model. Then a function f : V 
→ W  would be  be a linear map if for any two vectors x and y in V and any scalar α in K, the 
following two conditions are satisfied: additivity and homogeneity of degree. This is equivalent 
to requiring the same for any linear combination of vectors, (i.e. that for any vectors x1, ..., xm ∈ 
V and scalars a1, ..., am ∈ K, the following equality holds:Denoting the zero elements of the 
vector spaces V and W by 0V and 0W respectively, in the sylvatic, YF eco-epidemiological, LULC 
model, it follows that f(0V) = 0W  as letting α = 0 in the equation for homogeneity of degree 
1,Further,  V and W may be considered to be vector spaces over different fields in the 
entomological  model output It may be necessary to specify which ground fields is being used in 
the definition of "linear" in the YF model.  If V and W are considered as spaces over the field K  
in the model , the forecasted targets of seasonal hypeproductive foci would be rendered in as K-
linear maps. For example, the conjugation of complex numbers is an R-linear YF forecast, 
vulnerability map C → C, would not be  C-linear. A linear map from V to K (with K viewed as a 
vector space over itself) is called a linear functional ( Cressie 1993). 

These statements generalize to any left-module RM over a ring R without modification, 
and to any right-module upon reversing of the scalar multiplication With this modification of 
notation, A ⊕ B = R as right modules if and only if there exists a unique idempotent e such that 
eR = A and (1 − e)R = B. Thus every module direct summand of R is generated by an idempotent. 

        If a is a central idempotent,in  sub-meter resolution, hypeproductive, sylvatic, Ae. aegypti, 
geo-spectrotemrpoal or geo-spatiotemrpoal, African, riceland agro-village complex, larval 
habitat, capture point, oviposiition, LULC model. then the corner ring aRa = Ra is a ring with 
multiplicative identity a. Just as idempotents determine the direct decompositions of R as a 
module, the central idempotents of R determine the decompositions of R as a direct sum of rings. 
If R is the direct sum of the rings R1,...,Rn, then the identity elements of the rings Ri in a YF eco-
3epidemiological, forecast, vulnerability, model central idempotents  would be pairwise 
orthogonal, and their sum would be  1. Conversely, given central idempotents a1,...,an in R that 
are pairwise orthogonal and have sum 1, then R would be the direct sum of the rings Ra1,…,Ran. 
So in particular, every central idempotent a in a YF endmember model with R would rise to a 
decomposition of R as a direct sum of the corner rings aRa and (1 − a)R(1 − a). As a result, a 
ring R is directly indecomposable in a African ricland, discontinuous, forest-canopy, YF eco-
epidemiological  model as a ring if and only if the identity 1 is centrally primitive. 
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  An additive subgroupA ofR is said to be invariant under special automorphisms if 
(1+t)A(1+t)−1 ⊆A for allt ∈R such thatt 2=0. Assume thatR possesses nontrivial idempotents in a 
sub-meter resolution, hypeproductive, sylvatic, Ae. aegypti, geo-spectrotemrpoal or geo-
spatiotemrpoal, African, riceland agro-village complex, larval habitat, capture point, oviposition, 
LULC model.  . Then an arbovirologist, medical entomologist of other experimenter may employ 
abstract algebra for quantiating an LULCV element x of a set with a binary operation [i..e, an 
idempotent element (or just an idempotent) if x ∗ x = x]. In so doing the YF model ouptut would  
reflect the idempotence of the binary operation on that particular LULC element.Idempotents are 
especially prominent in ring theory(Cressie 1993). For general rings, elements idempotent under 
multiplication are tied with decompositions of modules, as well as to homological properties of 
the ring. In Boolean algebra, the main objects of study are rings in which all elements are 
idempotent under both addition and multiplication ( Hazewinkle 2001).. 

It may be proven the chR ≠ 2 or ifRC ≠C 2, then any noncentral additive subgroup ofR 
invariant under special automorphisms in a eco-epidemiological, sub-meter reoslution Ae. 
aegypti, ovispoition, African , ricland, agro-village, inhomogeneous forest-canopied, grid-
stratfiied, LULC model that contains a noncentral Lie ideal. If chR=2,RC=C 2 andC ≠ {0, 1}, 
then the following two conditions may be  equivalent in the forecast estimator dataaset of 
seasonal, hypeproductive foci : (i) any noncentral additive subgroup invariant under special 
automorphisms would contains a noncentral Lie ideal; (ii) there isα ∈Z / {0} such thatα 2 Z ⊆ {β 
2:β ∈Z} in the resdiuals. 

 The factor group by a proper subgroup is a divisible group, hence certainly not 
finitely generated, hence has a proper non-trivial subgroup, which gives rise to a subgroup and 
ideal containing .( Kelley, 1950). The Zorn  lemma  is a proposition of set theory that states 
that a partially ordered set containing upper bounds for every chain (that is, every totally ordered 
subset) necessarily contains at least one maximal element (see Hazewinkle 2001).   

An orthonormal basis is certainly a maximal orthonormal system, but the converse need 
not hold in a geo-spectrotemporal, eco-epidemiological, vector, arthropod forecast, vulnerability, 
iteratively interpolative, probabistic paradigm.. Thus, if G is a dense subspace of an inner 
product space H, in a explanative, geo-spectrotemporal,  YF, eco-epidemiological,  risk model 
for determining prolific, seasonal, immature  Ae egypti oviposition geolocations on newly 
transitioned, discontinuous,s forest-canopied to rice agriculture, sub-meter resolution LULCs, for 
example, then any orthonormal basis for G would be  automatically an orthonormal basis for H. 
Thus, it suffices to construct an inner product space H with a dense subspace G in a d diagnostic, 
clinical, field or remote geo-spectrotemrpoal, forecasting vulnerability, endemic transmission-
oriented,  eco-epidemiological, YFV model whose dimension is strictly smaller than that of H. 
Let K be a Hilbert space of dimension (for example K = ℓ 2(N)) in a geo-spectrotemporal, 
yellow fever, LULC, probabilistic, risk model analyses in ArcGIS. Then let  E be an orthonormal 
basis of K, so . By extending E to a Hamel basis  in the model then for K, 
where . The Hamel dimension is a natural generalization of the dimension of 
Euclidean space, since E n is a vector space of dimension n over R (the reals). the Hamel 
dimension depends on the base field, so while R has dimension 1 when considered as a vector 
space over itself, it has dimension c (the cardinality of the continuum) when considered as a 
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vector space over Q (Itzkov, 2009).Since it is known that the Hamel dimension of K is c, the 
cardinality of the continuum, it must be that  in a vector artrhopos-related iterative 
stochastic or deterministic, endmember, sub-relation interpolator Let L be a Hilbert space of 
dimension c (for example L = ℓ 2(R)) in a yellow fever model. Then   B would be an orthonormal 
basis for L, and would be a bijection. In so doing,  there would be a linear 
transformation such that for , and Te = 0 for ( Ciesielski, 
Krzysztof 1997)..Further, let . by  letting  be the graph of T then  

 would be  the closure of G in Hin the resdiual forecasted, eco-epidemiological, time series 
dataset for robustly iterateively quanatiatively interpolatively and  targeting prolific Aedes 
habitat, immature, sylvatic, seasonal, capture points,  on deforested sub-meter resolution, 
geoclassifiable , Riceland irrigated, LULCs. Since for any  there would be  , ( 
see Hazewinkle 2001) it follows that  in any  Ae egypti oviposition, hyperproductive,  
probabilistic , forecasting paridigm.Next, if , then for some , so 

; since as well, we also have . It follows that , so 
, and G  would be dense in H.Finally, would be  a maximal orthonormal set 

in G; in the output if for all then 
certainly , so  (i.e.,  the zero vector in G0. Hence, the dimension of G is 

, in the LULC model whereas it would be  clear that the dimension of H is c in the sub-
meter resolution, hypeproductive, Ae. aegypti, geo-spectrotemporal or geo-spatiotemporal, 
African, riceland agro-village complex, larval habitat, capture point, oviposition, LULC model.  

However, when an experimenters consider the higher-order terms in the expansion of the 
distribution of a hypeproductiv , georeferenceable , sylvatic, Ae egypti oviposition , sub-meter 
resolution LULC, optimally parameterizable geo-spectrotemporally uncoalesced, iteratively 
intrepolative, signature estimator,derived from an ArcGIS geoclassifed discontinuous sparsely or 
dense shaded, LULC to rice agriculture LULC in an irrigated African ricleand agro-ecosystem  , 
the residual forecasts may reveal θmle in the bias of order n−1. This bias may be  quanatized to by 

employing Einstein's summation convention over 
the repeating indices. In so doing,  I jk would denote the j,k-th component of the inverse Fisher 

information matrix I−1, and Using these 
formulas in GEN MOD  would then make it possible to estimate the second-order bias of the 

maximum likelihood estimator, and correct for that bias by subtracting it:  in 
the sub-meter resolution, LULC model output. This estimator would be unbiased up to the terms 
of order n−1, would be the bias-corrected maximum likelihood estimator.This bias-corrected 
estimator is second-order efficient (at least within the curved exponential family), meaning that it 
has minimal mean squared error among all second-order bias-corrected georeferenceable Ae 
egypti oviposition, sub-meter resolution LULC, parameterizable geo-spectrotemporally 
uncoalesced, iteratively intrepolative, signature, error  estimator in a probabistic ArcGIS 
paradigm cartographically illustrating seasonally trasnitioned, discontinuous canopied, 
deforeseted LULC to rice agriculture LULC.  
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  Each cell (except the final one, whose value is completely determined by the others) in 
the vulnerability, forecasting, S. damnosum s.l., eco-epidemiological, geo-spectrotemporal model 
was treated as an independent binomial variable, and their contributions were summed and each 
contributes revealed one df. The distribution indeed approaches asymptotically when the χ2 
distribution of the number of observations approaches infinity( (Jaynes 2003) . The authors of 
Jacob et al. (2015) let n be the number of  immature, capture point, seasonal, georeferenceable, 
elucidative, time series observations, m the number of cells and pi the probability of an 
observation to fall in the i-th cell, for . The authors denoted  {ki} the configuration 
where for each i in the habitat, forcasting, vulnerability model, there were ki observations in the 

i-th cell. Note that and . The authors then let  χ2
P({ki},{pi}) be Pearson's 

cumulative test statistic for such a configuration, and let χ2
P({pi}) be the distribution of this 

statistic. In so doing  the authors were able to reveal  how the latter probability approached the χ2 
distribution with m-1df , as n approachedinfinity.For any arbitrary value T in the S. damnsoum 
s.l., immature habitat, capture point the values rendered was  

 

       The authors of Jacob et al. (2015) employed a procedure similar to the approximation in de 
Moivre–Laplace theorem.to efficiently regressively quantitate the parameterizable, geosampled, 
S. damansoum s.l., seasonal covariates. In probability theory, the de Moivre–Laplace theorem, 
which is a special case of the central limit theorem, states that the normal distribution may be 
used as an approximation to the binomial distribution under certain conditions . As n grew large, 
for k in the  neighborhood of np the authors  of Jacob et al. (2015) were able to regressively 

approximate  in the sense that the ratio of the left-
hand side to the right-hand side converges to 1 as n → ∞. Contributions from small ki-s were of 
subleading order in the black-fl,y vector, probabilistic paradigm   n ;thus, Stirling's formula for 

both n! and ki! were tabulated as : In 
mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. 
Abramowitz and Stegun 2002) The formula as typically used in applications 
is (in big O notation). The next term in the O(ln n) is1/2ln(2πn); a 

more precise variant of the formula is therefore  

             By substituting for for i = 1...m-1, the authors of Jacob et al. 
(2015)  were able to  approximate for n  in the sum over the ki-s by an integral over the xi-s. 

Noting that the geo-spectrotemporal, residual forecasts renderings 

were and then 
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By 
expanding the logarithm in the S. damnoum s.l. eco-epidemiological, forecast model and taking 
the leading terms in n 

gave  

Now, it should be noted that Pearson's chi, 
, was precisely the argument of the exponent 

except for the -1/2 in the black fly model in Jacob et al. (2015).. Further, the final term in the 
exponent's argument was equal to ) This argument was written as: 

, in GEN MOD where i,j = 1... m-1 and . A is a regular 
symmetric (m-1)x(m-1) matrix, and hence diagonalizable(Griffth 2003). It was therefore possible 
to make a linear change of the geospectrotemporally geosampled, S. damnsoum .s.l. capture 
point, immature habitat, predictors {x_i} so as to get m-1 new variables {x'_i} so that: 

= . This linear change in the onchocerciasis, forecasting vulnerability, model 
merely multiplied the integral by a constant Jacobian, which subsequently  

rendered where C was a constant. In 
vector calculus, the Jacobian matrix is the matrix of all first-order partial derivatives of a vector-
valued function (Hazewinkle 2001). 

          Note that the sample size N completely dropped out of the probability function, which in 
this research had the same functional form for all the geosampled parameterized covariate 
estimator indicator values (i.e., ). As expected, the Poisson distribution was normalized so that 
the sum of probabilities equaled 1. The ratio of probabilities was then determined by 

which was then subsequently expressed as 

 
 
The Poisson distribution revealed that the explanatory covariate coefficients reached a 

maximum when where was the Euler-Mascheroni constant 

and was a harmonic number, leading to the transcendental equation .   The 
regression model also revealed that the Euler-Mascheroni constant arose in the integrals as 

. The Euler-



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

115 
Copyright © acascipub.com, all rights reserved.  

Mascheroni constant , sometimes also called 'Euler's constant' or 'the Euler constant' (but not 
to be confused with the constant ) is defined as the limit of the sequence 

= = where  is a harmonic number (Haight 1967). It was first 
defined by Euler (1735), who used the letter , and stated that it was "worthy of serious 
consideration" [133]. The symbol was first used by Mascheroni (1790) where  has the 
numerical value  

 
If the vector space V is finite-dimensional, then the linear transformation T in the  

vulnerability, yellow fever, sub-meter resolution, LULV, forecasting paradigm can be 
represented as a square matrix A, and the vector v by a column vector, rendering the above 
mapping as a matrix multiplication on the left hand side and a scaling of the column vector on 
the right hand side in the equation There is a correspondence between n by n square 
matrices and linear transformations from an n-dimensional vector space to itself. For this reason, 
it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or 
the language of linear transformations (Griffith 2003) .Geometrically, an eigenvector 
corresponding to a real, nonzero eigenvalue points in a direction that is stretched by the 
transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is 
negative, the direction is reversed( Anselin 1995)  If two-dimensional space is visualized as a 
piece ofentomological  material ( e.g.,  geo-spectrotemporally geosampled, ,Ae geypti, seasonally 
hyperproductive, georeferenceable, immature, capture point, sentinenel site on a geoclassfiiable, 
georferenceable, newly transitioned, sub-meter resolution, discontinuous, forest-canopied, dense 
or sparasely shaded LULC to rice agriculture LULC  being stretched by the ArcGIS, 
geospatially, weighted matrix, the eigenvectors would make up the line along the direction the 
materail etched in and the line of cloth at the center of the stretching, whose direction isn't 
changed by the stretching either( Jacob et al. 2008). The eigenvalues for the first line would give 
the scale to which the material is stretched, and for the second line the scale to which it is 
tightened. As such, a habitat LULC, sub-meter resolution polygon,  reflection of  deforeseted,  
riceland agroecosystems  may be viewed as stretching a line to scale −1 while shrinking the axis 
of reflection to scale 1. For 3D rotations, the eigenvectors form the axis of rotation, and since the 
scale of the axis is unchanged by the rotation, their eigenvalues are all 1 ( www .esri.com).  
 
       In Jacob et al. (2013) a Poisson regression model in GEN MOD was constructed employing 
the geo-spectrotemporal, seasonal-geosampled district-level, explanatorial, covariate coefficient 
measurement values dory every district in Uganda. The malaria, eco-epidemiological, 
forecasting, vulnerability model was generalized by introducing an unobserved heterogeneity 
term for each geosampled district-level observation  at the study site. The weights were then 
assumed to differ randomly in a manner that was not fully accounted for by the other seasonal-
geosampled, parameterizable, geo-spectrotemporal covariates. This district-level process was 

formulated as where the unobserved heterogeneity term was 
independent of the vector of regressors . Then the distribution of was conditional on and 
had a Poisson specification with conditional mean and conditional variance 
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. The authors then let be the probability density function of 

. Then, the distribution was no longer conditional on Instead it was obtained by 

integrating with respect to   

Jacob et al. (2013) found that an analytical solution to this integral existed in the, district-
level malarial Poission model when was assumed to follow a gamma distribution. The model 
also revealed that , was the vector of the geosampled predictor covariate coefficients while , 

was independently Poisson distributed with and the mean parameter 
— that is, the mean number of paramterizable, time series, explicative, district-level covariates 

per geosampled period  was given by where  was a parameter vector. 

The intercept in the model was and the coefficients for the regressors were  The 

quantitated exponential of ensured that the mean parameter was nonnegative. Thereafter, 

the conditional mean was provided by .  
 
In Jacob et al. (2013),the district-level explanative, geo-spectrotemporal or geo-

spatiotemporal, eco-epidemiological, parameterizable  estimators were then evaluated using 

. Note, that the conditional variance of the count random variable 
was equal to the conditional mean (i.e., equidispersion) in the malarial model [i.e., , 

. In a log-linear model the logarithm of the conditional mean is 
linear[Hosmer and Lemeshew 2002]. The marginal effect of any district-level regressor in the 

geo-spectrotemporal, malarial model was then provided by  
in GEN MOD. Thus, a one-unit change in the th regressor in the model led to a proportional 

change in the conditional mean .  
 
In Jacob et al. (2013), the standard estimator for the malarial, Poisson, forecasting , 

vulnerability model was the maximum likelihood estimator. Since the district-level explanatorial, 
observations were independent, the log-likelihood function in the model was 

. Given the geosampled dataset of district-level, 
explicative, time series, caovariate,unbiased,  parameter estimators (i.e., θ ) and an input vector x, 

the mean of the predicted Poisson distribution was then provided by . In  so doing, 
the Poisson distribution's probability mass function was then optimally  rendered 
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by  The probability mass function in a targeted spatiotemporal, predictive, 
seasonal, malaria risk model can be the primary means for defining a discrete probability 
distribution, and, as such, functions could exist for either scalar or multivariate field-sampled 
random variables, given that the distribution is discrete [ Gu and Novak 2005].  

 
       Since in this research, the geospectrotemrpoally geosampled data consisted of m vectors 

, along with a set of m values then, for the district-level, 
parameter estimators θ, the probability of attaining this particular set of the geosampled 

observations was provided by the equation .Consequently, 
the authors found the set of θ that made this probability as large as possible in the model 
estimates. To do this, the equation was first rewritten as a likelihood function in terms of θ: 

 in PROC REG.Note the expression on the right hand side in our 
model had not actually changed. Next, the authors optimally employed a geo-spectrotemporal, 

log-likelihood[i.e., . Because the logarithm is a 
monotonically increasing function, the logarithm of a function achieves its maximum value at the 
same points as the function itself, and, hence, the log-likelihood can be used in place of the 
likelihood in maximum likelihood estimation and related techniques[Fox 1997]. Finding the 
maximum of a function in a malarial-related model often involves taking the derivative of a 
function and solving for the parameter estimator being maximized, and this is often easier when 
the function being maximized is a log-likelihood rather than the original likelihood function 
[Draper and Smith,1998].  
        
         Notice that the parameters θ only appeared in the first two terms of each term in the 
summation in PROC REG. Therefore, given that the authors in Jacob et al. (2013)  were only 
interested in finding the best value for θ in the forecasting, vulnerability, time series, eco-
epidemiological, geo-spectrotemporal, ecogeorefernceable, district-level, predictive, malarial-
related, regression model, the authors dropped the yi! and simply wrote 

. Thereafter, to quantitate a maximum, the authors solved an 

equation which had no closed-form solution. However, the negative log-

likelihood (LL)[i.e., ] was a convex function, and so standard convex optimization 
was applied to find the optimal value of θ .  
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In Jacob et al.  ( 2012) the Poisson process in a   regression model the limit of a binomial 

distribution was Viewing the distribution as a function of the 

expected number of successes[i.e., ] in the model, instead of the sample size N for fixed 

P, then rendered the equation (2.1) which then became Our 
model revealed that as the sample size N become larger, the distribution approached P when the 
following equations 

aligned

. Note, in this research, that the sample size N had completely dropped out of 
the probability function, which had the same functional form for all values of in the model.  
 

Thereafter, as expected, the Poisson regression distribution was normalized so that the sum 

of probabilities was equal to 1, since The ratio of probabilities 

was then provided by the equation . Our model revealed that the 

Poisson distribution reached a maximum when  where g was the 

Euler-Mascheroni constant and was a harmonic number, leading to the equation 

which could not be solved exactly for n.  
Next, the moment-generating function of the Poisson distribution was given by 

, when 

,  so . The raw moments were also computed directly by 
summation, which yielded an unexpected connection with the exponential polynomial 

and Stirling numbers of the second kind[i.e. which in 
this research was the Dobiński's formula.  
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In combinatorial mathematics, Dobinski’s formula states that the number of partitions of 

a set of n members is This number has come to be called the nth Bell numberBn, where 
the proof is rendered as an adaptation to probabilistic language as given by Rota[11]. In our 

malarial-based regression model the formula was then 

viewed as a particular case, for x=0, employing the relation . The 
expression given by the model’s Dobinski's formula was then revealed as the n th moment of the 
Poisson distribution with expected value 1. In this research, Dobinski's formula was the number 
of partitions of a set of the sampled malarial parameter estimator size (i.e.,n) which equalled the 
nth moment of that distribution. We used the Pochhammer symbol (x)n to denote the falling 

factorial . If x and n are nonnegative integers, 0 ≤ n ≤ x, then (x)n 
is the number of one-to-one functions that map a size-n set into a size-x set[1]. At this junction 
we let ƒ be any function from a size-n set A into a size-x set B. Thus, in the  model. u ∈ B .We 
then let ƒ−1(u) = {v ∈ A : ƒ(v) = u}. Then {ƒ−1(u) : u ∈ B} was a partition of A. This equivalence 
relation was the "kernel" of the function ƒ. Any function from A into B factors in to one function 
that maps a member of A to that part of the kernel to which it belongs, and another function, 
which is necessarily one-to-one, that maps the kernel into B[2]. In this research the first of these 
two factors was completely determined by the partition π, that is the kernel. The number of one-
to-one functions from π into B was then (x)|π|, in the district-level malarial regression model when 
|π| was the number of parts in the partition π. Therefore, the total number of functions from a 

size-n set A into a size-x set B was in the model when the index π ran through the set of 
all partitions of A. On the other hand, the number of functions from A into B was clearly xn.   

Thus, the authors of Jacob et al. (2015) had Since X was a Poisson-
distributed spatiotemporal-seasonal, malarial-related, district-level, random variable with 

expected value 1, then the nth moment of this probability distribution was  but 
all of the factorial moments E((X)k) of this probability distribution was equal to 1 in the model 

also. Thereafter, we had, ,which was the number of partitions of the set A in the 

model. Therefore, in the model, , and .  

            Thereafter, the central moments in the malarial model was computed as so the 
mean, variance, skewness, and kurtosis were 

respectively. The characteristic 
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function for the Poisson distribution in the district -level Poisson predictive autoregressive model 

was then revealed as and the cumulative distribution function was 

so The mean deviation of the Poisson distribution mode 

was then rendered by . The cumulative distribution functions of the Poisson and 
chi-squared distributions were then related in the district-level model 

as  integer k and . The 

Poisson distribution was then expressed in terms of whereby, the rate of changes were 

equal to the equation . The moment-generating function of the Poisson 
distribution generated from the sampled, district-level, explanatory, predictor variables was also 

rendered by Given a random variable x and a probability distribution function 

, if there exists an such that , where denotes the 

expectation value of , then is called the moment-generating function[2]. Commonly, for a 
continuous distribution in a seasonal linear regression-based time-series dependent regression 

model the equation is used where 
the r the raw moment.[5]. For quantifying independent X and Y, the moment-generating 

function in a robust model must satisfy the equation and 

if, the independent variables have Poisson distributions with parameters 

and [3].In this research this was evident since the cumulant-generating 

function was .  
           

In Jacob et al. (2013), the eco-epidemiological, endemic, district-level, malaria model  
had a directed Kullback-Leibler (K-L) divergence between Pois(λ) and Pois(λ0) which was 

provided by . In probability theory and information theory, the K-L 
divergence along with information divergence, information gain, relative entropy are a non-
symmetric measures of the difference between two probability distributions P and Q in a model. 
For quantifying the malaria, forecasted, probability distributions P and Q of a sampled discrete 

random variable the K–L divergence was defined by .in Jacob et al. 
(2013) The model revealed that the average of the logarithmic difference between the 
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probabilities P and Q was the average quantified using the probabilities P whisly quantiating all 
significant paramterizable covariates. The K-L divergence is only defined if P and Q both sum to 

1 and if for any i such that [Griffth 2003]. In the district-level,  spatiotemporal, 
malaria-based, forecast, vulnerability,  regression-based model, if the quantity 0 ln 0 appeared it 
was interpreted as zero. For distributions P and Q of the continuous random variable in the 
sampled datasets K-L divergence was defined to be the integral[i.e., 

where p and q denoted the geosampled district level immature  
densities of P and Q. More generally, since P and Q were probability measures over the 
geosampled dataset X, and Q which was absolutely continuous with  respect to P, then the K-L 

divergence from P to Q was defined as in the model output where was 
the Radon–Nikodym derivative of Q with respect to P, provided the expression on the right-hand 
side existed. In mathematics, the Radon–Nikodym theorem is a result in measure theory that 
states that given a measurable space (i.e., X,Σ), if a σ-finite is measured on (i..e, X,Σ) then the 
expression is absolutely continuous with respect to a σ-finite measure µon (X,Σ). In so doing, in 

this research a measurable function f was rendered on X (0,∞), such that  for any 
other measured value which then revealed the statistical significance of the sampled district-level 
malaria-related, vulnerability, covariate coefficients.   

 
Likewise, since P was absolutely continuous with respect to Q in the district-level 

malaria, regression model. The explanatory, predictor, covariate coefficients were then defined 

employing: which in Jacob et. al. (2015)was recognized as the 
entropy of P relative to Q. The authors found that if was any measure on X in the model then 

existed, and the K-L divergence from P to Q was given as 

. The bounds for the tail probabilities of the Poisson random variable were 
then derived in the district-level malarial regression model employing  a Chernoff bound 

argument as , for and as for .  
 

In probability theory, the Chernoff bound, provides exponentially decreasing bounds on tail 
distributions of sums of independent random variables. It is a sharper bound than the known first 
or second moment based tail bounds such as Markov's inequality or Chebyshev inequality, which 
only yield power-law bounds on tail decay. However, the Chernoff bound required that the 
variates be independent - a condition that neither the Markov nor the Chebyshev inequalities 
require. In probability theory, Markov's inequality gives an upper bound for the probability that a 
non-negative function of a random variable is greater than or equal to some positive constant[5].  



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

122 
Copyright © acascipub.com, all rights reserved.  

In this research, we let X1, ..., Xn be independent Bernoulli random variables, each having 
probability p > 1/2. Then the probability of simultaneous occurrence of more than n/2 of the 
district-level sampling events had an exact value S in the  model 

when  The Chernoff bound revealed that S had the following lower 
bound: We noticed that if X was any sampled district-level random variable 

and a > 0,then In the language of measure theory, Markov's inequality states 
that if (X, Σ, μ) is a measure space, ƒ is a measurable extended real-valued function, and 

,then [2] We then used the Chebyshev's inequality to 
determine the variance bound to the probability that the spatiotemporal-seasonal sampled 
random variable deviated far from the mean in the model. Specifically we used 

for any a>0. In this research, Var(X) was the variance of X, 
defined as: Chebyshev's inequality follows from Markov's inequality 
by considering the random variable for which Markov's inequality also 

reads (Gelman 1995). Further, in Markov’s inequality if x 

takes only nonnegative field-sampled malarial values, then can be re-written 

= =  However, since is a prevalence rate value in a 
spatiotemporal malarial regression-based model, it must be .Thus, it must be stipulated that 

so = = = in 
order to determine district–level covariate coefficients of statistical significance  

The authors in Jacob et al. (2013) then considered the Euler product where 

was the Riemann zeta function and was the k the prime. . Thereafter, by taking 
the finite product up to k=n in the district-level malarial regression model and pre-multiplying by 

a factor , we were able to employ to render which was 
equivalent to 1.781072…..By doing so, g became the Euler-Mascheroni constant which in this 

research also represented the limit of the sequence g= in the 

residuals where was the harmonic number which in this research had the form in the 
district-level malarial regression model. A harmonic number can be expressed analytically as 

where is the Euler-Mascheroni constant and is the digamma 
function[2]. Our model revealed that the Euler product attached to the Riemann zeta function 
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represented the sum of the geometric series rendered from the spatiotemporal-sampled 
empirical dataset of explanatory predictor covariate coefficients as 

. A closely related result was also obtained by noting 

that  

            Jacob et al. (2012) constructed a Poissonian, S. damnosum s.l. habitat, vulnerability  
model in SAS GEN MOD The authors employed a regression matrix, for qualitatively 
quantitating an operational dataset of seasonally geosampled, productive, S. damnosum s.l., 
trailing vegetation, sparsely  canopied LULC, riverine, larval habitat, unmixed remotely sensed 
forecasting, eco-epidemiological, explanatorily, signature, risk model variables with 
autocorrelated disturbances as follows: Yt = Xtiβ +Vt In these equations, Ytwere log-
transformed, dependent, decomposed, satellite, wavelength values, Xt was a column vector of 
the decomposed, probabilistic, regressor variables, β was a column vector of structural 
parameters, where ϵt was normally and independently distributed with a mean of 0 and a 
variance of σ2. Note that in the parameterization, the signs of the autoregressive S. damnosum 
s.l. immature uncoalesced, iteratively interpolative, explanatorial estimators were reversed from 
the parameterization documented in literature. ArcGIS probabilistic, uncertainty-oriented, 
photosynthetic, endmember estimation methods for the optimizable, geo-spectrotemporal 
geosampled, canopied, S. damnosum s.l., georeferenced, riverine, larval habitat, time series, 
ecogeographical, explanatorial, error model initially employed a default method. Yule-Walker 
(YW) estimation which was performed in ArcGIS. The Yule–Walker equations are the following 

set of equations.  where m = 0, ..., p, yielding p + 1 equations. 
Here is the autocovariance function of Xt, is the standard deviation of the input noise 
process, and is the Kronecker delta function. In mathematics, the Kronecker is a function of 
two variables, usually just positive integers. The function is 1 if the variables are equal, and 0 

otherwise: where the Kronecker delta δij is a piecewise function of variables i 
and j. For example, δ1 2 = 0, whereas δ3 3 = 1 

         In linear algebra, the n × n identity matrix I has entries equal to the Kronecker 

delta: where i and j take the values 1, 2, ..., n, and the inner product of vectors can be 

written as  (Agarwal 2007)The Kronecker delta has the so-called sifting 

property that for : and if the integers are viewed as a measure space, 
endowed with the counting measure, then this property coincides with the defining property of 

the Dirac delta function and in fact Dirac's delta was named after 
the Kronecker delta because of this analogous property. Theodore (2012)In signal processing it is 
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usually the context (discrete or continuous time) that distinguishes the Kronecker and Dirac 
"functions". And by convention, generally indicates continuous time (Dirac), whereas 
arguments like i, j, k, l, m, and n are usually reserved for discrete time (Kronecker). Another 
common practice is to represent discrete sequences with square brackets; thus:  .( see 
Lovelock, and Rund (1989) It is important to note that the Kronecker delta is not the result of 
directly sampling the Dirac delta function ( Griffith 2003) .The Kronecker delta forms the 
multiplicative identity element of an incidence algebra (Spiegel, and O'Donnell 1997), 

      In terms of  the, geospectrotemporally, geosampled, sparsely canopied, trailing vegation, 
geoclassified uncoalesced  S. damnsoum s.l. remote, regressive, endmemberm LULC ,indices, 
the authors in Jacob et al. (2015) employed a classfication regression scheme such that: 

The authors 
then let  be the symmetric group of degree p in the riverine forecasting paradigm  where 

Using anti-paramter 

symmetrization rendered: In terms of a p × p 

determinant the model employed Using the Laplace expansion 
(Laplace's formula) of determinant, the residual forecasts targeting the prolific S. damnosum s.l. 
immature, capture point, seasaonal habitats was  recursively, optimally, geospectrotemporally  

defined as:  which was  coincidentally equivalent to 

where indicates an index that is omitted from 
the sequence.When p = n (the dimension of the vector space), in terms of the Levi-Civita symbol 

The two-dimensional Levi-Civita symbol is defined 

by: The values can be arranged into a 2 × 2 antisymmetric 

matrix: . 

The Kronecker delta is also called degree of mapping of one surface into another.[9] 
Suppose a mapping takes place from surface to that are boundaries of regions, 

and which is simply connected with one-to-one correspondence. In this framework, 
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if s and t are parameters for , and to are each oriented by the outer normal 
n: while the normal has the direction 
of: Let x=x(u,v,w),y=y(u,v,w),z=z(u,v,w) be 
defined and smooth in a domain containing , and let these equations define the mapping of 

into . Then the degree of mapping is times the solid angle of the image S of 
with respect to the interior point of , O. If O is the origin of the region, , then the 

degree, is given by the integral: 

 
 

According to Jacob et al. (2012) ,in an empirical probabilistic, regressed datset of 
geosampled, immature, S. damnosum s.l., riverine, larval habitat-related, explanatorial, 
ecoepidemiological, time series dependent, uncertainty-oriented, nonlinear, risk model 
forecasts, the vector of autoregressive parameters ϕ is known the matrix V which can be 
computed from decomposed, probabilistic, non-optimizable spatially pseudo-replicated 
uncertainty probabilities. Σ which may be then delineated byσ2V . Given Σ , the efficient 
emissivity transmisstance estimates of the autoregressive, explantorial, endmember, canopied, 
S. damnosum s.l.,, riverine tributary, larval habitat, time series dependent, regression 
parameters β were computed using generalized least squares (GLS). The GLS estimates 
yielded the unbiased elucidative,time series estimate of the variance σ2 in the riverine, larval 
habitat, forecast model spatially structured random intercept which subsequently accounted 
for the effect of the missing predictors in the model derivatives.           

Thereafter, the YW alternated estimation of β employing the GLS with iterative 
equations which rendered the sample autocorrelation function. The YW method formed the 
OLS estimate of β. Next, φ was estimated from the sample autocorrelation function of the 
empirically autoregressed. explanatorial, field and remote, unmixed, immature S. damnosum 
s.l. riverine, larval habitat, photosynthetic and NPV, time series dependent, geospatial 
probabilistic, uncertainty –oriented, optical properties and OLS residuals. Then V was 
tabulated from the estimate of φ and Σ was estimated from Vand the OLS estimate ofσ2. The 
autocorrelation eigenfunction decomposition algorithm corrected estimates of the canopied, S. 
damnosum s.l., shaded, larval habitat, time series dependent, regression parameters β which 
were then computed by GLS, employing the estimated Σ weighted matrix. These were the 
Yule-Walker estimates. Other methods were the niterated YW, unconditional least squares 
(ULS), and maximum likelihood (ML). The ULS method is also referred to as nonlinear least 
squares (NLS) or exact least squares (ELS)Neter et al. 1990). 

        The authors in Jacob et al. (2012) then defined the transformed error, e, as e = L−1n 
where n = y −Xβ .in ArcGIS The unconditional sum of squares for the model, S, was S = 
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n'V−1n = e'e The ULS estimates were computed by minimizing S with respect to the 
geosampled, decomposed, canopied, S. damnosum s.l., shaded, larval habitat regression 
parameters β and ' ϕ . The full log likelihood function for the autoregressive error model 
waswhere V denoted the determinant of V for the ML method, the likelihood function was 
maximized by minimizing an equivalent sum-of-squares function. Maximizing l with respect 
to σ2 (and concentrating σ2 out of the likelihood) and dropping the constant term  then 
rendered the concentrated log likelihood function  Rewriting the S. damnosum s.l.-related 
decomposed, endmember, regression variable term within the logarithm then rendered  the 
objective function which in Jacob et al. (2012) was expressed as  a explanatory diagnostic 
geo-spatiotemrpoal variable. The sample autocorrelation function was computed from the 
structural excessive, decomposed, partially canopied, S. damnosum s.l., shaded, larval habitat 
noise which was then subsequently qualitatively regressively quantitated employing where b 
was an estimate of β . The sample autocorrelation function was the sum of all available lagged 
products of ntof order j divided by l+j, where l was the number of such products. The 
calculation of V from ϕ for the generalized, canopy decomposition, endmember, AR(m) risk 
model was complicated, and the size of V was dependent on the number of photosynthetic and 
NPV canopied observations. Instead of actually calculating Vand performing GLS in the usual 
way, a Kalman filter algorithm was instead used to transform the geosampled empirical data 
which was then employed to compute the GLS results through a recursive process.  

The Kalman filters was based on linear dynamic systems discretized in the time domain. 
The filters were modeled on a Markov chain built on linear operators perturbed by the 
unmimxed, biosignature-related, geosampled, decomposed, canopied, S. damnosum s.l., 
shaded, larval habitat, regression errors including the Gaussian noise. Gaussian noise is 
statistical noise having a probability density function (PDF) equal to that of the normal 
distribution, which is also known as the Gaussian distribution (Cressie 1993). In other words, 
the values that the noise can take on are Gaussian-distributed. The state of the system was then 
eco-geographically represented as a vector of the endmember, time series, photosynthetic and 
NPV, covariate parameter estimator, time series, reflectance emissivity coefficinet values. At 
each discrete time increment, a linear operator was applied to the state to generate the new 
state, with some noise mixed in, and optionally some information from the controls on the 
system. Then, another linear operator mixed with more noise rendered the observed outputs 
from the true ("hidden") state. The Kalman filter may be regarded as analogous to the hidden 
Markov model, with the key difference that the hidden state variables take values in a 
continuous space (as opposed to a discrete state space as in the hidden Markov model) ( 
Gelman 1995). There was a strong duality between the equations of the Kalman Filter and 
those of the hidden canopied, S. damnosum s.l., shaded, larval habitat, Markov model . 

       The algorithm estimated the internal state of the decomposed endmember riverine, 
canopy, larval habitat explanatorial regressors employing a sequence of noisy, decomposed, 
canopy endmember, autocorrelation observations in accordance with the framework of the 
Kalman filter in ArcGIS. This meant specifying the following matrices: Fk, the state-transition 
model; Hk, the observation model; Qk, the covariance of the process noise; Rk, the covariance 
of the observation noise; and Bk, the control-input model, for each timestep, k,  
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Ellipses representing the seasonally eco productive, canopied, S. damnosum s.l., shaded, 
larval habitat, multivariate, normal distributions with the mean and covariance matrix were 
enclosed in ArcGIS. Unenclosed values were then qualitatively regressively quantitated as 
vectors. In the simple case, the various matrices were constant with time, and thus the 
subscripts were dropped, but the Kalman filter allowed any of the decomposed, riverine, larval 
habitat, sub-meter resolution, canopied, endmember biosignature, optical properties to change 
at each time step. The Kalman filter model assumed the true state at time k which was evolved 
from the state at (k − 1) according to  where Fkwas the state transition model which was 
subsequently applied to the previous state xk−1, where Bk was the control-input model which 
was applied to the control vector uk. In the geo-spatiotemporally, geosampled, S. damnosum 
s.l., shaded, larval habitat, , spatially,probabilistically, regressed model wk was the process 
noise which the authors assumed to be drawn from a zero mean, multivariate, normal 
distribution with covariance At time k then a decomposed, georefernced canopied, S. 
damnosum s.l., riverine larval habitat canopied endmember observation zk of the true state xk 
was parameterized according to  where Hk was the decomposed observation model which 
mapped the true state space into the observed space when vk was the observation noise which 
Jacob et al. (2015) assumed to be zero mean Gaussian white noise with covariance  in a balsk 
fly ovispoition, eco-epidemiological, forecast, vulnerability model. The initial state, and the 
noise vectors at each step {x0, w1, …, wk, v1 … vk} were all then deemed to be mutually 
independent.  

In all of the algorithmic estimation methods, the original decomposed, georefernced, 
canopied, S. damnosum s.l., shaded, larval habitat endmember data were transformed by the 
inverse of the Cholesky root of V in ArcGIS. Let L denote the Cholesky root of V then, V = 
LL' with L lower triangular [Hazewinkle 2001. For the AR(m) eco-epidemiological, 
decomposed, forecasting, operationizable, emissivity transmisstance, reflectance, wavelenght, 
risk model, L-1 was a band diagonal matrix with m anomalous rows at the beginning and the 
autoregressive unmixed parameters along the remaining rows. Therefore, if there were no 
missing values, after the first m-1 canopy endmember observations the regressed data were 
transformed as . The transformation was carried out employing the Kalman filter, and the 
lower triangular matrix L which was never directly computed in ArcGIS. Although L was not 
computed explicitly, for ease of residual presentation the uncertainty probabilisticforecasts 
were spatially defined in termsof L. If there are missing values, then the submatrix of L 
consisting of the rows and columns with nonmissing values are used to generate the 
transformations (www.esri.com).  

        The ULS and ML estimates employed a Gauss-Newton algorithm to minimize the sum of 
squares and maximize the log-likelihood, respectively. The relevant optimization 
wasperformed in ArcGIS simultaneously for both the regression and AR parameters. The OLS 
estimates of β and the Yule-Walker estimates of ϕ were employed as starting values for the 
uncertainty, first-order auto-evaluation. The Gauss-Newton algorithm requires the derivatives 
of e or (L )1/N e with respect to the decomposed, explanatorial, canopied parameters [2]. The 
derivatives with respect to the parameter vector β were then  The derivatives with respect to ϕ 
were then computed by differentiating the Kalman filter recurrences and the equations for the 
initial conditions. For the Yule-Walker method, the estimate of the error variance, S2, was the 
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error sum of squares from the application of GLS, divided by the error degrees of freedom 
(i.e, number of decomposed, canopied, S. damnosum s.l., shaded, larval habitat endmember 
observations N minus the number of free parameters). The variance-covariance matrix for the 
components of b was taken as  for the Yule-Walker method. For the ULS and ML methods, 
the variance-covariance matrix of the canopied, decomposed, larval habitat, parameter 
estimates was then computed as For the ULS method, J was the matrix of the geospectral 
derivatives of e with respect to the unmixed, riverine, canopied, larval habitatdecomposable 
parameters. For the ML method, Jwasthe matrix of derivatives of  e divided by  . The estimate 
of the variancecovariance matrix of b assuming that ϕ was then   

         Spatially autocorrelated discontionus canopy species abundance or distribution datasets 
may generate spatially autocorrelated residuals in generalized linear models (GLMs) thus, a 
broader modelling framework may be required to remotely, qualitatively, regressively, 
quantitate geospectrally decomposed, S. damnosum.s.l., larval habitat, canopy bisignatures. 
Auto-logistic and related auto-models, implemented approximately as autocovariate 
regression, provide simple and direct modeling of endmember, spatialized, probabilistic S. 
damnosum s.l.- related population processes. However, Dormann questioned the validity of 
auto-logistic regression for fully observed decomposed endmember data, giving examples of 
apparent underestimation of covariate parameter estimators in residual analysis of simulated 
data. Dormann et al. extended this critique to auto-Poisson and certain autonormal models, 
finding again that autocovariate-regressed endmember estimates for time series covariate 
parameter estimators bore little resemblance to values employed to generate ‘snouter’ data. 
Jacob et al. [2015] acclaimed that compound probabilistic regression uncertainties associated 
may be associated other factors (e.g., sampling error) such as algorithm selection, presence 
data, and variable collinearity. We note that all the above studies employed neighborhood 
weighting schemes inconsistent with auto-model definitions; in the auto-Poisson case, a 
further inconsistency was the failure to exclude cooperative interactions. Investigating the 
impact of implementation errors on auto-model probabilistic estimation employing both 
empirical, and simulated datasets of geospectrally decomposed, resampled, productive, shade 
canopied, S. damnosumsol s.l., riverine, larval habitats may show that when spatially "re-
adjusted" endmember canopy data are re-analyzed employing valid weightings, very different 
residually forecasted, emissivity, transmisstance, reflectance wavelengtht, estimates are 
obtained for photosynthetic and NPV predictors. For auto-logistic and auto-normal S. 
damnosum s.l. riverine larval habitate co-epidemiological, forecasting canopy, risk models, 
the new estimates may agree closely with values used to generate the ‘snouter’ simulations. A 
substantial fraction of papers employing auto-logistic regression use these invalid 
neighborhood weightings, which have been embedded as default options in ArcGIS. 

The Poisson process in the vulnerability diagnostic analyses was provided by the limit of 
a binomial distribution of the sampled district-level explanatory predictor covariate coefficient 

estimates using  The authors viewed the distribution as a 
function of the expected number of count variables using the sample size N for quantifying the 
fixed p in equation (2.1), which was then transformed into the linear equation: 
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Based on the N, the distribution approached was 

 
            The GENMOD procedure then fit a generalized linear model (GLM) to the 
geosampled geo-spectrotemporal, entomological datasets by maximum likelihood estimation 
of the parameter vector β in the onchocercisasis, predictive model. The GENMOD procedure 
optimally estimated the seasonal-geosampled parameters of each georferenceable, district-
level time series, onchocerciasis risk model numerically through an iterative fitting process. 
The dispersion parameter was then estimated by the residual deviance and by Pearson’s chi-
square divided by the degrees of freedom (d.f.). Covariances, standard errors, and p-values 
were then computed for the uncoalesced LULC covariate coefficients based on the asymptotic 
normality derived from the maximum likelihood estimation.  
     

 Note, that the sample size N completely dropped out of the probability function, which in  
Jacob et al. (2015) had the same functional form for all the geosampled, explanative,  district-
level, parameter estimator, time series,  indicator values (i.e., ). As expected, the Poisson 
distribution was normalized so that the sum of probabilities equaled 1. The ratio of 

probabilities was then optimally determined by which 

was then subsequently expressed as  
    
   The Poisson distribution revealed that the district-level, geo-spectrotemporally geosampled, 
explanatory covariate coefficients reached a maximum when 

where was the Euler-Mascheroni constant and was a 
harmonic number, leading to the transcendental equation  for each district in 
the riverine tributray eco-epidemiological, study site. The regression model revealed that the 
Euler-Mascheroni constant arose in the integrals as 

.Commonly, 
integrals that render  in combination with geo-spectrotemporal geosampled constants 

include which is equal to 

(Haight 1967). Thereafter, the double integrals in the district-
level, seasonal, eco-epidemiological, S. damnosum s.l. regression model included 
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[1.2]. An interesting analog of equation (1.2) in the 
regression-based  paradigm was then calculated as 

. This solution was also 

provided by incorporating Mertens theorem[i.e., where the product was 
aggregated over the district-level, geosampled trailing vegation, S. damnosum s.l. immature, 
habitat, capture point, regressable values found in the empirical, eco-epidmiological, datasets. 

Mertens' 3rd theorem: is related to the density of prime numbers where γ 
is the Euler–Mascheroni constant[Haight 1967].By taking the logarithm of both sides in the 
vulnerability, eco-epidemiological, forecast, sub-meter resolution model, an explicit formula 

for γ was then optimally derived employing . This expression was also 
rendered coincidently by quantifying the data series employing Euler, and equation 1.2 by first 

replacing , in the equation and then generating 

. The authors in Jacob et al. [2015] then substituted the 

telescoping sum which then generated . In 
mathematics, a telescoping series is a series whose partial sums eventually only have a fixed 
number of terms after cancellation }Thomson and Andrew M. Bruckner,2008}. Thereafter, the 

product was  .  
 

The objective of Jacob et al. (2013) was to optimally determine seasonal geo-
spectrotemporal, regressive, immature habitat explanators (e.g., rainfall) related to monthly, 
district-level, prevalence rates. Specific prevalence measures were optimally forecasted using 
autoregressive, spatial filter, eigenvector specifications and data collections in ArcGIS and SAS 
for targeting districts that had higher prevalence rates. Initially, case, as counts, were employed 
as a response variable in a Poisson probability model framework in PROC REG for quantifying 
eco-epidemiological, optimizable, datasets of district-level covariates (e.g., distribution of health 
centers) geosampled from 2006 to 2010 in Uganda.  
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  A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, 
if k = 0, 1, 2, while the probability mass function of X is rendered by: 

where e is the base of the natural logarithm (e = 2.71828...) and k! is 
the factorial of k[ Hosmer and Lemeshew 2002]. The mode of the malaria-related, Poisson-
distributed, district-level,  geo-spectrotemporally geosampled, sub-meter resolution, predictive  

variable in Jacob et al (2013)  with a non-integer λ was equal to which represented the 
largest integer less than or equal to λ in the model. This  was written as floor (λ) in the model.  
Floor(x) = is the largest integer less than or equal to x and ceiling(x) = is the smallest integer 
greater than or equal to x [Fotheringham 2002]. In so doing, the floor function  was  the 
greatest integer function or integer value generating the largest integer less than or equal to x in 
the explanative, georeferenceable, time series, heuristically optimizable, explicative, residual 
forecasts remotely  targeting statistically significant,  district-level, eco-epidemiological sub-
meter resolution, LULC covariates. The floor and ceiling functions then mapped a field-
geosampled malarial-related, parameterizable, elucidative, covariate coefficient value to the 
largest previous where floor(x) = and was the largest integer not greater than x and ceiling(x) 
=  was the smallest integer not less than x[Haight 1967]. Since λ was a positive integer in the 
geo-spectrotemporal, geosampled, district-level, regression-based, malarial, eco-epidemiological, 
vulnerability, forecasting model, the modes were λ and λ – 1. Hence,all of the cumulants of the 
Poisson distribution in the malarial model was equal to the expected value λ calculated at each 
geosampled district-level geolocation at the Ugandan study site.  

       Additionally, the explanatorial, time series,  heuristically parameterizable,  sub-meter 
resolution, predictor, covariate coefficient of variation in  the  Poisson-specified, 

geospatiotemporal, malaria-related, regression model was while the index of dispersion 
was 1. Thereafter, the mean deviation was  explicatively geo-spectrotemporally quantitated about 

the mean in the malarial model  which then expressed for optimally 
determining statistical significance of the geosampled estimators.  

  Further, other series in for the Mwea  irrigated, ricefield agro-ecosystem in Central 
Kenya in Jacob  and Novak (2014) included the equation (◇) 

where  where was plus the 
Riemann zeta function for constructing  a geo-spatiotemporal, explanative, eco-epidmiological, 
malaria-related, Anopheline arabiensis  district-level, LULC , sub-meter resolution, (i.e., 
panchromatic Quickbird), forecasting vulnerability,  regression model for forecasting 
hypeproductive habitats in a ricevillage ecosysyem in central Kenya (Karima agro-village 
complex) The Riemann zeta function ζ(s) is a function of a complex variables that analytically 

continues the sum of the infinite series which converged in the model  when the real part of 
s was greater than 1 where lg was the logarithm to base 2 and the is the floor 
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function(Hosmer and Lemeshew 2002). Nielsen(1897) earlier provided a series equivalent to 

and, thereafter which was then added to 

to render Vacca's formula. The sums in the An. arabiensis  model then was  

Jacob and Novak( 2104) employed the 

sums with by replacing the undefined I and then 
rewrote the equation as a double series for applying the Euler's series transformation to each of 
the sampled time-series dependent, explanatorial, geo-spectrotemporal, sub-meter resolution, 
LULC, rice field, geo-spectrotemporal, geospatial, explanatorial,An. arabienis, grid-stratified,  
covariate coefficient, regression estimates. Given a convergent alternating series with sum 

Abramowitz and Stegun (1972, p. 16) define Euler's transformation as 

where is the forward difference operator and is a 
binomial coefficient.  

An alternate formulation  was provided in Jacob and Novak (2014) which defined the 
vulnerability,  geo-spectrotemporal, geosampled, eco-epidemiological,  eco-georeferenceable, 
An. arabiensis, forecasting, sub-meter resolution, LULC regression, vulnerability  model  

transformation as where wa the backward difference operator 

 Jacob and Novak  (2014) gives examples of different types of 

convergence behavior upon application of the transformation: in PROC REG 
for rendering  faster convergence, of  geo-spectrotemporally geosampled, riceland 
agroecosystem, sub-meter resolution lineraizable ,time series,prognosticative LULC  covariates ,  

employing which can provide the same rate of convergence, and 

Euler's formula, is a mathematical formula in complex analysis that 
establishes the fundamental relationship between the trigonometric functions and the complex 
exponential function (Haight 1967).  

Euler's formula, is a mathematical formula in complex analysis that establishes the 
fundamental relationship between the trigonometric functions and the complex exponential 
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function. Euler's formula states that, for any real number x:where e is the base of the natural 
logarithm, i is the imaginary unit, and cos and sin are the explanativem  trigonometric 
functions cosine and sine respectively, with the argument x given in radians ( Cressie 1993) . 
This complex exponential functionmay be edentoable in a YF, Ae.aegypti, ovispoition, sub-meter 
resolutiuon, eco-epidemiological, LULC, sub-mtere resolution, African, riceland, capture point, 
discontinuous,forest- canopied model employing  x ("cosine plus i sine"). The formula would be 
still even if x is a complex geo-spectrotemrpoal or geo-spatiotemrpoal, eco-epidemiological, log-
transformed, discrete, finite, integer values ( e.g., montly YF case distribution )   

The Euler formula, sometimes also called the Euler identity (e.g., Trott 2004, p. 174), 
states where i is the imaginary unit. Note that Euler's polyhedral formula is 
sometimes also called the Euler formula, as is the Euler curvature formula. The equivalent 
expression had previously been published by Cotes (1714). The special case 
of the formula with gives the beautiful identity an equation connecting the 
fundamental numbers i, pi, e, 1, and 0 (zero), the fundamental operations , , and 
exponentiation, the most important relation , and nothing else. Gauss is reported to have 
commented that if this formula was not immediately obvious, the reader would never be a first-
class mathematician (Derbyshire 2004, p. 202).  

Interestingly, if  may tabulate an empirical orthogonal, sub-meter resolution 
dataset of uncoalesced, Ae egypti riceland habitats along the periphery of these ecosystems for 
quantiate geoclassified LULCs that have protuded geospatially onto discontinuous, forest-
canopied, LULCs in a forecast vulbnerability, remote sesning model by replacing i with -i. This 
may be because -i is as good a square root of -1 as i.,( Neter 1990). So an arbovirologist, medical 
entomologist or YF experimenter may generate a riceland, African, ecosystem, ovisposition Ae. 

aegypti risk model as  so that   
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Figure 1.1. Euler's formula, for  any, parameterizable, Poissonian  variable using 
 x: where e is the base of the natural logarithm, i is the imaginary 
unit, and cos and sin are the trigonometric functions cosine and sine respectively, with the 
argument x given in  radians  
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   So if  for some angle  in an uncoalesced, frequency, 
wavelength, geo-spectrotemporal or geo-spatiotemrpoal, eco-epidemiological, sub-meter 

resolution, grid-startfieid,  sub-meter resolution,  LULC model ,  could occur in the 
vulnerability foreasts( e.g., , newly transitioned discontinuous, forest-canopied,, eco-
epidemiological capture point into a seasonal, , hyperproductive African ricland Ae .aegypti 
oviposition site).Recall that the exponential function is well approximated by the linear 
function 1+x when x is very small in any  entomological, geo-spatioemporal, eco-
epidemiological, eco-georferenceable, sub-mter resolution entomological,  vector arthropod, 
prognosticative ovispoition probabilisc paradigm (see Jacab et al. 2009). A arbovirologist, 
medical entomologist or YF experimenter may hence   assume that the function retains this 
property for complex z with small modulus. so in particular 

 .Thus, an arbovirologist, medical entomologist or YF experimenter 
could employ two more approximations which may be smallgeocampled  paramterizable , 
ovispoition LULC sampled values of . ( ( e.g.,  or These 

approximations may become increasingly more precise as decreases which may allow the 
Euler  formula to  holds when . Putting all these processes together, a sub-meter 
resolution, Ae egypti, ovipsoition LULC, ,model may be expressed 

as  if θ is sufficiently small .,Furthermore by de Moivre's 
formula may also exist in a dataset of eco-
georeferenceable, sub-meter resolution, Ae egypti, ovispoition discontinuous, forest-canopied, 
De Moivre's Theorem states that for every real number θ and every positive integer n, we 
have(cos θ + i sin θ)n = cos nθ + i sin n 

To see why the Euler transformation work in a forecasting, time series, eco-
epidemiolgical, eco-georferenecable, YF, sub-meter resolution, LULC, regression, 
probabilistic,vulnerability, endmember, optimizable, geo-spectrotemporal,  paradigm an 
arbovirologist, medical entomologist or other  experimenter may, consider  convention for 

difference operator and write S= =  in 
order to optimally quantitate seasonal endmember, hyperporductive discontinuous, eco-
georeferenceable, Ae egypti ovispition  sites on sub-meter resolution geoclassified LULCs and 
their wavelength, transmittance gid-stratied frequencies  in an African, riceleand, expandng, 
agro-irrigated, village ecosystem. Optimally the process may be repeated in SAS on the series in 
brackets to quantitatively, qualitatively, geo-spatiotemporallyy or geo-spectrotemporally obtain 

in a robust eco-
epidemiological, YF , forecast, vulnerability, model In so doing ,sub-meter resolution 
discontinuous, sub-mter resolution, geoclassifiable, seasonal, forest-canopy to rice agriculture Ae 
egypti , hyperproductive, LULC, eco-georferenceable, oviposition sites  may be iteratively, 
interpolatively identified.  Each finite step in the derivation, in the regressed 
diagnostic,oviposition, capture point, hyperproductive,  YFV-related time series, geosampled, 
geoclassified, clinical, field or remote geo-spectrotemporally geosampled, ecogeorefereceable 
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residual, sub-meter resolution,  parameterizable LULC forecast space would "continue to 
infinity"  without use of a limit.  

 In Jacob and Novak. (2014) used a binomial coefficient, rearranged to achieve the 
conditionally convergent series in a geo-spatiotemporal, forecast, vulnerability, uncoalesced, 
sub-meter resolution, endmember, wavelength district-level, malaria-related linear, An. 
arabiensis regression specified, frequency   model for precisely  predicting post-tillering, agro-
irrigated, hyperproductive, seasonal  habitats had the highest immature productivity seasaonl 
counts. Tillering: extends from the appearance of the first tiller until the maximum tiller (5 - 9) 
number is reached in Mwea ricelands (Mwangangi et al. 2007). Jacob and Novak (2014) 
constructed multiple PROC REG regression models for comparing transmission wavelength 
frequency transmittance intensity at the gris-stratified, sub-meter resolution LULC levels for the 
Karima eco-epidemiological study site which extended 2 kilometers from the poltical boundary 
of the intervention study village. The regression analyses assumed independent counts (i.e., ni), 
taken at the sampled anopheline larval habitat locations , where each of the 
explanatory predictor endmeber wavelength covariates represented in the linear endmember 
geometric framework was from a Poisson distribution. The  Poissonian regression assumed the 
response explanatory entomological sub-meter resoluton, grid-startified, LULC variable Y had a 
Poisson distribution and assumed the logarithm of its expected value was modeled by a linear 
combination of the geosampled, eco-epidemiological, capture point  larval habitat sampled 
parameterized covariate  estimates. This expression was written more compactly as 

where x was an n + 1-dimensional vector consisting of n independent variables 
concatenated to 1 and θ, which Jacob and Novak (2014) simply expressed as a linearly linked to 
b. Hence, in the  Poissonian model θ was an input vector x and, the predicted mean of the 

associated oviposition seasonal, hypeproductive foci distribution was given by , if x 
Î Rn was a vector of the sampled independent explanatory, sub-meter resolution,  geoclassified, 

LULC variables. Thereafter, the Poissonian model took the from where a Î Rn 
and b Î R. Positing salient estimators using the maximization of an auto-Gaussian log-likelihood 
function and a set of eigenvectors where lambda was a subspace of Rn may identify important 
explanatory predictor covariates associated to productive habitats based on geo-spectrotemporal, 
geo-spatiotemporal field-geosampled entomological count Ae. aegypti data in a a seasonal, 
hyperproductive, YF eco-epidemiological, forecast, vulnerability, sub-meter resolution, LULC 
,oviposition , discontinuous, forest-canopied, African riceland model. 
 

After the regression, Jacob and Novak (2014) attempted to ascertain whether the 
proportions of the geosampled An. arabiensis, grid-stratified, immature data differed by  
QuickBird,digitized grid cells in the riceland agro-village, eco-georeferenceable, study site. The 
model assumed a random sample between Yi, (i.e., geosampled, capture point, seasonal, 
hyperproductive, immature habitat, total larval count, density data), and the 

regressors . A disturbance term, , which was a random variable, in the forecast 
vulnerability endmeber analyses was added to this assumed relationship to optimally capture the 
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influence of all the parameterizable endmember,sub-mter resolution,  covariate estimators 

geosampled on Yi and on variables other than . The random error term, ε, in the 
regression models was assumed to be normally distributed with mean zero and variance σ2. 
Statistical characteristics of the geosampled immature anopheline LULC data were examined in 
PROC UNIVARIATE. The PLOT option in the PROC UNIVARAITE statement generated 
histograms and boxplots. The NORMAL option was employed  to test whether the clinical, field 
and remote-geosampled explanatorial,  endemic transmission-oriented, uncoalesced, LULC 
covariate coefficients had a normal distribution. The regression equation for optimally 
quantitating the riceland, African, eco-epidemiological, eco-epidemiological, study site 
was: , . It was important to distinguish the geo-spatiotemporal-
sampled An. arabiensis aquatic larval habitat, remotey sensed LULC models in terms of random 
variables and the observed values of the random variables. Thus, Jacob and Novak (2014) geo-

spectrotemporally determined p + 1 parameters  in an eco-cartographic , geostatistical 
cyberenvironment. In order to estimate the sampled parameters, it was also useful to employ the 
matrix notation , where Y was a column vector that included the geo-spatiotemporal-
sampled endmember LULC , esub-mter resolution, An. arabiensis aquatic larval habitat count 
values of , geosampled in the study site, which in  Jacob and Novak (2014) included the 

unobserved stochastic  endmember, geoclassified, LULC components and the matrix 
X. This matrix was the observed larval habitat parame- 

ter values of the explanatorial , uncoalesced, regressors may be expressed as  in 
a a seasonal, hyperproductive, YF eco-epidemiological, Ae.aegypti, forecast, vulnerability, sub-
meter resolution, LULC ,oviposition , discontinuous, forest-canopied, African riceland model. 
 

Thereafter, the sampled explanatory predictor covariate coefficient values were log-
transformed to normalize the distribution and minimize standard error in the residual, An. 
arabiensis, aquatic, larval habitat, eco-georeferenecable, capture point forecasts. 
Multicollinearity diagnostics from the COLLIN option in SAS were estimated. Residual-based 
diagnostics for univariate and multivariate conditional heteroscedastic endmember, wavelength 
frequency,  LULC  models previously constructed from clustering clinical, field and remote 
geosampled vector insect habitat parameter estimates have revealed that errors in variance, 
probability, endmember, uncertainty estimation can substantially alter numerical predictions 
models due to multicollinearity (Griffith 2005, Jacob et al. 2009) . In Jacob and Novak (2014), 
the SAS COLLIN option rendered eigenvalues and condition index, as well as proportions of 
variances with respect to individual-sampled , sub-meter resolution, An. arabiensis, aquatic, 
larval habitat, explanatory, predictor covariates in the LULV geo-spctrotemporal, forecast, 
vulnerability models. The conditional index scores indicated no significant multicollinearity in 
either model output. The same quantiation of non-independent explanators may be identified in a 
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in a seasonal, hyperproductive, YF eco-epidemiological, Ae.aegypti, forecast, vulnerability, sub-
meter resolution, LULC ,oviposition , discontinuous, forest-canopied, African riceland model. 
 

Extra-Poisson variation was detected in the sub-meter resolution, diagnostic, residual 
variance estimates of both An. arabiensis aquatic larval habitat, eco-epidemiological, 
ecogeoreferenecable, LULC, sub-meter resolution, endmember models. Extra-binomial (i.e., 
extra-Poisson) variation occurs when discrete data comes in the form of counts or proportion that 
display greater variability than would be predicted when fitting a model (Haight 1967). When 
eco-epidemiological, geosampled vector, mosquito, aquatic, larval habitat, uncoalesced, remotely 
sensed regression, geoclassified LULC  data are overdispersed, the square root and logarithmic 
transformations may be less effective at making the mean and variance independent (see Jacob et 
al. 2005). As such, Jacob and Novak (2014) employed a negative binomial regression with a 
gamma distributed non-homogenous mean constructed in PROC GENMOD to account for the 
overdispersion in both the geo-spatiotemporal, eco-epidemiological, prognostication An. 
arabiensis larval habitat models. The negative binomial distribution arises as a continuous 
mixture of Poisson distributions in a vector mosquito larval habitat distribution model where the 
mixing distribution of the Poisson rate is a gamma distribution (Haight 1967). The negative 
binomial model is a quadratic function of the mean and the variance which commonly affect the 
weights in an iteratively weighted least-squares algorithm for fitting geospectiotemporal-
sampled, vector, mosquito, aquatic larval, habitat data ( Hosmer and Lemeshew 2000). Jacob and 
Novak (2014) employed the negative binomial regression model with a non-homogenous gamma 
distributed mean to linearly adjust the geosampled sub-mter resolution LULC data in the Karima, 
rice agro-village, complex, eco-epidemiological, study site. The negative binomial distribution 
[i.e., NB(r, p)] was represented as a compound Poisson distribution by letting Yn, n ∈ N0 denote 
a sequence of the independent and identically distributed, aquatic, larval, habitat, An. arabiensis, 
randomized, optimizable, geoclassifiable, grid-stratified,  oviposition, LULC variables, each one 
having the logarithmic distribution Log(p). The negative binomial for a linear vector 
entomological prognosticative endmember YF eco-epidemiological, Ae.aegypti, forecast, 
vulnerability, sub-meter resolution, LULC , oviposition , discontinuous, forest-canopied, African 
riceland model. LULC model may be  a Poisson (λ) distribution, where λ is itself a random 
variable, distributed according to Gamma(r, p/(1 − p) . 

          In  Jacob et al. (2013), the Bessel function was defined by the contour integral 

where the contour enclosed the origin and was traversed in a counter-
clockwise direction in a. S. damnosum s.l. habitat , sub-mter resolution, oviposition, forecast, 
vulnerability, endmember model. This function generated: 

In mathematics, Bessel 
functions are canonical solutions y(x) of Bessel's differential equation: 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

139 
Copyright © acascipub.com, all rights reserved.  

for an arbitrary real or complex number α (i.e., the order of the 
Bessel function); the most common and important cases are for α an integer or half-integer 
(Hosmer and Lemeshew 2002).    The Bessel functions of the first kind were defined as the 

solutions to the Bessel differential equation:  in the immature 
habitat, LULC  model which were non-singular at the origin.The n-th order Bessel function of x 

then was: where: was the Gamma 
function. In mathematics, the gamma function (represented by the capital Greek alphabet 
letter Γ) is an extension of the factorial function, with its argument shifted down by 1, to real and 
complex numbers 

      Thereafter, to optimally regressively  quantitate the equivalence in the geo-
spectrotemporal, explicative, regression-based, orthogonalized, onchocerciasis 
parameterizable, covariate, sub-meter resolution, LULC estimators, the authors of Jacob et al. 

(2013) expanded in a geometric explanatory time series and multiplied the district-

level geosampled uncoalesced, oviposition, endmember, data feature attributes by , and 

integrated the term wise as in Sondow and Zudilin (2006).Other series for  then 

included  A rapidly 
converging limit for was then optimally provided by 

and

 where was a Bernoulli 
number. Another limit formula was then provided by the equation 

... 

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep 
connections to number theory, whereby, values of the first few Bernoulli numbers are B0 = 1, B1 
= ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30 ( Hosmer and 
Lemeshew 2002). The Bernoulli numbers are a sequence of signed rational numbers that can 

be defined by the exponential generating function These numbers arise in the 
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series expansions of trigonometric functions, and are extremely important in number theory and 
analysis. There are actually two definitions for the Bernoulli numbers. To distinguish them, the 
Bernoulli numbers as defined in modern usage (National Institute of Standards and Technology 
convention) are written , while the Bernoulli numbers encountered in older literature are 
written (Gradshteyn and Ryzhik 2000). In each case, the Bernoulli numbers are a special case 
of the Bernoulli polynomials or with and . The Bernoulli number 
and polynomial should not be confused with the Bell numbers and Bell polynomial, which are 
also commonly denoted and , respectively. Bernoulli numbers defined by the modern 
definition are denoted and sometimes called "even-index" Bernoulli numbers. These are the 
Bernoulli numbers returned, by example, by the Wolfram Language function BernoulliB[n]. The 

Bernoulli number  may be defined by the contour integral where the 
contour encloses the origin, has radius less than (to avoid the poles at ), and is traversed 
in a counterclockwise direction in a YF eco-epidemiological, Ae.aegypti, forecast, vulnerability, 
sub-mter resolution, LULC ,oviposition , discontinuous, forest-canopied, African riceland model. 

 
   Jacob and Novak (2013)  found if m and n are geosampled district-level, eco-

epidemiological, georeferenceable, African irrigated rice-agro-village complex,  S. damnosum 
s.l. immature, hyperproductive, oviposition, capture point, time series, eigen-decomposable,  
regressable values and f(x) is a smooth sufficiently robust differentiable explanatorial, diagnostic 
function in a seasonal, LULC, forecast, vulnerability  endmember, sub-meter resolution model  
framework in an SAS/GIS geodatabase cyberenvironment all the geosampled, 

geospectrotemporal, iterative interpolative values of x in the interval , can be based on the 

integral . Furthermore, this realization can be approximated by the sum (or vice 

versa) . The Euler–Maclaurin formula will  
subsequently provide optimal optimal LULC, sub-meter resolution, immature, capture point, 
eco-georeferenceable, eco-epidemiological, habitat expressions for the quantizable tabulated 
difference between the sum and the integral in terms of the higher derivatives ƒ(k) at the capture 
points  and of the interval m and n in any SAS/GIS, predictive, geospatial, geostatistical 
paradigm.  

 
 

In Jacob et al.  (2016), the Euler–Maclaurin formula provides a powerful connection between 
integrals and sums in a empirical dataset of uncoalesced, geosampled, S. damnosum s.l. 
endmember, geo-spectrotemporal, geometric,   forecasting, vulnerability  model unbiased 
estimators which  was subsequently  employed to approximate integrals by finite sums, or 
conversely to evaluate finite sums and infinite series using integrals and the machinery of 
calculus. Thereafter, for the explanatorial, district-level time series, geosampled, immature 
habitat, sub-meter resolution, uncoalesced, iteratively interpolative, geosampled immature, 
capture point,  oviposition habitat values, p, had 
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where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 
= 0, B6 = 1/42, B7 = 0, B8 = −1/30, and R which was an error term.  

 

Note in  Jacob et al. (2016) Hence, the authors  re-
wrote the regression-based formula as follows: 

They  then rewrote the 

equation more elegantly as with the convention 

of (i.e. the -1th derivation of f is the integral of the function). Limits to the 
explicative, district-level, eco-epidemiological, sub-meter resolution, time series, S. 
damnosum s.l. oviposition LULC, geoclassified, eco-epidemiolgical, forecast, vulnerability, 

endmember, regression model was then rendered by where was 
the Riemann zeta function. The Bernoulli numbers appear in the Taylor series expansions of 
the tangent and hyperbolic tangent functions, in formulas for the sum of powers of the first 
positive integers, in the Euler–Maclaurin formula and in expressions for certain values of the 
Riemann zeta function ( Haight 1967).  
        

 Another connection with the primes in the malaria district-level, optimizable data in 

Jacob  et al (2016)was provided by for the district-level, geo-spectrotemporal, 
explanative, diagnostic, numerical values from 1 to in the empricial geosampled, ovipsoition 
LULC, S. damnosum s.l. dataset which  the authors was found to be asymptotic.  

 
 De laValléePoussin[1898] proved that if a large number n is divided by all primes <n  , 

then the average amount by which the quotient is less than the next whole number is g. An 
identity for g in the district-level, regression-based, eco-epidemiological, 
YFV,geospectrotemporal, model may then be optimally provided by 

where is a modified Bessel function of the first kind, is a 

modified Bessel function of the second kind, and where is a harmonic 

number. For non-integer α, Yα(x) is related to Jα(x) by:  
(Griffith 2003). In the case of integer order n, the function is defined by taking the limit as a 

non-integer α tends to n: (Haight 1967).  
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Since the Bessel functions of the second kind, may be denoted by Yα(x) as in Jacob et al. 
(2016)  and by Nα(x), which are actually solutions of the Bessel differential equation 
employing a singularity at the origin (x = 0) , an entomological, YF, geoclassifiable, Ae 
egypti, sub-meter resolution, iteratively interpolative, uncoalesced, LULC biosignature, (i.e, 
panchromatic QuickBird), , riceland agro-village ovipositon, geometric endmember, forest 
canopy, discontinuous, immature, eco-georferenecable  habitat model may be able to identify 
forest-canopy foci along African ricalend expanding corridors. An iterative algorithm for g by 

computing an

d  Reformulating this identity optimally rendered the limit 

Infinite products involving g also arose from the Barnes G-function 
using the positive integer n. In mathematics, the Barnes G-function G(z) is a function that is 
an extension of superfactorials to the complex numbers which is related to the Gamma 

function[Haight 1967]. In Jacob et al. 2016, this function provided and 

also the equation  for optimally remotely quantitaing the regressively 
paramterizable S. damnosum s.l. , capture point, immature , seasonal eco-georferenecable, 
hypeproductive habitats  The Barnes G-function was then linearly defined in  the time-series 
dependent, explantive, district-level, immature habitat, forecast, vulnerability endmembr 
LULC, ovip[osiition, geo-spectrotemporal, uncoalesced  model which then generated 

where γ was the Euler–
Mascheroni constant, exp(x) = ex, and ∏ was capital pi notation. The Euler-Mascheroni 

constant was then rendered by the expressions where was the 

digamma function and the asymmetric limit form 

of . In mathematics, the digamma function is defined as 

the logarithmic derivative of the gamma function: where it is the first of 
the polygamma functions ( Hosmer and Lemeshew 2002). In Jacob et al. (2016) the  
vulnerability, S. damnosum s.l., vulnerability, eco-epidemiolgical, forecasting, sub-meter 
resolution, immature, eco-georeferenceable capture point,  habitat model the digamma 

function, ψ0(x) was related to the harmonic numbers in that where Hn was the 
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nth harmonic number, and γ was the Euler-Mascheroni constant. In mathematics, the n-th 
harmonic number is the sum of the reciprocals of the first n natural numbers (Hosmer and 
Lemeshew 2002).The difference between the nth convergent in equation (◇) and the  eco-
epidemiological, geo-spectrotemrpoal, entomological, district-level regression-based model 

was then otpimally calculated by where was the floor function 

which satisfied the inequality  . The symbol g was then 

. This led to the radical representation of the geosampled, district-level, 
eco-epidemiological, iteratively interpolative, unmixed, wavelength, frequency LULC 

eigendecomposed, covariate coefficients as which 

coincidentally  related to the double series ,a binomial 
coefficient.  

      Thereafter, another proof of product in the geo-spectrotemporal, district-level,  onchcerciasis 
regression-related, predictive risk model  model was provided by the equation 

. The solution was then made even clearer by changing 
. In Jacob et al. (2016) both these regression-based formulas were analogous to the  

finalized product for which was then rendered by calculating 

. 

       A  negative binomial regression model in GEN MODwith non-homogenous means and a 
gamma distribution  was employed  in Jacob et al. (2012) for treating   multiple overdispersed. 
Culex quinquefasciatus ans Aedes alpopictus forecasting, regression regression models . The 

authors incorporated  to the  regression equation statement in PROC REG.  

Initially, Poisson regression models were generalized by introducing an unobserved 
heterogeneity term for observation . Thus, the individuals in the Cx. quinquefascistus and Ae alo 
assumed to differ randomly in a manner that is not fully accounted for by the observed 
covariates. This is formulated as where the unobserved heterogeneity 
term was independent of the vector of regressors . Then the distribution of conditional  
on and  was Poisson with conditional mean and conditional variance : 

Tha authors in Jacob et al. (2012) Let be the probability 
density function of . In probability theory, a probability density function (PDF), or density of a 
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continuous random variable, is a function that describes the relative likelihood for this random 
variable to take on a given value.  

A probability density function is most commonly associated with absolutely continuous 
univariate distributions. A random variable X has density fX, where fX is a non-negative 

Lebesgue-integrable function, if: Hence, if FX is the cumulative 

distribution function of X, then: and (if fX is continuous at x) 

Intuitively, one can think of fX(x) dx as being the probability of X falling 
within the infinitesimal interval [x, x + dx].  

                For continuous  Ae egypti immature habitats on newly trasnitioned , sub-meter 
resolution, iteratively interpolative, deforesed LULC to rice agriculture LULC uncoalesced,  
randomized, time series immature capture point, geo-spectrotemporal, geospatial, 
georrferenceable  variables X1, …, Xn, it may be  also possible to define a probability density 
function associated to the set as a whole,  (i.e., joint probability density function). This density 
function may be  optimally defined in ArcGIS or SAS  as a function of the n geosampled 
entomological explanative LULC variables, such that, for any domain D in the n-dimensional 
space of the geosampled immature pordictivity values of the variables X1, …, Xn, may be 
robustly optimized based on the probability that a realization of the set variables falls inside the 
domain D  which may be subsequently quantized employing 

If F(x1, …, xn) = Pr(X1 ≤ x1, …, Xn ≤ xn) is 
the cumulative distribution function of the vector (X1, …, Xn), then the joint probability density 

function can be computed as a partial derivative in the eco-epidemiological,, 
time series, yellow fever ,forecasting model. The cumulative distribution function of a real-
valued random variable X is the function given by where the right-hand side 
represents the probability that the random variable X takes on a value less than or equal to 
x.[Hosmer and Lemeshew 2002] The probability that X lies in the semi-closed interval (a, b], 
where a  <  b,  in a YFV risk model then may be  

In Jacob et al. (2012) the probability of a  randomized Culex quinquefasciatusor or Ae 
albopictus geo-spectrotemporally, geosampled, sub-meter resoltion, gridded, stratifed variable  
falling within a particular range of georeferenceable,  predictive  variable values was given by 
the integral of this variable’s density over that range  given by the area under the density function 
but above the horizontal axis and between the lowest and greatest values of the range.The 
probability density function is nonnegative everywhere, and its integral over the entire space is 
equal to one[ Hosmer and Lemeshew 2002]. In so doing the distribution (no longer 
conditional on ) was obtainable by integrating with respect to : 
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However, an analytical solution in COUNTREG was employed to this integral which 
only existed when  was assumed to follow a gamma distribution. This solution was the negative 
binomial distribution. When the Cx. quinquefascitus and Ae albopictus,ovipsoition, eco-
epidemiological, immature habitat, QuickBird viisble and NIR, forecasting, vulnerability, eco-
epidemiological   models contained a constant term, it  was necessary to assume that 

, in order to identify the mean of the distribution. Thus, the authors in Jacob et 
al. (2012)  assumed that followed a gamma( ) distribution with and : 

where  was the gamma function and was  a 
positive  geosampled, georeferenceable, explanative parameter in both paradigms. Then, the 

density of given was derived as 

. 

 The authors in Jacob et al. (2012) then let be the probability density function of 
in the model. Then, the distribution was no longer conditional on . Instead it was 

obtained by integrating with respect to : . The 
distribution in the linearized, eco-epidemiological,  district-level, malarial, regression model was 

then The negative binomial non-
homogenous distribution  for both models was thus derived as a gamma mixture of Poisson 

random variables. The conditional mean in the model was then and the variance 
in the residual probabilistic, regressed estimates were 

To further estimate the district-level, eco-
epidemiological models, the authors specified DIST=NEGBIN (p=1) in the MODEL statement 
in PROC REG. The negative binomial model NEGBIN1 was set p=1 , which revealed the 

variance function was linear in the mean of the models. The log-likelihood 

function of the NEGBIN1 model was then provided by Additionally, In Jacob 

et al. (2013) the equation was employed by both 
models for robust linear quantiattion of the geosampled covariates. The gradient for the geo-
spatiotemporal, malarial-based, forecasting regression model was then quantified 

employing and

Thereafter, the negative binomial regression models with variance function , 
wawere  referred to as the NEGBIN2 model.s To estimate this regression-based models, wthe 
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authors  specified DIST=NEGBIN (p=2) in the MODEL statements. A test of the Poisson 

distribution was then performed by examining the hypothesis that .  

A Wald test was also provided using the reported t statistics for the Cx. quinquefascitus 
and Ae albopictus, forecats, vulnerability  model estimates. Under the Wald statistical test, the 
maximum likelihood estimate of the parameter(s) of interest I mwas compared with the 
proposed value , with the assumption that the difference between the two will be 
approximately normally distributed[2]. The log-likelihood function of the regression models (i.e., 
NEGBIN2) was then generated by the equation: 

whose gradient 

was .The variance in our models was then assessed by 

. The final mean in the models was calculated as: 

, the mode as; , the variance as , the skewess as , the 

kurtosis as , the moment generating function as , the 

characteristic function as ; and, the probability generating function as 

. 

    In Jacob et al. (2013b) results from both a Poisson and a negative binomial (i.e., a Poisson 
random variable with a gamma distrusted mean) revealed that malarial related district-level,  
time series, sub-metere resolution, paramterizable covariates rendered from a predictive  model 
for Uganda were significant, but furnished virtually no predictive power. Inclusion of indicator 
variables denoting the time sequence and the district geolocational spatial structure was then 
articulated with Thiessen polygons in ArcGIS which also failed to reveal meaningful iteratively 
quantitative, interpolatable covariates. Thereafter, an Autoregressive Integrated Moving Average 
(ARIMA) model was constructed in PROC ARIMA which revealed a conspicuous but not very 
prominent first-order, temporal, autoregressive structure in the individual, district-level, eco-
epidemiological, time-series, endmember, dependent data. A random effects term was then 
specified using monthly, Box-Jenkins,  time-series,  modeling methodology to explicativey 
regressively quantitate, dependent data. This specification included a district-specific intercept 
term that was a random deviation from the overall intercept term which was based on a draw 
from a normal frequency distribution. The notation indicated an autoregressive model of 
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order p which was defined as where  were  the unbiased 
parameters of the model, iwa a constant, and  was white noise.  Was equivalently written 

using the backshift operator B as so that, moving the summation term to 
the left side was evaluated using polynomial notation, which then rendered . 
In so doing, the  autoregressive model  was viewed as the output of an all-pole infinite impulse 
response filter whose input was white noise. Infinite impulse response (IIR) is a property 
applying to many linear time-invariant systems ( Cressie 1993) 

     The random effects specification revealed a non-constant mean across the Ugandan districts. 
This random intercept represented the combined effect of all omitted covariates that caused 
districts to be more prone to the malaria prevalence than other districts. Additionally, inclusion 
of a random intercept assumed random heterogeneity in the districts’ propensity or, underlying 
risk of malaria prevalence which persisted throughout the entire duration of the time sequence 
under study. This random effects term displayed no spatial autocorrelation, and failed to closely 
conform to a bell-shaped curve. Autocorrelation is the correlation among values of a single 
variable strictly attributable to their relatively close geolocational positions on a two-dimensional 
surface, introducing a deviation from the independent observations assumption of classical 
statistics (Griffith 2003).  The model’s variance, however, implied a substantial variability in the 
prevalence of malaria across districts in Ugandan study site. The estimated model contained 
considerable overdispersion (i.e., excess Poisson variability): quasi-likelihood scale = 76.565. 
The following equation was then employed to forecast the expected value of the prevalence of 
malaria at the district-level: prevalence = exp[-3.1876 + (random effect)i] . 

        Compilation of additional and accurate, time series, sub-meter resolution, vector arthropod-
related, seasonal abundance and iteratively quantitatively interpolative, georefernceable geo-
spectrotemporal, distribution, data can allow continual updating of the random effects term 
estimates allowing research intervention teams to bolster the quality of the immature, capture 
point,  forecasts for future district-level malarial, probabilistic, optimizable , risk modelling 
efforts employing principles of Gu and Novak (2005). In practice, seasonal, larval control 
measures are applied to vector arthropod, immature, seasonal habitats individually . Therefore, 
the effect of any intervention is reflected by treatment-induced changes in the adult productivity. 
If the assumption that treatments applied to individual habitats are 100% effective in elimination 
of emerging adults, that is, treated immature habitats produce zero contribution to the total 
productivity, defined as the total emerging female mosquitoes for example,in an ArcGIS 
predictive  map,  it may be  deduced that the probability of endemic disease transmission also 
reduces.  Larval control measures can range from resource reduction to environmental 
manipulation of habitats to the application of microbial larvicides (www.who.gov). 

       Signature interpolation may geolocate unknown, un-geo-sampled, prolific seasonal geo-
spectrotemporally geosampled, vector arthropod data in ArcGIS maps using principles of Gu and 
Novak (2005).  Spectral unmixing algorithms have proliferated in a variety of ecological 
disciplines by exploiting, sub-meter resolution, remotely sensed eco-epidemiological, 
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wavelength, sub-meter resolution, immature, oviposition, uncoalesced, habitat data. Medically 
important entomological capture points (e.g., east African ricefield agro-ecosystems, aquatic 
habitats of Anopheles arabiensis, a major vector of malaria in sub-saharan Africa) utilize semi-
permanent to temporary habitats (e.g., floodwater areas, vernal pools, hoof prints) ( Mwangangi 
et al. 2008, Muturi 2007, mururi 2007). Jacob et al. (2011) geo-spectrotemporally othogonally, 
quantitatively decomposed a sub-meter, spatial resolution, eco-epidemiological dataset of  
QuickBird wavebands representing multiple, georefereced, riceland, An. arabiensis, habitat 
mixels for predicting hyperproductive, georeferenceable habitats in a riceland environment in 
central Kenya. Initially, the authors constructed a regression model which revealed that paddy 
preparation, An. arabiensis habitats were the most productive based on geo-spectrotemporal, 
field-geosampled, count data. Individual, uncoalesced,  mixel, spectral reflectance, regresseable 
estimates from a QuickBird visible and NIR dataset of a paddy preparation, An. arabiensis, eco-
epidemiological, georeferenceable, capture point, oviposition,  immature habitat were then 
extracted by using a Li-Strahler geometric-optical model in ArcGS. The model used three scene 
components: sunlit canopy (C), sunlit background (G) and shadow (T) generated from the 
riceland image. The G, C, T components’ classes were remotely estimated using ENVI, an 
object-based classification algorithm. In ENVI®, the Digital Number (DN) of the mixel in every 
QuickBird band was viewed using the z-profile from a spectral library. After making an 
atmospheric correction from the image for the eco-epidemiological, study site, the DN was 
converted into ground reflectance. A convex geometrical model was also employed for 
endmember validation of the geo-spectrally decomposed, paddy preparation, capture point, 
immature  habitat. An ordinary, kriged-based, iterative interpolation was performed in ArcGIS 
Geostatistical Analyst TM employing the reference signature generated from the unmixing 
models. Linear unbiased, eco-epidemiological, georeferenceable, elucidative predictors and 
variance estimates may be derived  in a similar fashion  fora seasonal, hyperproductive, YF eco-
epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC ,oviposition , 
discontinuous, forest-canopied, African riceland model. 

 
  Spatially predictive techniques such  as kriging was used to develop a three-dimensional 

model and maps of chemical distributions in soil and to produce reliable definitions of remedial 
extent. Spatial models or more commonly referred to as 3-D geostatistical models have practical 
applications in remedial engineering as well as regulatory development of cleanup goals( 
www.esri.gov). Geostatistical models and various other computer simulations are becoming 
indispensable as industry and regulators rely more heavily on cost-effective, risk-based, and 
privatized approaches to site regulation and remediation. Sampling plans and analyses designed 
specifically to meet the needs of defensible geostatistical models are expected to play a large part 
in environmental studies and remedial engineering. 
 

  Spectral unmixing tools in ArcGIS and ENVI have been   also used to decompose sub-
meter resolution, visible and NIR, mixel reflectance of other unknown, un-geosampled, 
seasonally hyperproductive, immature, vector arthropod, georeferenceable, larval habitats to 
implement control strategies. The identification of a spectral signature characteristic of black–fly 
vector of onchocerciasis, Similium damnosum s.l., positive aquatic sites has been previously 
described Jacob et al. (2011). Onchocerciasis, or river blindness, has historically been one of the 
most important causes of blindness worldwide which is caused by the filarial parasite 
Onchocerca volvulus (Thylefors 1978). This spectral signature is characteristic of the habitat 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

149 
Copyright © acascipub.com, all rights reserved.  

features found at known positive sites, which include fast flowing water passing over a substrate 
of Precambrian rock. The incidence of  onchocerciasis is not distributed uniformly across the 
country, but there is a clear correlation with basic geology (Crosskey1981) because the riverine 
conditions which create suitable  larval sites for the vector, Simulium damnosum s.l., are most 
common where the Precambrian basement rock is exposed to break the flow of the water and 
create rapids(  Mafuya et al 2006). 
 

In order to geospatially characterize the sparsely shaded sub-meter resolution 
wavelength, QuickBird visble and NIR data and obtain stable solutions of within-canopy 
multiple scattering, Jacob et al. (2013b)  decomposed the spectrally extracted Red Edge NDVI 

biosignature into three parts; unscattered radiance   ,0  , single scattering radiance   ,1  , 

and multiple scattering radiance   ,   ,  =   ,0   +   ,1   +   ,  in ArcGIS. 

      A simple scheme was then represented by   ,0   which was denoted by 1, and was not 

scattered by the atmosphere, but reflected directly by the within canopy surface features.   ,1   
represented the various Red Edge, NDVI, canopy, 5m, biosignature radiance values either 
scattered once by the atmosphere, denoted by 2, or once by the within canopy, structural, spectral 

variables which was denoted by 3. The variable   ,  was the most complicated component, 
which included all of other imaged, riverine, larval habitat, canopied, operationizable, 
georeferenced components in the radiation field of the coupled medium. 

 Unscattered sunlight radiances   ,0   were then characterized by the following 
radiative transfer equation and corresponding boundary conditions. When T < Ta, the radiative 
transfer model rendered: 
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, where 
bot
a  and 
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c  were the optical depths at the bottom 

of the atmosphere and the ToA of the habitat canopy, respectively. Here different notations from 
the 5m imager were used to indicate the physical meaning of the canopy boundary conditions. 
The model provided the upper boundary condition, which meant only parallel sunlight 

illuminated the atmosphere at the top of the riverine larval habitat canopy in the direction 0 . 

When   ,the residuals were: 
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Jointly solving the above equations with these boundary conditions rendered: 
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   The biosignature information was expressed as   ,0

2 u , which represented the upwelling 
sunlight radiance within the georeferenced habitat canopy, and the function  , . The 
extinction coefficients of the canopy endmembers were modified, and we then incorporated the 
extracted within-canopy radiance values including the floating, hanging, and surrounding dead 
vegetation canopy geospectral components employing : 

     ,1, dtGtht  
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,where t0 was defined 

as
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      The QuickBird endmember biosignature model in ArcGIS revealed that for single scattering 
radiances, unscattered sunlight became the scattering source, and the boundary conditions. These 
conditions were then determined based on the fact that no incident single scattering radiances 
originated from above ToA or below the bottom of the canopy. When T < Ta occurred in the 
model, the residuals rendered: 
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Additionally, when T > Ta the decomposition trailing vegetation, S. damnosum s.l. larval 
hábitat model rendered: 
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, where 0i was the incident solar net flux arriving at the top of the 

habitat canopy 

 000 exp  ii

. In the downward direction 0 , the solution was easily 
derived. When T < Ta, the riverine larval habitat QuickBird, endmember biosignature 
decomposition model was solved using: 
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. Then t   the model was solved 
using the equation: 
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where t1 was defined by the 

equations
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, 
which represented the single scattering riverine, habitat canopy radiances emerging from the 
atmosphere without scattering in the riverine, trailing vegetation habitat canopy.  
 

In the upward direction (p > 0), the solutions were a little more complicated because due 

to the hotspot effect, which was determined by  
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where t2 was 

























 



 11expexp
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, and the second integration at Ta < T < Tt in the 
above equation (see Figure 9). This equation was then explicitly obtained by means of an 
alternative integer and range, which was solved using 
       000

0 exp, 


 


 GiF
. The radiance   ,1   at Ta < T <Tt derived for the 

QuickBird endmember, biosignature material was then numerically evaluated without further 

assumptions. An explicit approximation to   ,1   was then derived and used for inversion in 
the canopy, biosignature  decomposition model. 
 

     The first term in equation 
  CeviCK vR

c
 sec2

1,1
2
1 

 ignored the problem of mutual 
shading of the geosampled trailing vegetation, sparsely shaded, S. damnosum s.l. riverine habitat 
canopy and the ripple water components. Strahler and Jupp [1990] handled this problem through 
multiple integration, in which the mutual shadowing of canopies and other associated objects 
were treated in the same way as the mutual shading of leaves.  However, our objective in this 
research was to derive a simple approximation to describe the effect of the S. damnosum s.l. 
larval habitat based on collections of individual discrete reflectance surface values (i.e., 
Precambrian rock and ripple water components). To carry this out, we developed an approach 
that applied one-stage geometric optics to deal with the spatial relationship between the sub-pixel 
endmember reflectance spectra of the decomposed S. damnosum s.l. habitat surface, the ripple 
water components that were mutually shaded in the illumination direction, and the parts mutually 
shaded in the view direction. We then quantified mutual shadowing proportions generated from 
the S. damnosum s.l. habitat and its associated ripple water components. In Li and Strahler 
[1985] and Li [1985], simulation and mathematics simplified to the one-dimensional case was 
proved so that for the nadir-viewed cone model, mutual shadowing of illumination would not 

change the ratio  gc KK 1 . In this research, this ratio was itself denoted cK , which we used to 

generate u AAc  for determining consistency with gK , where the mutual shadowing in 

illumination and viewing directions was independent AAc  for consistency with gK . 

     We then considered the proportion of the S. damnosum s.l. habitat which was mutually 
shadowed by the Precambrian rock and ripple water components. In the direction of illumination, 

the immature, S. damnosum s.l. riverine habitat had an area of iR  sec2
, and the total projected 

LULC area of the habitat was then calculated to be iR  sec2
, if there was no mutual 

shadowing. Because of mutual shadowing, however, the net projected area was iRe   sec2

1 . The 
difference indicated the total mutual shadowing of the S. damnosum s.l. riverine habitat attribute. 
Thus, the authors in Jacob et al. [2013b] defined the quantity Mi, the mutual shadowing 

proportion in the illumination direction, as i

R

i R
eM

i











sec
11 2

sec2

. iM , which revealed the 
degree of mutual shadowing in the illumination direction. In other words, each spheroid, on 
average, had a proportion Mi of the imaged S. damnosum s.l. habitat surface area that was not 
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sunlit. This part of the habitat was concentrated at the lower part of the spheroid. We then 
generated a boundary drawn on the habitat surface of the spheroid with the area comprising Mi 
located below it. Similarly, we defined Mv as the mutual shadowing proportion of the ripple 

water components in the view direction as v

R

v R
eM

v











sec
11 2

sec2

. The viewing shadows were 
concentrated at the lower part of the spheroid so we were able to define the Mv boundary. The 
proportion of sunlight the QuickBird sensor captured corresponded to the area above both M1 and 
Mv boundaries, which were then dependent on both zenith and azimuth differences between the 
illumination and view directions. At the hotspot, Mi and Mv boundaries overlapped and the 
QuickBird data revealed no mutual shadowing of the S. damnosum s.l. habitat or the ripple water 
components. When the view zenith angle was larger than the illumination zenith angle, Mv was 
greater than Mi and little to no mutually shaded habitat area was visible, based on the azimuth 
differences between the imaged objects. Thus, we were able to capture the essence of the mutual-
shading effect of the canopy, and the ripple water components.  

       The authors in Jacob et al. (2013b) quantified the f-Ratio of Nonnadir-Viewed Spheroids. 
First, we considered a single spheroid in the decomposed sub-mixel endmember, trailing 
vegetation, hyperproductive, georeferenced, canopied, sparsely shaded, spectral data. For the 
spheroidal case, it is necessary to show whether the f-Ratio is still independent of density, as in 
the case of the nadir-viewing cones [Schowengerdt  1997)]. From the view direction, the 

spheroid had a projected area vv R   sec2
. However, only the portion 

 vi  ,1
2
1

 of the S. 
damnosum s.l. habitat with ripple water components was sunlit. Similarly, the illumination 

shadow on the ground occupied the habitat area iR  sec2
. The compound area of viewed 

habitat, and ripple water components plus illumination shadow projected onto the background 
was    ,,secsec2

vivi OR  . Thus, we defined the f-ratio for the spheroidal and its 
associated trailing vegetation, canopied, sparsely shaded attributes as 
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, where c  was the sunlit area of the S. damnosum s.l. riverine 
habitat, Precambrian rock and ripple water components.  We then defined the corresponding 

ratio g

c

K
Kf



1  for the endmember selection of these QuickBird TM, sub-mixel emissivities. For 

our purposes, n represented the shadow parameters generated from the decomposed, 5m, S 
damnosum s.l. riverine habitat mixel. If there was no mutual shadowing, there was  had Ff  .           

        The authors then  noted that  n increased, however, mutual shadowing occurred, and as 

such, 
   ,,secsec2

vivi OR
g eK  . They then then defined the mutual shadowing proportion M  

as 





gK
M

1
1

, which was the fraction of total shadowing cast from the ripple water components 
that fell onto the S. damnosum s.l. habitat instead of the background. The sunlit and viewed 
habitat surface features were reduced by hiding either from viewing or from illumination. Thus, 
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the f-ratio with mutual shadowing was  
 n
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n

f
g
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, where 

cA  was the total 

decrement from cn  to cA  (i.e., the background-projected area of viewed sunlit, riverine habitat 

surface). We expressed 
cA  as three terms: a decrement due to mutual shading in the view 

direction, plus a decrement due to mutual shading in the sun direction, and a subtraction of those 

elements shaded in both directions using  oiivvvA PMPMPn
c

 , where Pv was the 
conditional probability that the S. damnosum s.l. habitat faced the sun given that it was mutually 
shaded from view. In this research Pi was the probability that ripple water habitat surface 
elements faced the viewer given that it was mutually shaded from illumination. Both Pi and Pv 
were average proportions of the habitat areas projected in the view direction. Po, the third term, 

overlapped part of the first two terms, expressed as a fraction of v . Po contained three parts 
derived from the RapidEyeTM-imaged habitat surface elements: ripple water components and the 
vegetation canopy geoclassified LULC structure. This collection contributed to the hotspot, due 
to the spatial correlation of the shadows. Since the probabilities of being hidden in multiple 

directions were not independent, we were able to substitute  oiivvvA PMPMPn
c

  into 
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    , which yielded a single expression for 
 

M
PMPMPFf coiivvv





1

1
. The 

authors  then modeled, Pv, Pi, and Po. We used all illumination or viewing shadows incorporating 
Mi and Mv boundaries respectively. In our model, Pv, Pi, and Po were used to visualize the Mv and 
Mi  boundaries. If viewing and illumination shadows fall strictly below Mv and Mi  boundaries, 
then Pv,, the conditional probability that at surface element facing the sun given the mutually 
shadowed areas will be the ratio of the illuminated portion of the projected surface below the Mv 
boundary (Schowengerdt 1997).  

Correspondingly, in this research, Pi was the conditional probability that the sampled S. 
damnosum s.l. habitat directly faced the viewer given that it was mutually shaded from 
illumination and was the ratio of the viewed portion of the projected habitat area below the Mi 
boundary. Note, that Mi was the proportion of mutually-shaded S. damnsoum s.l.. habitat surface 

projected to the direction of illumination, but viiMP   was the area of this fraction of the habitat 
surface with Precambrian rock and ripple water components projected to viewing direction. 
Proper calculation of this portion of the riverine habitat and its associated attributes involved 
some projection change. We used Po as the variable representing the overlap area o, which was 

also represented as a fraction of v .  

          The authors of Jacob et al. (2013) then considered the case in the principal plane. For 
simplicity, they assumed that all shadows from the S. damnosum s.l. habitat, and rippled water 
components fell below the boundaries Mv and Mi, which were the traces of planes intersecting 
the spheroid at its center. The angle between the planes of the Mi and the illumination boundary 

was  iM M
i

21cos 1   . The authors defined vM  similarly. At the hotspot, the Mi and Mv 

boundaries coincided when 1 iv PP , MMP vo  , and 1 Ff . It was then assumed that 

the viewing zenith angle increased to iv   . In usual cases when mutual shadowing is 
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considered, the Mv boundary is higher than the Mi boundary [23, 24]. In the RapidEyeTM sensor’s 

view, Pv was the ratio of the S. damnosum s.l. habitat’s canopied surface area between vM  
boundary and the illumination boundary to the whole area under the Mv boundary. That is, 
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cvvv
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, while  Pi was one, and Po cancelled the Mi term. Then, the equation 

became 
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. This result suggested that when the viewing 
direction in the principal plane deviated from (θv >θi), the f -ratio will change in the 
endmember model. When the coverage is very low, the increment of θm may be also so small that 
Mv will be under the Mi boundary. In this case, mutual shadowing can be simply ignored as in 
Strahler and Jupp, (1985).  

The authors in Jacob et al. [2013b] found that when θv moved inward on the principal 

plane but had not reached nadir, the Mi was higher than Mv. Hence, 1vP , vo MP  , 

and
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. After θv passed the nadir, the Mv  boundary went to the opposite 
side of the spheroid from Mi. In this case, the RapidEyeTM, sub-mixel spectral data revealed the 

horizontal projection of the habitat and its ripple water components at 2  . The authors then 
used Pi just as in Strahler and Jupp, [140], with   equal to  , and Pv was the fraction of Mv over 

the illumination boundary, i.e., 
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      Note, the authors reported that when v  was between the hotspot and nadir, Pv was always 
one, so a discontinuity of Pv appeared at the nadir. This discontinuity arose from the assumption 

that all shadows fell under the vM  boundary. Additionally, in this research, the vM  at 0v  
was the physical intersection of boundaries between the habitat, and the rippled water 

components, which did not change with viewing geometry, thus, vvMP  was still continuous at 

nadir, and equal to oP . In other words, the formula had a very large viewing zenith, so that 
 0cos   viM v ,   Mn cAc

 . When iM  and vM  were explanatorialy independent,  
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If all the spatial objects are at the same height, the situation will be very close to the 
“uniform height case” – that is, mutual shadows will always fall on the lower part of the objects 
and the object top-viewing effect will be strong [Schowengerdt (1997) ]. However, when heights 
are distributed over a wide range, the top layer of the canopy will play a more important role in 
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determining the BRDF of the canopy than the lower layer (Jacob et al. 2015). Therefore, when 
the habitat structural heights were quantified by spectral distribution, the BRDF was apparent. 
The BRDF was determined by the size, shape, and height of the trailing vegetation habitat and 
the ripple water components in the top layer. Thus, we restricted ourselves to considering a 
single top layer only, where the range of distribution of height of the sampled S. damnosum s.l. 
riverine habitat and its attributes did not exceed twice the vertical axis of the spheroid. To share 
the weighting between the spatiotemporally sampled, spectral predictor, covariate, coefficient 

estimates we used the equation 

2
12

4
1 






 


b
hh

, if   bhh 412  . When   bhh  12 ,   is 
forced to be zero and it is necessary to redefine the layers (Keshava and Mustard 2002). By 

doing so, both vP  and iP  were calculated as a weighted sum of corresponding terms 
  21 1 PPP   , where 1P  and 2P  were the spectral probabilities associated with the spatial 

dimensions of the sampled habitat.  

The bidirectional reflectance was modeled as a pure phenomenon that resulted in scenes 
of discrete, three-dimensional objects (i.e., turbid ripple water components) from the S. 
damnosum s.l. riverine habitat being illuminated and viewed from different positions in the 
hemisphere. The resulting scene was broken down into their canopy fractions, specifically sunlit 
and shadowed background, as well as scene brightness. Illumination direction was calculated by 
a linear combination of the canopy fractions and their respective radiance estimates. The shape 
of the patterns of the diffuse rippled water components were the driving explanatory spectral 
predictor variables in the model. These S. damnosum s.l. riverine habitat, spectral, sub-pixel 
emissivities conditioned the mixture of sunlit and shaded objects and background data that was 
observed from multiple viewing directions,  thus quantifying all directions of illumination. This 
mixture, in turn, controlled the brightness in the image. However, since the use of data for 
quantitative spectral monitoring requires consistent surface reflectance data, we corrected the 
radiance effects from varying sun sensor target geometries in the multitemporal, RapidEyeTM 
datasets described by the BRDF. In this research, measuring the spread of the corrected results 
from the desired equal reflectance line provided a measure of the accuracy of our method. After 
correction, the root mean square reflectance errors were approximately 0.01 in the visible and 
0.02 in the near-infrared. 

       An expression for additional azimuthual variation was also derived from the geometric-
optical model. This azimuthual variation differed fundamentally in radiance for each layer of the 
S. damnosum s.l. riverine habitat canopy. It was observed that all non-zero polar angles were 
most evident in the canopy when vertical and nearly opaque components of the S.damnosum s.l. 
habitat and its neighboring Precambrain rock and ripple water components were illuminated and 
viewed along polar sun angles. For the variation of the directional reflectance of the multi-
scattered diffuse riverine canopy cover, azimuthual view angles and shade-related parameters 
were quantified using the illuminated area of the imaged habitat (i.e., areas affected by the sun at 
large angles from the zenith). Our results also indicated that the cause of the azimuthual variation 
could be traced to solar flux illumination of the vertically-oriented Precambrian rock and rippled 
water components, as well as the variation of reflectance moderated by azimutually isotropic 
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sources of flux from sky light and the riverine larval habitat canopy reflectance values. Spectral 
unmixing yielded abundance estimates for each endmember together summing up to the 100% 
reflectance measured in the image. A scattergram representing the endmember reference 
signature of S. damnosum s.l. habitat ripple water pixel reflectance values was then generated. 

          The model developed to forecast hypeproductive, seasonal, S. damnosum s.l. aquatic 
habitats based on this signature which  was designated the black rock-rapid (BRR) model. The 
spectral signature found to be characteristic of the habitat features that formed the basis of the 
BRR model. The waveband composition data of the signature was 34% red, 11% blue and 55% 
green 
 
       Of the 30 sites along the Sarakawa River in Northern Togo predicted to be larval habitats by 
the BRR model, all (100%) were found to contain S. damnosum s.l. larvae. In contrast, none of 
the 52 sites not predicted by the QuickBird, BRR model, but deemed to be potential habitat by 
the entomologist accompanying the verification team contained S. damnosum s.l. larvae. 
Together, these data suggested that the BRR model exhibited a sensitivity and specificity 
approaching 100% for the prediction of S. damnosum s.l., riverine, larval sites in Togo. Water 
levels in the rivers of West Africa fluctuate substantially between the rainy and dry seasons, 
potentially producing seasonally active immature sites. A second model was developed to predict 
such seasonally active sites. There was a complete correspondence between the sites predicted by 
the the BRR model and this second model suggesting that the BRR model had identified all 
active and potentially active immature sites in the study area. S. damnosum s.s. and S. sirbanum 
are found in savanna ecosystems throughout most of sub-Saharan Africa (www.who.gov).  

 
To test the generality of the Quickbird, BRR model, it was applied to predict S. 

damnosum s.l. riverine sites in Northern Uganda. A total of 25 potential S. damnosum s.l. larval 
sites were predicted. Of the 25 sites predicted to be suitable S. damnosum s.l. aquatic habitats by 
the BRR model, 23 (92%; 95% CI 81–100%) were found to contain S. damnosum s.l. larvae. In 
contrast, just 2/10 (20%; 95% CI 0–45%) sites examined which were not predicted to represent 
S. damnosum s.l., aquatic habitat by the model were found to contain larvae. The BRR model 
thus exhibited a sensitivity of 80% and a specificity of 92% when applied in Uganda, a 
performance that was statistically significant (p, 0.0001; Fisher’s Exact test). The two sites that 
were not predicted by the model which nonetheless were found to contain larvae consisted of 
low hanging streamside vegetation immersed in fast flowing water The mean number of larvae 
found at the sites predicted by the BRR model (21.91) was significantly greater that the mean 
number of larvae at the sitesconsisting of immersed overhanging vegetation (4.0; p<0.001, Mann 
Whitney U test) 

 
         Although post-classification  and validating iteratively, quantitatively interpolated, 
explanatively diagnostic, geo-spectrotemporal, geosampled, parameterizable mosquito-related, 
eco-epidemiological, optimizable,  covariates  employing ArcGIS object-based classifiers and 
sub-meter resolution  data requires extensive ground truthing to identify regions of high density 
transmission foci ( e.g.,  positively autocorrelated high density, Ae egyti, oviposition sites in 
newly transitioned, forest-canopy, sparsely shaded, LULC to rice agriculture LULC change 
seasonal geolocations),  these model outputs may be vital for implementing control interventions. 
Generally, positive autocorrelation occurs in iteratively interpolative, eco-epidemiological, 
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vector mosquito, larval habitat, data analyses when similar eco-epidemiological, count data, 
regressed values from spatiotemporal geosampled  larval habitats cluster in geographic space, 
while negative autocorrelation occurs when unlike data sampled values cluster in space (Jacob et 
al. 2005a) .  

Jacob et al. (2013) identified  negative spatial autocorrelation (NSA), the tendency for 
dissimilar neighboring values to cluster on a predictive, An. gambiae s.l.  map, constructed from 
mutliple, bio-geophysical multivariate, sub-meter resolution, optimally parameterizable, 
unbiased, iteratively, quantitatively interpolative, ArcGIS explanatively geoclassified LULC and 
meteorological covariate coefficients. Unquantified NSA generated from an inverse variance-
covariance matrix in AUTOREG geo-visulized misspecifications in a vulnerability  forecasting, 
eco-epidemiological, An. gambiae s.l., habitat model.  The authors employed an eigenfunction 
decomposition algorithm based on a modified geographic connectivity matrix to compute the 
Moran's I statistic, to uncover hidden NSA in a dataset of georeferenced An. gambiae s.l. habitat 
explanatory predictor variables geo-spectrotemporally geosampled in Malindi and Kisumu, 
Kenya.  

Moran's I Index value and both a Z score and p-value were optimally employed to 
evaluate the significance of an iteratively interpolative, eco-epidemiological dataset of An. 
gambiae s.l. covariates. In general, a Moran's Index value near +1.0 indicates clustering while an 
index value near -1.0 indicates dispersion (Griffith 2003).  Without looking at statistical 
significance there is no basis for knowing if the observed pattern is just one of many, many 
possible versions of random in an entomological, geo-spectrotemporal, geospatial, sub-pmter 
resolution, vulnerability , forecasting, mprobabilisc paradigms (Jacob et al. 2005) . In Jacob et al. 

(2013) the Moran's I  was  optimnally defined as  where   
was the number of spatial An. gambiae s.l. oviposition  units indexed by and ;  was the the  
immature larval count productivity;  was the mean of ; and  was  an element of a matrix 
of spatial weights.The expected value of Moran's I under the null hypothesis of no spatial 

autocorrelation inntye model resdiual forecast is Its variance 

equaed where  

,

 Values of  the  range from −1 to +1. Negative values 
indicate negative spatial autocorrelation and positive values indicate positive spatial 
autocorrelation. A zero value indicates a random spatial pattern ( Griffth 2003). For prise 
statistical hypothesis testing, the Moran's I values  was transformed to Z-scores. Z-scores are 
expressed in terms of standard deviations from their means. Resultantly, these z-scores have a 
distribution with a mean of 0 and a standard deviation of 1. (Larsen,and Morris. 2000).  
 

The Moran's I statistic was eco-epidemiologically, explanatively  decomposed into time 
series, orthogonalized, synthetic, gridded, map patterns. Global tests revealed that |zMC|s 
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generated were less than 1.11 for the presence of latent autocorrelation. The algorithm captured 
NSA in the An. gambiae s.l. habitat data by quantifying all non-normalized, random variables, 
space-time heterogeneity, and distributional properties of the spatial filters. 
 
  Processing of such eco-epidemiological, time series, vulnerability models may permit 
real-time monitoring and forecasting of immature, Ae egypti 0.61m, meter/mixel, spatial 
resolution data endmembers. The orthogonalized, georeferenceable eco-epidemiological, 
geolocation and expected mosquito, capture, point, immature, habitat counts from highly 
productive sites in a newly transitioned, discontinuous, forest-canopied,  LULC to irrigated, 
riceland, agro-ecosystem LULCs ( post-tillering, flooded)   may then be formally  predicted, 
using sub-meter resolution, satellite  data and eco-epidemiological, field measurements of proxy 
habitat characteristics  for identifying  significant orthogonalizable, time series predictors of 
disease transmission  at a neighboring,  irrigated, study site. An ordinary quantitative interpolator 
can use the sub-mixel, sub-meter, resolution data along with other spatially continuous 
explanatory proxy variables geo-spectrotemporally geosampled from productive habitats for 
targeting other high density foci habitat sites which can help implement larval control strategies 
in any ecosystem -environment( Gu and Novak 2005, Jacob and Novak 2014) regradeless of 
mosquito species, abudance and distribution. 

        For compherensive Yellow fever predictive, model building, a conceptual quantity may be 
employeable in ArcGIS to quantitate the total productivity of an Ae egypti immature, capture 
point, georeferenceable, seasonally hyperproductive, oviposition sites  in a newly, deforested, 
rice agriculture, canopied LULCs for cartographically and regressively representing the 
population of emerging female mosquitoes from all habitats.  In so doing, total immature 
productivity can be partitioned into constituent parts from individual georeferenced capture 
point, seasonal habitats in ArcGIS in an irrigated African, rice-village, agro-ecosystem. In so 
doing, the effect of time series, larval interventions could be optimally represented by 
corresponding reductions in the total productivity in ArcGIS from the treated habitats. This 
model framework has two advantages over most models in literature currently which naivingly 
construct intervention forecasting paradigms using the assumption is that  a general larval 
population count from one geosampled explanative “habitat” is identical for all habitats. First, 
although, immature habitat-based eco-epidemiological, vulnerability, endmiec, trasnmission-
oriented, forecasting models are generalizable to a certain extent [e.g., geoclassifiable weekly 
geo-spectrotemporally uncoalesced, sub-meter resolution, near infra-red (NIR), meterological, 
wavelength radinace], they are implicit regarding both numbers and geolocations of habitats ( see 
Jacob 2009). Second, the models can be specified with cartographically pertinet, empirical data 
employing geo-spectrotemporally, geospatially, orthogonalized, elucidative, uncoalesced, sub-
meter resolution, (e.g., Quickbird 0.61m visible and NIR) sub-mixel, iteratively, quantitatively 
interpolative, signature estimates of habitat productivity ( Jacob and Novak 2014). This new 
iteratively interpolative, model framework allows experimenters to examine impacts of larval 
interventions from the perspective of georeferenceable, seasonally geosampled,, seasonal 
habitats by delving into the complexity associated with landscape juxtapositions of individual 
habitats using newer remote technologies. 
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        Specifically employing an eigenfunction decomposition algorithm may  quantify residual 
autocorrelation error coefficients in  sub-meter resolution, eco-epidemiological, bidirectional,  
radiance iterative interpolator for  addressing the issue of observational correlation among  
georeferenced, georeferenceable, Aedes mosquito habitat, probabilistically regressable, empirical 
data. paradigms.  In the mathematical discipline of linear algebra, eigendecomposition or 
sometimes spectral decomposition is the factorization of a matrix into a canonical form, whereby 
the matrix is represented in terms of its eigenvalues and eigenvectors ( Griffith 2003). Only 
diagonalizable matrices can be factorized in this way. A (non-zero) vector v of dimension N is an 
eigenvector of a square (N×N) matrix A in a vector arthrpod-related, risk model if it satisfies the 
linear equation where λ is a scalar, termed the eigenvalue corresponding to v( Jacob et al. 
2009). That is, the eigenvectors are the vectors that the linear transformation A merely elongates 
or shrinks, and the amount that they elongate/shrink by is the eigenvalue. The above equation is 
called the eigenvalue equation or the eigenvalue problem.This yields an equation for the 
eigenvalues  p(λ)  isthe characteristic polynomial, and the equation, 
called the characteristic equation, is an Nth order polynomial equation in the unknown λ. ( 
Griffith 2003) This equation will have Nλ distinct solutions, in a yellow fever forecast, 
vulnerability model  where 1 ≤ Nλ ≤ N . The set of solutions, that is, the eigenvalues, is called the 
spectrum of A( Griffth 2003)  An experimenetre may factor p 
as  in a datset of regressed geo-
epsctrotemrpoally uncoalesced, YFV-related diagnostic, clinical, field or remote geosampled, 
variables The integer ni is termed the algebraic multiplicity of eigenvalue λi (Anselin 1995). The 

algebraic multiplicities in the model would then  sum to N: For each eigenvalue, λi, we 
have a specific eigenvalue equation  In so doing, there will be 1 ≤ mi ≤ ni linearly 
independent solutions to each YFV-related, iteratively interpolative,  eigenvalue equation. The 
mi solutions are the eigenvectors associated with the eigenvalue λi( Griffth 2003). The integer mi is 
termed the geometric multiplicity of λ ( Cliif and Ord 1971)i. It is important to keep in mind that 
the algebraic multiplicity ni and geometric multiplicity mi may or may not be equal in a 
forecasting, vulnerability, eco-epidemiological, predictive risk model, but the resdiual forecasts 
will always have mi ≤ ni. The simplest case is of course when mi = ni = 1 in a yellow fever model. 
The total number of linearly independent eigenvectors, Nv, may be then calculated by summing 
the geometric multiplicities 

        If an experimenetr lets A be a square (N×N) matrix in a yellow fever eco-epidemiological, 
vulnerability model  with N linearly independent  diagnostic, clinical, field or remote geo-
spectrotemporally iteratively interpolative eigenvectors, Then A can be 
factorized as  where Q is the square (N×N) matrix whose ith column is the eigenvector 

of A and Λ is the diagonal matrix whose diagonal elements in AUTOREG  are the 
corresponding eigenvalues, i.e., . Note that only diagonalizable matrices can be 
factorized in this way. For example, a defective, YFV-related, diagnotsic, time series dependemt, 

probabilistic matrix cannot be diagonalized. In linear algebra, a defective matrix is a square 
matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. 
In particular, an n × n matrix is defective if and only if it does not have n linearly independent 
eigenvectors.(Griffth 2003) . The yellow fever regressed spatsil fielter , orthogonalized, 
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synthetic, eigenvectors  would be  normalized, but they need not be. A non-
normalized set of eigenvectors, can also be used as the columns of Q in the 
model. That can be understood by noting that the magnitude of the eigenvectors in Q gets 
canceled in the decomposition by the presence of Q−1 during the regression. 

       Taking a 2 × 2 real matrix as an example to be orthogonally decomposed into a 
explanative, time series, diagonal matrix of a yellow fever, heursitically  optimizable, eco-
epidemiological, sub-meter resolution, endmember dataset of georeferenceable covariate 

coefficients  using a multiplication of a non-singular matrix .Then 

, for some real diagonal matrix . 

Shifting to the right hand side:would then render  

The above equation can be decomposed into 2 simultaneous equations: 

 Factoring out the eigenvalues and :  

              Letting , this could render  two elucidative, time series, vector 

equations: which  may be cartographically  represented by a single vector equation 
involving 2 solutions as eigenvalues:  where  would represent the two  diagnostic 
YFV-related, geo-epsctrotemporal, diagnostic, explicative, clinical, field or remote geosampled, 
sub-meter resolution, decomposed eigenvalues and ,  which would represent the vectors 

and . 

         Shifting to the left hand side of the probabilistic, yeallow ferver, time series paradigm  
and factorizing  would then render .Since  would be  non-singular in the 
explanatorial, resdiual, orthogonlaized, uncoalesced forecasts taregting the hypeproductive Ae 
egypti habitats on a newly trasnitioned, sub-meter resolution, georeferenceable, discontinuous, 
forest canopied, dense or sparsely shaded, geoclassified, LULC to irrigated, riceland agro-
ecosystem, ovipoistion, immature, capture point, seasonal habitat, in an African agro-village 
complex it is essential that is non-zero. Therefore,  Considering the determinant of 

, in the vulnerabilit , yellow fever, eco-epidemioloigical, forecasting model would then  
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reflect .Thus  where the solutions of the eigenvalues for the 
matrix  would be  or , and the resulting diagonal matrix from the 

eigendecomposition of  would be  ..Putting the solutions back into the above 

simultaneous equations . Solving the equations,  an expeimenter would then 
have and . Thus, the matrix  required for the optimal 

eigendecomposition of  in the yellow fever model would be  . 

   If matrix A can be eigendecomposed and 
if none of its eigenvalues are zero in  the predictive risk model for taregting hyperproductive Ae 
egypti riceland habitats on newly trasnitioned discontinuous, forest-canopied,sub-meter 
resolution, geoclassified LULCs on rice agriculture , sub-meter resolution, geoclassified LULC, 
then A would be nonsingular and its inverse would be  given by  

           Furthermore, because Λ is a diagonal matrix in a robust, geo-spectrotemporal, 
geosampled, yellow fever, eco-epidemiological, forecast, vulnerability model, its inverse would 

eb  easy to calculate:  [1.1]When eigendecomposition is used on a matrix of 
measured, regressable diagnostic, YFV-related , sub-meter resolution, clinical, field or remote 
geo-spectrotemporally geosampled, georeferenceable data, the inverse may be less valid when all 
eigenvalues are unmodified in  equation 1.1. This is easily realized since eigenvalues become 
relatively small when  their contribution to the inversion is large ( see Griffth 2003). Those  YFV 
eigenvalues near zero or at the "noise" of the measurement system for the diagnostic, explicative,  
yellow fever, model estimators  would have undue influence and would hamper solutions (e.g., 
remote detection of explanatively significant covariates associated to a transitioned,  forest, 
discontinuously canopied, sub-meter resolution, geo-spectrotemporally  geoclassified LULC  
using the inverse. 

     Two mitigations have been recently proposed by Jacob et al. 2015 for 1) truncating small/zero 
S. damnsoum s.l. eigenvalues for  extending the lowest reliable eigenvalue to those below it in a 
forecasting, vulnerability, eco-epidemiological, endmember , sub-meter resolution, probabilistic 
paradigm. The first mitigation method  is similar to a sparse sample of the original matrix for  
removing components that are not considered valuable in the model. However, if the solution or 
detection process is near the noise level,  Jacob et al. (2015) found that truncating may remove 
components that influence the desired solution. The second mitigation extended the  time series 
S. damnosum s.l. synthesized , sub-meter resolution, immature, capture point, residual eigenvalue 
so that lower values has much less influence over inversion, but still contributes, such that 
solutions near the noise was found. 
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In Jacob et al. (2015) the reliable eigenvalue wa sfound by assuming that eigenvalues of 
extremely similar and low value were a good representation of measurement noise  in a 3-D 
frecasting vulnerability, sub-meter resolution, georeferenceable, S. damnsoum s.l. iterative 
stochastic interpolator. The authors also found that the eigenvalues are rank-sorted by value, then 
the reliable eigenvalue can be found by minimization of the Laplacian of the sorted eigenvalues: 

where the eigenvalues are commonly subscripted with an 's' to denote being sorted. 
The position of the minimization is the lowest reliable eigenvalue (Griffth 2003). In 
measurement systems for remoetly tergeting, newly trasnitioned, sub-meter resolution,  
discontinuous, forest canopied, ArcGIS delineated LULC , seasoanlly trasnitioned  to a Ae 
egypti, rice agriculture , hyperproductive, immature, capture point, georferenceable, geosampled  
habitat , the square root of this reliable eigenvalue could be  the average noise over the 
components of the system. 

Conventional ANOVA may be inappropriated to simultaneously deal with independent 
variables of both categorical (e.g., habitat type) and continuous predictors (e.g., vegetation 
LULC coverage and distance to the nearest house.Jacob et al. (2008). Autocorrelation statistics 
may be generated using datasets of, geospectrotermporally uncoalesced seasonally prolific, Ae 
egypti signaturizable, sub-meter resolution  LULC , paramterizable predictors on newly 
transitioned deforeseted, rice agriculture, oviposition site in an expanding, irrigated, African 
riceland agro-ecosystem within a a negative binomial regression matrix with  a non-homogenous 
mean  which may reveal that the ouputs generated from the residual forecasts. Commonly, over-
Poission variation occurs in vector medical entomological, real-time , sub-meter resolution, eco-
epidemiological, vulnerability models especially when targeting forecasts of prolific, 
georeferenceable, hyperproductive, oviposition  sites. Overdispersion occurs  in spatial filter 
hierarchical models commonly due to to outliers (Griffith 2003). Spatial outliers in  empericial 
dataset of vector insect larval habitat, seasonally, geo-spectrotemporally geosampled, 
fractionalized, time series, iteratively interpolative, endmember  data analyses can generate a 
misspecified model ( Jacob et al. 2012, Griffith 2006 ). Therafter, an expeimenter may employ 
the spatial filter, orthogonalized, endmember spatial filter, synthetic eigenvectors  to determine if 
the  Aedes geo-spectrotemporally geosampled, immature, capture point, data represent positive 
or negative latent autocorrelation in   time series clusters constructed from varying and constant, 
elucidative, endmember, predictors on newly transitioned, deforested, sparsely or dense shaded, 
discontinuous, rice agriculture, immature habitat, geoclassified LULC. 

             
In order to quantitate, explanatively, residualized heteroskedaticity( i.e., uncommon 

variance) among the optimal regressable dataset of  diagnostic, YFV, clinical, field or remote 
geo-spectrotemporally geosampled, georeferenceable paramterizable covariates  in the spatial 
filter, hierarchical, cluster-based, eco-epidemiological models. Heteroskedascity occurs when the 
standard deviations of a sampled variable, monitored over a specific amount of time is non-
constant, (Hosmer and Leneshew 2000). Non–homoskedastic quantiative yellow fever 
endmember decomposed, iteratively intrepolative, explanative, georeferenceable variables can 
violate the assumption of common variance in an entomological, real-time, cartographic, 
logistic/Poisson predictive, geographic, forecast, vulnerability model especially when seasoanlly  
targeting productive, immature habitat, Ae egeypti, eco-epidmiological,  sentinal site, capture 
points on a newly transitioned deforested,  irrigated, rice agriculture, sub-meter resolution, 
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imaged ArcGIS geoclassified LULC. Non-quantification of heteroskedastic parameters in a 
vector insect larval habitat, endmember distribution model can generate specification error 
distrinution covariates). Homoskedastic variables can violate the assumption of common 
variance in an entomological, predictive, geographic, forecast, vulnerability, eco-
epidemiological, forecasting vulnerability  model targeting productive, immature habiat capture 
points on a newly transitioned deforested  irriagted rice agriculture , capture point. For example,  
Jacob et al. (2009) employed  an error autocovarite matrix and orthogonalized,  sub-mter 
resolution ( i.e., panchromatic QuickBird) spatial filter eigenvectors in AUTOREG to spatially 
adjust georeferenced, predicted prolific,   An. arabiensis larval habiats in ArcGIS of  an irrigated, 
riceland, agro-village complex in the Mwea Rice Scheme in Central Kenya 

            In order to mathematically theorectical and optimally operationally logical idea of Gu and 
Novak (2005) for  impelmenting yellow fever control staregeies in a newly deforested , rice 
agriculture,  habiutat in an irrigated African, agro-village environment sub-meter resolution 
LULC  three scenarios of  larval control (YF1, YF2, and YF3), can br assumed. For optimally 
regressively qualitatively quantitating transitional ArcGIS geoclassifiabel, sub-meter resolution, 
imaged, explanatorial, prolific,  uncoalesced, LULC, Ae egypti, ovipoistion  irrigated, 
georefernced, ricefield, ploughed habitats, for example,  YF1 would  represent a situation in 
which all the immature, capture point, geosampled habitats were identical in contribution to the 
total productivity P. This scenario is similar to the assumption of Killeen and others26 except that 
Gu and Novak (2005) measured productivity as proportional contributions of individual habitats 
rather than absolute numbers of emerging mosquitoes. Clearly, this difference is trivial in this 
scenario due to the assumption of identical habitats. For YF1, reduction in the total productivity 
P would then be  a linear function of levels of coverage (C) of habitats under treatment 

[1.1]  

       In the next two scenarios, more  realistic explicative situations where Ae. egeypti immature  
habitat productivities geo-spectrotemrpoally geosampled on deforested canopied LULC 
trasnitionial, riceland seasonal habitats would not be not uniform in an irrigated African ago-
village ecosystem with some prolific habitats contributing extremely large amounts of emerging 
adults.This data may be orthogonally devised in ArcGIS cyberenvironmental geodatbase  (see 
Jacob and Novak 2014). For untargeted interventions, YF2 would ideally represent 
georeferenceable, geocalssifiable,  seasonal aquatic habitats which may be randomly chosen for 
treatment. This scenario would occur when larval control is conducted with little knowledge of 
habitat productivity. Because of enormous variability in adult productivity observed in the 
field,12,27,28 the majority of the total, Ae egypti larval productivity in an ArcGIS, simulated, 
forecasting, vulnerability, deforested, canopied LULC to ricefield ploughed, capture point, 
geosampled habitat, for instance, may actually originate from a small number of highly prolific 
habitats on the LULC. Under this circumstance, the random choice of habitats for treatment is 
likely to miss those prolific habitats unless large proportions of habitats are selected for treatment 
using newer  cartographic gadgeteries ( e.g., gridded ArcGIS sub-meter resolution matrices, 
obeject based classifiers in ENVI, etc) Therefore, the relationship between P and C may  be 
optimally  generally describeable using a logistic function in ArcGIS as   

[1.2] 
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           Alternatively, targeted yellow ferver interventions YF3 could represent a scenario where 
the interventions are targeted toward highly productive immature habitats on a georeferenceable, 
explanatively geoclassifieable, newly trasnitioned, deforested canopy to rice agriculture, 
immature, seasonally geo-spectrotemporally geosampled  habitat. In so doing, regressive 
quantization of small proportions of the georfereneced, aquatic habitats may obtain large 
proportional reductions in the total Ae egypti, immature productivity on these LULC change 
sites. In so doing, the relationship between P and C can then be approximated using an 
exponential curve  

[1.3]  

where δ is a constant reflecting degrees of aggregation in productivity among the immature 
geosampled habitats on the  newly trasnitioned deforested rice agriculture habitat 

      The equations in 1.1 to 1.3 described here can be easily  modified in ArcGIS to optimally 
represent a wide spectrum of larval control practices in newly transitioned, georeferenceable,  
deforested, sparsely or densecanopied,  geoclassifiable, sub-resolution, time series, uncoalesced, 
iteratively interpolative, seasonally tranitioned,  riceland LULCs using meterological and other 
YFV-related, illuminatively diagnostic, clincial, field or remote, geosampled, Ae egypti, 
explanative, geo-spectrotemporal, immature habitat,k sub-meter resolution  regressors. In a 
specific larval control program, the relationship between P and C should be empirically 
estimated based on data of both larval and habitat surveys. For instance, the habitat productivity 
on a deforested, sparsely shaded, discontinuously canopied, rice-flooded, seasonal, 
georeferenceable, prolific oviposition LULC site  can be estimated as a product of estimates of 
emerging adults or pupal density (Di) and size (Si) of habitat i. Therefore, for a focal area on a 
seasoanlly transitioned, Ae egypti, irrigated, riceland, African, expanding agro-village, eco-
agriculture, signaturizable., iteratively quanatiaively interpolative, orthogonally quantiatively 
decomposeable, sub-meter resolution,   geoclassifiable, LULC with n immature habitats, the 
constituent contribution (Mi) to the total productivity from the capture point  i imay be  estimated 

as [1.4]. 

Because habitats often exhibit seasonal changes after rainfall patterns in tropical Africa, ranking 
and prioritizing immature, seasonal, geo-spectrotemporally, geosampled, signaturizable, sub-
meter resolution, seasaonlly imaged, immature, habitats in an ArcGIS cyberenvironment need to 
to track the temporal changes in habitat productivity  ( see Jacob and Novak 2014).  

Note that P, ranging from 0 to 100%, would be  the percent productivity associated with 
levels of coverage of immature  habitats under treatment in a yellow fever, , vulnerability-
oriented, seasonal,  ArcGIS-derived,  robust, agro-ecosystem, irrigated riceland, sub-meter 
resolution, capture point, eco-epidemioloigical forecasting model. It has been well recognized 
that the goals of any control intervention should be remotely established based on both mosquito 
abundances and transmission intensities in African riceland environments (Jacob et al. 2007, 
Muturi 2007, Mwnagangi et al. 2008, Mururi et al.  2007). To parsimoniously eco-
geographically  precisely cartographicallyu  represent seasonal variability in mosquito abundance 
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in various irrigated, deforested, sub-meter resolution, uncoalesced, geo-spectrotemporalized, 
ArcGIS geoclassifiable, georeferenceable, LULC, riceland areas, a parameter γ may be 
introduced to the empirical eco-epidemiological, optimizable datset of diagnostic geosampled 
regressands representing the base level of emerging female, Ae egypti mosquitoes, per person, 
per day. γ may reflect local diagnostic, clincial, field or remote characteristics influencing latent,  
mosquito-related, habitat  proliferation  of suitability charateristics such as abundance and 
quality of larval habitats in transitoned, deforested,  sparse or densely, discontinuously canopied 
LULC to rice agriculture geoclassified LULC in ArcGIS-derived,  georeferenceable, sub-meter 
resolution, imaged, area. Therefore, emerging females per person per day under the scenarios of 
yellow fever larval interventions can be calculated as γP. Two base levels γ = 1 and 5 for the 
intervention analysis may be further   exploited as these values may provide rise to low and 
intermediate levels of transmission intensities. In practice, parameter γ may not  be directly 
measurable in the new ricefields , but it may  be estimated from man-biting rates or 
entomological inoculation rates(EIR).  

    Transmission intensity, measure by EIR, is a fundamental predictive explanator of incidence 
and prevalence of  YFV 31–35 Conventionally, EIR is estimated as a product of man biting rate 
(ma) and proportion of sporozoite (s) infected mosquitoes as EIR = mas. Because only 
proportions of emerging female mosquitoes that survive the extrinsic incubation period are 
capable of transmitting the parasite ( Novak et al. 2012), assuming that daily mosquito mortality 
(d) is age-independent may substitute m with γPe–dT in equation 1.4. Therefore, EIR is 
calculatable in an expanding, georeferenceable, irrigated African, rice-agriculture ecosystem due 
to increasing anthropogenic population employing  .The  computated values 
from the geo-spectrotemporally uncoalesced, non-orthogonalized, iteratively interpolative, sub-
meter-resolution, regressable,  georeferenceable, optimally parameterizable, seasonally 
georefernecable, prolific  sylvatic, Ae egypt,i LULC, ovipoistion site geosampled, covariate 
coefficients on a newly transitioned, discontinuous, forest-canopied, LULC to riceland irriigted 
agriculture habitat may be  listed  seasonally in an ArcGIS geodatabase cyberenvironment. These 
robustifiable values may be also examined employing newer autorgressive paraidgms in SAS ( 
PROC LOGISTIC). These model estimates can yield monthly EIR values using geosampled Ae 
egypti ,rice agro-village, ecosystem, data variables., for example, for the two levels of γ, 
respectively which would then be subsequently overlaid in ArcGIS onto georeferenceable, 
gridded, sub-meter resolution, stratifiable, deforested, canopied, rice agriculture, time series,  
expanding interface regions These EIR levels may correspond to low and intermediate levels of 
YFV transmission intensity in a geoclassifiable, georeferenceable, irrigated African, complex 
ecosystem  especially on newly transitioned deforested, dense or sparsely, discontinuosly 
canopied, LULC along the periphery of the riceland agro-village. An experimenter may extend 
the analyses to situations of high yellow fever transmission in these LULCs  because then the 
relationships between incidence and prevalence and transmission intensity in a georefernceable, 
irrigated, riceland agroecosystem, seasoanlly prolific, Ae egypti immature habitat may be  
complicated to quantiate regressively due to inconspciocu convulated,  diagnostic, clinical, field 
or remote, time series  variables ( e.g.,  acquired protective immunity). Equation 1.4 may 
establish a quantifiable  relationship between EIR and the total productivity P, which in turn amy 
be  a function of the level of coverage of larval habitats C based on Equations 1.3. Therefore, it is 
possible to incorporate control interventions targeting adult mosquitoes such as with insecticide 
treatment by manipulating mortality rate d in Equation 1.4.  
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Next, an experimenter may examine how sub-meter constructed LULC changes in an 
ArcGIS cyberenvironment  in newly transitioned, deforested canopy into rice agriculture 
irrigated African, ecosystem immature, capture point, georfernceable, explanative Ae. aegypti 
habitats,  and EIR influence both yelloe fever  incidence and prevalence. Association between 
incidence and EIR is affected by several entomological factors including vector competence and 
host susceptibility. Several studies have shown that not every infectious bite leads to an infection 
in the susceptible host.39–41 There are evidences that infection rates tend to decline with age sting 
an enhanced protective immunity based on repeated exposures.37 Additionally, various mosquito 
species may have different vector competence depending on geolocational, seasonal, 
quanatifiable, environmental attributes. In traditional geo-spectrotemporal, geospatial, vector 
arthrpod, forecasting, vulnerabilty-orinted,  habitat models, this complexity may be  incorporated 
into a parameterizable covariate estimator reflecting the probability of an uninfected person 
becoming infected due to an infectious bite b. Assuming that the outcomes of individual 
infectious bites on an uninfected host are independent, a probabilistc   geospectrotermpoal, sub-
meter resolution, autoregressive  habitat model may decsribe  describe the probability of 
infection (I) as a function of EIR on a ArcGIS, explicatively georferenceable newly trasnitioned,  
deforested, sparsely or densely canopied, sub-meter resolution, geoclassifiable, LULC to 
irrigated African, rice agriculture, oviposition, immature, capture point, georeferenceable site 
employing - [1.5].  

If assuming exposure to infectious bites of sylvatic, Ae egypti is uniform among humans 
on transitional, geoclassifiable, ArcGIS-derived, sub-meter resolution LULC form forest canopy 
to rice agriculture LULC in an irrigated African, riceland ecosystem, the probability of infection 
I would then be  equivalent to the proportion of uninfected persons (N) who were exposed and 
then became infected. Therefore, the incidence rate can be approximated as a product of N and I. 
Examining the relationships between yellow fever infection rates and the three scenarios of 
larval control  of Gu and Novak 2005  may help remotely trageting prolific Ae. egypti aquatic 
immature these habitat, capture points as decribed in  Jacob and Novak ( 2014). 

   In situations where larval control interventions, equation 1.5 can be modified to incorporate the 
amount of predicted seasoanlly geo-spectrotemporally, geosaptially geosampled, immature  
productivity counts data. By dividing the two groups based on whether  the dependent/ respone 
variable  is an explanative, count variable (i.e.,  non-binarized) 
in (1.7] may optimally computate 
iteratively interpolative, georfernceable explanators  where w is the percent of individual habitat 
predicted larval contributions, f is the percent reduction in exposure based on productive Ae 
egypti oviposition, transitioned, LULC, sub-meter resolution capture point , immature  habitat 
geo-spectrotemporally geosampled  paramterizable covariates within a gridded, ArcGIS-derived,  
geoclassifiable, LULC, change map.  

      Finally, the established relationship between prevalence (p) and EIR may be employed  to  
examine the impact of larval control on  YFV prevalence in an expanding irrigated, African, 
riceland agro-ecosystem due to increasing anthropogenic population. The relationship between 
prevalence and EIR may  be described in ArcGIS cyberenvironment by the following equation in 
areas of low and intermediate transmission in a trasnitioned forest-canopy LULC to rice-
agriculture, eco-georeferenceable,  sylvatic, Ae.aegypti, oviposition sites without consideration 
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of acquired protective immunity  [1.8]. where r is recovery rates, as 
measured by the reciprocal of the infection period. For calculation purposes, EIR and r should 
have the same unit, either daily or monthly. If, for example, r = 0.01 time series, paramterizable 
covariates influencing YFV endmeic trasnmission may be regressively and cartographically 
illustrattable in ArcGIS and ArcGIS friendly software packages ( e.g.,Python, ENVI ). Previous 
studies on the coastal Kenya35 and others45  have suggested much lower recovery rates in 
medically entomological, vector arthrpod-related immature habitat prognosticating, endemic, 
trasnmissison models. Generally, adoption of lower recovery rates makes the effect of larval 
control on prevalence less remarkable than observed (Gu and Novak 2005) 

      In contrast, targeted interventions YF3 can represent a scenario where control interventions 
are targeted toward highly productive Ae. aegypti habitats on trasnitional landscapes in an 
irrigated riceland, eco-epidemiological, georeferenceable, study site. Therefore, management of 
small proportions of aquatic habitats can optimally obtain large proportional reductions in the 
total productivity. The relationship between P and C can also be approximated employing an 
exponential curve  

[1.9]  

where δ is a constant reflecting degrees of aggregation in productivity among prolific, immature, 
geo-spectrotemrporally geospatialized, immature  habitats  

Equations 1.1–1.3 described here can be easily modified to represent a wide spectrum of 
Ae. aegypti  larval control practices in an expanding, irrigated African, riceland agro-ecosystem, 
village complexes.  In a specific larval control program targeting newly  transitional, deforested, 
discontinuously canopied, geocalssifiable, georefernceable, time series, sub-meter resolution,  
LULCs may  quantiate  the relationship between P and C  employing empirically estimated data 
from  both larval and habitat surveys. For instance,an Ae egypti immature, capture point, 
previously deforested,sparsely  canopied, LULC habitat productivity can be estimated as a 
product of estimates of emerging adults or pupal density (Di) and size (Si) of the rice agriculture, 
habitat i. Therefore, for a focal area with n habitats, the constituent contribution (Mi) to the total 
productivity from the vector arthropod habitat i could be estimated as 

[1.11] 

Because habitats often exhibit seasonal changes after rainfall patterns in tropical Africa, ranking 
and prioritizing habitats need to proceed to track the temporal changes in LULC change habitat 
productivity using sub-meter resolution, remotely sensed , georeferenceable wavelength, 
meterological data  and an optimizable empirical datast of explicatively diagnostic, clinical, field 
or remote,geo-spectrotemporally geosampled,optimally  parameterizable, uncoalesced covariate 
coefficient values. Note that P, ranging from 0 to 100%, would be the percent productivity 
associated with levels of coverage of the seasonally prolific, sylvatic, Ae. aegypti rice-agriculture 
habitats on a transitioned, discontinuous, deforested, canopied LULC under treatment. 

            Operationally the goals of any yellow fever control intervention should be established 
based on both mosquitoabundances and transmission intensities To represent variability in 
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mosquito abundance in various LULC areas (e.g., transitioned, forest canopy to ploughed 
riceland, immature, capture point, georeferenceable, immature habitat plot). By  introducing a 
time series, parameterizable, meteorological covariate γ as the base level of number of emerging 
female mosquitoes per person per day, γ may aid in reflecting local characters influencing 
mosquito proliferation such as abundance and quality of larval habitats in a new rice-agriculture 
expanading LULC, habitat area. Therefore, emerging females per person per day under the 
scenarios of larval interventions can be calculated as γP.  

        Transmission intensity, measure by EIR, is a fundamental predictor of incidence and 
prevalence of  vector arthpod related diseses 31–35 Conventionally, EIR is estimated as a product 
of man biting rate (ma) and proportion of sporozoite (s) infected mosquitoes as EIR = mas. 
Because only proportions of emerging female mosquitoes that survive the extrinsic incubation 
period are capable of transmitting the parasite, it is vital to quantaite all geospectrotemporal 
geosampled, diagnostic, YFV-related, clincial, field or remote georfrenceable explanators. By 
assuming that daily mosquito mortality (d) is age-independent, an experimenter could substitute 
m with γPe–dT in equation1.4. In so doing. EIR could be optimally calculated in a expanding 
irrigted African, riceland agro-ecosystem   employing  [1.12]. 

       Precisely regressed, explanatorial, seasonal trasnitioning, LULC estimates may yield 
monthly EIR values (e.g., 0.55 and 3.71)or  annual values  (e.g., 6.62 and 33.6), for optimally  
quantiting two levels of γ, respectively in a projected regressed, georfernceable geo-
spectrotemproal, optimaizable, eco-epidemiologiocal, dataset of uncoalesced, iteratively 
interpolative, sub-meter resolution, YFV-related  diagnostic, clinical, field or remote geosampled 
parameterizable, covariate coefficient, unbiased estimators. These EIR levels may correspond to 
low and intermediate levels of yellow fever transmission intensity typically found in tropical , 
irrigated, African, ,expanding agro-village ecosystems. The analyses may be up-graded to 
quantiate seasonal situations of high transmission because then the relationships between 
incidence and prevalence and  transmission intensity  may be stratified based in other variables 
(e.g., protective immunity) Equation 1.4 establishes a relationship between EIR and the total 
productivity P, which in turn may be  a function of the level of coverage of  Ae egypti , newly 
trasnitioned deforested canopied, cpature point larval habitats C based on Equations 1.3. 
Therefore, it is possible to incorporate control interventions targeting adult, sylvatic, Ae.egypti 
mosquitoes such as with  targeted,  prioritized, insecticides treatments  by manipulating seasonal  
mortality rate d in Equation 1.4.  

     Next, an experimenter can examine how LULC  changes and seasoanl  EIR influence both 
yellow fever  incidence and prevalence. Association between incidence and EIR is affected by 
several factors including vector competence and host susceptibility ( Novak 2012). Several 
studies have shown that not every infectious bite leads to an infection in the susceptible host.39–41 
There are evidences that infection rates tend to decline with age suggesting an enhanced 
protective immunity based on repeated exposures.37 Additionally, various unknown sylvatic 
deforested-canopy, YFV mosquito species may have different vector competence. In traditional 
forecasting, yellow fever, vulnerability, probabilistic paradigms, this complexity may be  
parsimoniously incorporated into a parameter reflecting the probability of an uninfected person 
becoming infected due to an infectious bite b on a transitioned deforested, time series, sparsely 
or dense, discontinuously canopied, georeferenceable, geo-spectrotemporally geosampled, 
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geoclassifiable, ArcGIS-derived, explanative, seasonal LULC to rice agriculture, flooded, Ae 
egypti, immature,capture point, sub-meter resolution topographic ArcGIS geo-classifiaction. 
Assuming that the outcomes of individual infectious bites on an uninfected host are independent, 
a YFV experimenter can use a binomial model in GEN MOD  to describe the probability of 
infection (I) as a function of EIR in  [1.5 ] 

       In the "Criteria For Assessing Goodness Of Fit" table displayed in tha GEN MOD  Output , 
the value of the deviance in a forecasting YFV vulnerability newly transitioned forest-canopeid 
LULC to rice agriculture  LULC, the residuals  (remoetly targeting hypeproductive, sylvatic,   Ae 
egypti , oviposition sites) may be divided by its degrees of freedom is less than 1. A -value is 
not computed for the deviance; however, a deviance that is approximately equal to its degrees of 
freedom is a possible indication of a good  model model fit. Asymptotic distribution theory 
applies to binomial data as the number of binomial trials parameter n becomes large for each 
combination of explanatory variables. McCullagh and Nelder (1989) caution against the use of 
the deviance alone to assess model fit. The model fit for each observation should be assessed by 
examination of residuals. The OBSTATS option in the MODEL statement produces a table of 
residuals and other useful statistics for each observation.  

         In the "Analysis Of Parameter Estimates" GEN MOD tables may be displayed  by chi-
square values for the explanatory diagnostic, time series, clincial, field or remote geo-
spectrotemrpaolly geosampeld, georfernceable  variables which may  indicate that the parameter 
values other than the intercept term are all significant. The scale parameter may be set to 1 for 
the binomialized explanative, immature  sub-meter resolution ,forest-canopy to rice –agriculture 
Ae egypti , habitat distribution. An overdispersion analysis may reveal the value of “exterme” ( 
geospatial outiers) yellow fever ,seasonal observations may be indicated here. The preceding 
table may contain the profile, likelihood, confidence intervals for the explanatory variable sub-
meter resolution, geocalssifiable, LULC parameters requested with the LRCI option ( see 
ww.sas.edu). Wald confidence intervals may be  also displayed by default. Profile likelihood 
confidence intervals are considered to be more accurate than Wald intervals (see Aitkin et al. 
(1989)), which may be applicable to geo-spectrotemporally georefernceable, small  datasets of 
diganostic clinical , field or remote geosampled predictors. Specifying the confidence coefficient 
with the ALPHA= option in the MODEL statement may allow to see statistical parameter 
significance in the dataset.  The default value of 0.05 may, correspond to 95% confidence limits. 
Profile likelihood confidence interval (CI) of the elucidative, regressed, georeferenceable,   geo-
spectotemporally geosampled, explicative,YFV-related seasonally prolifi,c  Ae egypti 
parameterizable covariate estimators on transitioned,forest-canopy to rice agriculture LULCs 
may be optimally determined.  

 
 

The standard procedure for computing a CI for a parameter in a generalized linear model 
is by the formula: estimate _ percentile _ SE(estimate), where SE is the standard error ( Hosmer 
and Lemeshew 2002). The percentile is selected according to a desired confidence level and a 
reference distribution(a t-distribution for  diagnostic clinical, field or remote, sub-meter 
resolution  LULC regression coefficients in a linear model ) otherwise a standard normal 
distribution. This procedure is commonly referred to as a Wald-type CI. It may work poorly if 
the seasonal, geo-spectrotemporally geosampled, Ae egypit habitat georefernceable, distribution 
of the parameterizable covariate  estimators are markedly skewed or if the standard error is a 
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poorestimate of the standard deviation of the YFV-related explanative estimator. Since the 
standard errors in GLM’s are basedon asymptotic variances obtained from the information 
matrix, Wald CI’s from an eco-epidemiological, forecast, vulnerability,  YF remote sensing  
LULC deforested canopy LULC to rice agriculture LULC , sub-meter resolution model may 
perform poorly for small to moderate sample sizes. Profile likelihood CIs don’t assume 
normality of the estimator and appear to perform better for small samples sizes than Wald CI’S ( 
Fotehringham 2002).Nonetheless, for a time series,  forecasting, YFV-related , vulnerability, 
eco-epidemiological, probabilsic paradigm based on an asymptotic approximation – the 
asymptotic chi-square distribution of the log-likelihood ratio test statistic may be precisely 
quanatiated  

In statistics, a likelihood ratio test is a statistical test used to compare the goodness of fit 
of two models, one of which (the null model) is a special case of the other (the alternative 
model). The test is based on the likelihood ratio, which expresses how many times more likely 
the data ( e.,g, orthogonally decomposed, sub-meter resolution, gridded, YFV-reated, seasoanlly 
explanative , diagnostic clincial, field or remote, deforested canopy to rice agriculture, 
geoclassified LULCs are under one Ae egypti  habitat model than the other. This likelihood ratio, 
or equivalently its logarithm, can then be used to compute a p-value, or compared to a critical 
value to decide whether to reject a yellow fever specified null model in favour of the alternative 
model. When the logarithm of the likelihood ratio is used, the statistic is known as a log-
likelihood ratio statistic, and the probability distribution of this test statistic, assuming that the 
null model is true, can be approximated using Wilks’ theorem ( Cox 1974) 

      If the  seasoanlly related, explanatively  diagnostic YFV, clincial, field or remote , deforested 
canopy to rice agriculture, geoclassified, LULCs quantized distributions of the likelihood ratio 
correspond to a particular null and alternative hypothesis it can be explicitly used to determine  if 
sub-meter, spatial resolutio,n  imaged variables regions  can be employed to accept/reject the null 
hypothesis. In most cases, however, the exact distribution of the likelihood ratio corresponding to 
specific hypotheses for an LULC forecasting vulbnerability yellow fever, geo-spectrotempora,l 
probabilistic paradigm is very difficult to determine. A convenient result for such a model may 
be that as the sample size approaches , the test statistic for a nested YFV 
predictive, ricleand irrgated agro-costem model for remote targeting prolific, Ae egypti habitat  
model will be asymptotically -distributed with degrees of freedom equal to the difference in 
dimensionality of and .This means that for a great variety of hypotheses testing employing 
a sub-meter resolution, ArcGIS, seasonally explanative,  time seriesm risk  anlyses for 
aggregating statistics about trasnitions in peripheral,sub-meter resolution,  forest-canopy LULC 
to riceland agro-ecosystrem, the likelihood ratio may be optimally  employed using for the 
geospectrotemporal geosampled uncoalesced, itearatively quantatively interpolative. In so doing 

 may be compared to the value corresponding to a desired statistical significance as 
an approximate statistical test for determining exact sub-meter resolution LULC parameterizable 
regressors. Employing the Wilks theorem.. 

       Wilks’ theorem assumes that the true but unknown values of the estimated parameters are in 
the interior of the parameter space. This is commonly violated in, for example, random or mixed 
effects models when one of the variance components is negligible relative to the others. In some 
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such cases with one variance component essentially zero relative to the others or the models are 
not properly nested, Pinheiro and Bates showed that the true distribution of this likelihood ratio 
chi-square statistic could be substantially different from the naive , often dramatically so.[7] 
The naive assumptions could give significance probabilities (p-values) that are far too large on 
average in some cases and far too small in other. 

        In general, to test random effects, Griffith (2005)  recommends  using restricted maximum 
likelihood (REML) for optimally  quantizing parameterizable, iteratively interpolative, vector 
arthropod-related, time series, uncoalesced,, probabilistic, covariate coefficients. In statistics, the 
REML approach is a particular form of maximum likelihood estimation which does not base 
estimates on a maximum likelihood fit of all the information, but instead uses a likelihood 
function calculated from a transformed set of data, so that nuisance parameters have no effect ( 
Bartlett. 1937). In the case of variance component estimation, the original geo-spectrotemrpoally 
geosampled, YFV-related,  clinical, field or remote predictor datasets may be  replaced by a set 
of contrasts calculated from the data, and the likelihood function may then be  calculable from 
the probability distribution of these contrasts, according to the forecasting vulnerability model 
output. In particular, REML is useful as a method for fitting, linear, mixed, entomological  
models for targeting, sub-meter resolution, LULCs of immature, hyperproductive 
georeferenceable, geosampled, prolific habitats ( Jacob et al. 2013). In contrast to the earlier 
maximum likelihood estimation, REML can produce unbiased estimates of variance and 
covariance parameters (Hosmer and Lemeshew 2002). 

Simulated tests setting employing one and two random effects variances to zero may help 
quantiate LULC paramterizable, sub-relaution estimators of rica-agrovillage, eco- agriculture 
LULC into discontinuous, forest canopy LULC. Fortunately, the simulated p-values with k 
restrictions most closely match a 50-50 mixture of and . (With k = 1, is 0 
with probability 1. This means that a good approximation may be  .Pinheiro and Bates 
(2000) also simulated LULC tests of different fixed effects. In one test of a factor with 4 levels 
(degrees of freedom = 3), they found that a 50-50 mixture of and was a good match 
for actual p-values obtained by simulation – and the error in using the naive “ was not  too 
alarming. However, in another test of a factor with 15 levels, they found a reasonable match to 

– 4 more degrees of freedom than the 14 that one would get from a naive (inappropriate) 
application of Wilks’ theorem, and the simulated p-value was several times the naive .” 
They authors concluded that for testing fixed effects, it’s wise to use simulation. Further the 
authors provided a “simulate.lme” function in their “nlme” package for S-PLUS and R to support 
doing that. To be clear, these limitations on Wilks’ theorem do not negate any power properties 
of a particular likelihood ratio test in a predictive, time series, explicative,  yellow fever, 
forecasting vulnerability, sub-meter resolution, probabilsic paradigm only the use of a 

distribution to evaluate its statistical significance. 

 If assuming exposure to infectious bites is uniform among humans on a newly 
transitioned riceland, sub-meter resolution geoclassifiable,geo-spectrotemporalnor geo-
spatiotemrpoal, eco-epidemiological, optimizable LULC, the probability of infection I would be 
equivalent to the proportion of uninfected persons (N) who are exposed and then became infected 
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in a trasnitional forest canpy, sub-mter resolution Ae egypti , riceland agro-ecosystem, immature, 
capture point, eco-epidemiological, georferenecable, geosampled,  habitat. Therefore, the 
incidence rate in a irrigated rice-agro-village, expanading ecosystem due to increaing 
anthropogenic populations can be approximated as a product of N and I. Examining the 
relationships between infection rates and the three scenarios of Aedes larval control may be 
optimally differentiated linerally and spatially by setting N = 100 and b = 0.5 in a GLM in a 
ArcGIS quanatited trasnitioned peripheral forest canopy , sub-meter resolution LULC converted 
into rice agriculture LULC in an agro- irrigated African ecosystem..  

    In situations where bednets are used in addition to larval control interventions, equation 1.5 
can be modified to incorporate the protection of bednets. This can be obtained by dividing the 
human hosts into two groups based on whether bednets are used on the transitioned agro-village 
complex area employing: [1.6] where w is 
the percent of individuals who slept under bednets, f is the percent reduction in exposure 
protected by bednets. Analyzing a situation where larval control interventions are combined with 
a bednet program in which half (w = 0.5) of the population sleeping under bednets with f = 80% 
may seasonally forecast,  hyperproductive, sub-meter resolution, sylvatic, Ae. aegypti, ,  LULC 
oviposition, capture points in an agro-village,georeferenceable, African,  irrigated complex. 

       Finally, an experimenter may the establish relationship between prevalence (p) and EIR to 
examine the impact of larval control on yellow fever prevalence in an irrigated georefernceable, 
African, riceland, environment seasonally geo-spectrotemrporally geosampled, LULC In so 
doing, the relationship between prevalence and EIR can be described by the following equation 
in ArcGIS for optimally revealing  LULC change areas of low and intermediate transmission 
without consideration of acquired protective immunity [1.7] where r is 
recovery rates, as measured by the reciprocal of the infection period. For calculation purposes, 
EIR and r should have the same unit, either daily or monthly. For instance, r = 0.01  may be 
employable as an explanatorial georeferenceable , geosampled Ae egypti decomposeable, 
seasonal quantized value which may be incorporated into some yellow fever  modeling studies of 
expanding irrigated African LULC into forest canopied LULC due to increasing anthropogenic 
populations. Generally, adoption of lower recovery rates makes the effect of larval control on 
prevalence less remarkable than observed  Gu and Novak 2005) 

      The optimizable, EIR, geometric, endmember, expanded definition of  a probability space in 
a geo-spectrotemporally prolific, geospatialized, ecogeoreferenceable, vulnerabiltiy-oriented, 
YFV, eco-epidemiological,  forecasting, ArcGIS model would be  a triple consisting of 
the sample space — an arbitrary non-empty set, the σ-algebra (also called σ-field) — a 
set of subsets of , called events, such that: 1) contains the sample space: ,2) is 
closed under complements: if , then also ,. is closed under countable unions: 
if for , then also  ( Wasserman 2004). The corollary from  De 
Morgan’s law is that is also closed under countable intersections: if for 

, then also  as defined using propositional logic and boolean algebra. 
De Morgan's laws are a pair of transformation rules that are both valid rules of inference which 
allow the expression of conjunctions and disjunctions purely in terms of each other via negation. 
In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the 
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values of the variables are the truth values true and false, usually denoted 1 and 0 respectively. 
(Neter 1990)  Instead of just employing elementary algebra determining where the interpolated 
values of the riceland oviposition sub-mwter resolution, forest-canopied, discontinuous immature 
habitat, seasonal sampled, signature, uncoalesced, LULC  variables are the main operations, the 
main operations of Boolean algebra are the conjunction and denoted as ∧, the disjunction or 
denoted as ∨, and the negation not denoted as ¬. It is thus a formalism for describing logical 
relations in the same way that ordinary algebra describes numeric relations. 

The probability measure — a function on such that P is countably 
additive.Hence, if is a countable collection of explanative, optimizable, pairwise 
disjoint forecasting, sub-meter resolution, uncoalesced, iteratively interpolative, geo-
spectrotemporal, newly transitioned, irrigated  riceland agriculture habitat LULC datsets, then 

where the measure of entire sample space in the model would be the 
probabilty zone  targeting, hypeproductive, seasonal, Ae. aegypti, immature, capture point, 
georeferenceable, aquatic  habitats on ArcGIS derived, discontinuous  land use land cover 
(LULC) polygons. For   describing newly trasnsitioned, African,  agro-village, riceland, 
peripheral boundaries into deforested, sparsely or dense, forest canopy ArcGIS geo-classifiable, 
LULCs as  equal to one: . 

 
 
Figure 1.1 De Morgan's Laws represented with  Venn diagrams  revealing a geoclassified 
LULC change area from deforesed sparsely canopied , Ae egypti oviposition sites protuding 
into a irriagted African ,riceland agro-ecosystem, tillering habitat hypothetical ArcGIS 1) 
Union of two  LULC datasets 2) Intersection of two LULC subsets 
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      Extending the definition of a probability distribution of one randomized,sub-meter resolution, 
deforested canopy to rice agriculture  LULC, explantively geoclassified variable to the joint 
probability distribution of two, geo-spectrotemporal, georeferenceable, YFV-related, sub-meter 
resolution, seasonal, Ae. aegypti, capture point, immature habitat,geosampled, random discretely 
diagnostic, geo-spatiotemporal or geo-spectrotemporal estimators  could be resolved, 

where 
 would be  the probability of given that  in the vulnerability 

endmember paradigm. The generalization of the preceding two explanatively, iteratively, 
quantitatively  interpolative,  forecasting, variable case would be  the joint probability 
distribution of  optimally, discretely randomized, georeferenceable, diagnostic, time series, 
YFV-related, clincial, field or remote, geo-spectrotemporally  geosampled semi-paramterizable 
variable dataset which could be subsequently quantitated as : 

 

    The PROBBNRM function can return the probability that an explicative seasonal orthogonally 
decomposeable, iteratively interpolative seasonally diagnostic, georeferenceable, explicative, 
clinical, field or remote uncoalesced, YFV, sub-meter reesolution,  geoclassifiable, ArcGIS-
derivable, LULC observation (X, Y) geosampled in an irrigated African, riceland, agro-
ecosystem complex with expanding peripheral boundaries into discontinuous, neighboring, 
sparsely or dense covered, forest-canopied, seasonal LULC   from a standardized bivariate 
normal distribution with mean 0, variance 1, and a correlation coefficient r, is less than or equal 
to (x, y). That is,a vulnerability, probabilistic, linear regression, of the parameterizable YFV 
estimators in the geo-spatrotemporal or geo-spectrotemporal, eco-epidemiologically geosampled, 
empirical, optimizable dataset  will  return the probability that X x and Y y got determining 
seasonal diagnostic predictors associated with irrigated,rice agriculture, ArcGIS 
geoclassiable,time series LULCs.  The following equation describes the PROBBNRM function, 
where u and v could optimally regressively represent a dataset of geo-spectrotemporally, 
uncoalesced, geosampled, sub-meter resolution, geoclassifiable, sylvatic, Ae-egypti ,LULC, 
probabilistic,eco-epidemiologically randomized, sub-meter resolution, endmember irriagted 
riceland agro-village variables x and y, respectively: 

 

    A PROBBNRM function YFV model may apply  the chain rule of probability to the forecasts 
targeting prolific, georeferenceable,  Ae egypti oviposition, capture points LULC sites on sub-
meter resolution, ArcGIS-derived predictive simulated maps of sparesely or dense  
shaded,discontinuous, forest canopy to rice-irrigated, geoclassified,   agro-village LULC. In 
probability theory, the chain rule (also called the general product rule) permits the calculation of 
any member of the joint distribution of a set of random variables using only conditional 
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probabilities( Hazewinkle 2001). An experimenter may optimally consider an indexed set of geo-
spectrotemporally geosampled, sub-meter resolution, georeferenceable, geoclassified, diagnostic, 
YFV-related clinical, field or remote-specified, explanatively paramterizable, data variables  

. To find the value of this member of the joint distribution, an experimenter could  
apply the definition of conditional probability to 
obtain: . Repeating this process with each 

final term would create the product: .With four  elucidatively 
geoclassifiable, seasonal, geoclassifed, georeferenceable,  Ae egypti, time series, decomposeable, 
forest deforested, transitioned rice agriculture, partially or dense, discontinuously  canopied, 
decomposed, iteratively quantatively interpolative, sub-meter resolution, uncoalesced, LULC 
variables, the chain rule would produce conditional 
probabilities:  . 

    Since these orthogonally quantitatively decomposed, geoclassified, georeferenceable, sub-
meter resolution, explicative, time series, seasoanl geoclassified, LULC variables are 
probabilities, there would in a robust, time series, explicative, two-variable, forecasting 

vulnerability modelling case scenario, n which could subsequently 
generalize for  discrete, explanatively diagnostic, regressed, georeferenceable,  geosampled, 
time series, geo-spectrotemporalized, illuminative, endmember, randomized, predictive variables 

to The joint probability 
density function fX,Y(x, y) for the continuous,  YFV-related, diagnostic, clinical, field or remotely 
regressively randomized variables would then be  equal to: 

…where fY|X(y|x) and fX|Y(x|y) which would 
optimally  render  the conditional distributions of Y given X = x and of X givenY = y respectively. 
Consequently, fX(x) and fY(y) would render the marginal distributions for X and Y 
respectively.Again, since these are probability distributions, the final  model residual output 

would reveal s  The "mixed joint density" may be also optimally  
defined where one randomized, time series, explicative, clinical, field or remote geo-
spectrotemporally geosampled, yellow fever,regression  variable where X is continuous and the 
other random variable Y is discrete, or vice versa, 
as: . 

      Parsimonioulsy regressively quantitating a sub-meter resolution, geo-spectrotemporal, 
ecogeoreferenceable,geo-spatiotemporal,  geosampled,  uncoalesced,  iteratively interpolatable, 
geoclassifiable, discontinuous, Ae egypti-specified, sparsely shaded, deforesed, partially  
canopied, georeferenceable, LULC polygon protuding into a irrigated, rice agriculture, agro-
ecosystem village in an ArcGIS geo-database cyberenvironment may  reveal prolific, immature, 
Ae egypti eco-epidemiological, capture points and their  explicative, correlation coefficients In so 
doing,  the extent of at least  two explanatively diagnostic, illuminative, time series, explanative, 
geo-spectrotemporal, clinical, field or remotely randomizable, eco-epidmiological, Ae egypti,  
geo-spectrotemporally geosampled datset of explanatively uncoalesced,  geoclassifiable, 
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orthogonally elucidative, eco-epidemiological, seasonal, sub-meter resolution, YFV-related, 
LULC variables may be found to be  linearly related. The residualized regressands may reveal a 
robust, bivariate distribution from   the forecasting vulnerability, yellow fever, probabilistic  
paradigm.  

       In generalizable, entomological,seasonal, geocalssifiable, LULC,  vector arthropod-related, 
diagnostic endmember ,signaturizable,  forecasting vulnerability, sub-meter resolution, geo-
spectrotemporally uncoalesced, iterative, interpolative datasets the multivariate normal 
distribution or  multivariate Gaussian distribution, is a generalization of the one-dimensional 
(univariate) normal distribution to higher dimensions. One possible definition is that a random 
vector in these probabilisc paradigms  has a k-variate normally distributed if every linear 
combination of its k components has a univariate normal distribution ( see Jacob et al. 2005, 
Griffith 2005).In mathematics, probability, and statistics, a multivariate random variable or 
random vector is a list of mathematical variables each of whose value is unknown, either because 
the value has not yet occurred or because there is imperfect knowledge of its value (Kendrick, 
1981). The individual yellow fevel-related, newly transitioned, geoclassified, discontinuous 
canopied, forest LULC to irrigated rice agriculture, uncoalesced,sub-meter resolution variables 
in a random vector may be  grouped together because there may be correlations among them ( 
e.g., different properties of an individual statistical wavelength, transmittance frequency of a Ae 
egypti immature, georeferenceable, oviposition, capture point, pre-flooded habitat unit). For 
example, while a given georeferenceable, prolific, seasonal deforested , sparsely canopied, 
transitioned LULC to a riceland  pre-harvested, capture point,immature habitat  has a specific 
emittance, the representation of any waveband from within a  sub-meter resolution sensor would 
be a random vector. Normally each element of a random vector is a real discret integer .Random 
vectors are often used as the underlying implementation of various types of aggregate random 
variables, (e.g., a random matrix, random tree, random sequence, stochastic process, etc. ( 
Hosmer and Lemeshew 2002) More formally, a multivariate, explanative, diagnostic, forecasting 
vulnerability, sylvatic, YFV-related eco-epidemiological, iteratively interpolative, geo-
spectrotemporalized, endemic, transmission-orinted,  predictive, random variable is a column 
vector (or its transpose, which is a row vector) whose components are scalar-
valued, eco-epidemiological, LULC trasnitioned ( forest discontinuous canopy to rice-
agriculture), discrete, random variables on the same probability space , where is the 
sample space, is the sigma-algebra (i.e., the collection of all geo-sampling, immature,capture 
point,  georeferenceable habitat events in an irrigated, African,  riceland, agro-village 
ecosystem), and is the probability measure (a function returning each event's probability). The 
logic behinds this model processing derives mainly from the multivariate central limit theorem.  

       In probability theory, the central limit theorem (CLT) states that, given certain conditions, 
the arithmetic mean of a sufficiently large number of iterates of independent, explanative, 
diagnostic, random variables, each with a well-defined expected value and well-defined variance, 
will be approximately normally distributed, regardless of the underlying distribution (Rice 1995). 
To illustrate what this means in a geo-spectrotemporal, yellow fever, forecasting vulnerability, 
sub-meter resolution, LULC-related, ArcGIS, probabilistic paradigm,suppose that a diagnostic 
YFV clinical, field or remote  sample is obtained containing a large number of  Ae egypti capture 
point, seasonal irrigated, African,  riceland, agro-village, immature  habitat quantitated 
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observations. Importantly, each georeferenceable, geosampled, immature habitat covariate 
observation would randomly be generated in a way that does not depend on the explicatively  
orthogonally quantitative, orthogonally decomposed regression values of the other sub-meter 
observations. In so doing, the arithmetic average of the observed, forest canopy to rice 
agriculture, quantizable, sub-meter resolution, parameterizable, LULC, geo-spectrotemporal 
uncoalesced, wavelength, transmittance, frequency variables  would be  computable. If this 
procedure is performed in PROC REG, for example, many times, then the computed values of 
the average will be distributed according to the normal distribution (commonly known as a "bell 
curve") based on  the central limit theorem. 

 The central limit theorem has a number of variants. In its common form, the random 
variables must be identically distributed. In variants, convergence of the mean to the normal 
distribution also occurs for non-identical distributions or for non-independent observations, 
given that they comply with certain conditions (see Hosmer and Lemeshew 2002). In more 
general entomological modelling usage, a central limit theorem is any of a set of weak-
convergence theorems in probability theory that can be employed to express a sum of many 
yellow fever , diagnostic, Ae egypti ,independent and identically distributed (i.i.d.) randomized, 
uncoalesced, geo-spectrotemporal, sub-meter resolution, LULC, explanative variables, or 
alternatively, random variables with specific types of dependence, will tend to be distributed 
according to one of a small set of attractor distributions. When the variance of the i.i.d., geo-
spectrotemporal, optimally regressand ,time series, YFV-related, diagnostic, empirically 
uncoalesced sub-meter resolution, explanatorial,optimizable,eco-epidemiological datasets of 
georeferenceable, orthogonally, quantitatively, decomposeable, clincial, field or remote variables 
is finite, the attractor distribution would be  the normal distribution. In contrast, the sum of a 
number of explicative, i.i.d., time series, YFV-related, randomized, elucidative  variables with 
power law tail distributions would decrease as |x|−α−1 where 0 < α < 2 (and therefore having 
infinite variance) will tend to an alpha-stable distribution with stability parameter (or index of 
stability) of α as the number of geo-spectrotemporally geosampled, optimizable, parameterizable, 
LULC, explanatorial, georferenceable estimator, Ae egypti capture point, decomposeable dataset 
time series, discontinuous irrigated African riceland agro-ecosystem LULCs  grows due to 
anthropogenic ecological pressures. 

          In probability theory, a distribution is said to be stable (or a random variable is said to be 
stable) if a linear combination of two independent copies of a random sample has the same 
distribution, up to specific geolocation and set of  scale parameters. The stable distribution 
family is also sometimes referred to as the Lévy alpha-stable distribution ( Hosmer and 
Lemeshew 2002) Of the parameters defining the family, most attention has been focused on the 
stability parameter, α Stable distributions have 0 < α ≤ 2, with the upper bound corresponding to 
the normal distribution, and α = 1 to the Cauchy distribution. The Cauchy distribution 

is the distribution of the X-intercept of a ray issuing from with a uniformly 
distributed angle which is used in statistics as the canonical example of a "pathological" 
distribution since both its mean and its variance are undefinable ( Johnston et al. 1994). The 
Cauchy distribution does not have finite moments of order greater than or equal to one; only 
fractional absolute moments exist  



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

179 
Copyright © acascipub.com, all rights reserved.  

          Theses distributions may be undefined variance for α < 2 in  a vulnerability forecasting 
,sub-meter resolution, ArcGIS –derived discontinuous forest-canopy to irrigated, African 
riceland, expanding, agro-ecosystem, eco-epidemiological, explicative, forecasting vulnerability, 
LULC model outputs  and  an undefined mean for α ≤ 1. The importance of the diagnostic, 
optimizable, yellow fever, eco-epidemiological,  clincial, field or remote geo-spectrotemporally, 
georeferenceable, parameterizble  estimators and the Ae egypti, oviposition, capture point, geo-
spectrotemporally geosampled, habitat variables may tabulate stable probability distributions 
since t they would be  "attractors" for properly normed sums of i.i.d, time series, YFV-related, 
randomizable  variables. The normal distribution defines a family of stable distributions (Hosmer 
and Lemeshew 2002). By the classical central limit theorem the properly normed sum of a set of  
geo-spectrotemporally geosampled, YF, ,disgnostic, eco-epidemiological,  randomized variables, 
each with finite variance, will tend towards a normal distribution as the number of trasnitional 
discontinuous forest canopied LULC variables to riceland irrigated agriculture, oviposition sites 
increases. Without the finite variance assumption the limit may be a stable distribution. 

A non-degenerate, sub-meter resolution, ArcGIS–derived, discontinuous forest-canopy to 
irrigated, African, riceland agro-ecosystem, LULC, seasonal, geo-spectrotemporal, forecast, 
vulnerability, sub-meter resolution, Ae egypti oviposition capture point, model distribution  may 
be a stable distribution if it satisfies the following property: Let X1 and X2 be independent copies 
of a random diagnostic, eco-epidemiological, geo-spectrotemporal or geo-spatiotemrpoal 
geosampled,, forecast, vulnerability, YFV-related, clincial, field or remote, time series sub-meter 
resolution, LULC, variable X. Then X would be  said to be stable if for any constants a > 0 and b 
> 0 the randomized,  YFV variable aX1 + bX2 has the same distribution as cX + d for some 
constants c > 0 and d. The distribution would  be strictly stable if this holds with d =                   
0[^. Since the yellow fever data may express a normal distribution, the Cauchy distribution, and 
the Lévy distribution would have similar properties, in the forecasting vulnerabilty, probabilistic 
paradigm since it follows that  both distributions would be special cases of stable distributions 

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a 
continuous probability distribution for a non-negative random variable(Balakrishnan, and 
Nevrozov, 2003). An endmeic, trasnmission-oriented, sylvatic,  YF, forecast, vulnerability, sub-
meter resolution, geoclassified LULC, geo-spatiotemporal or geo-spectrotemporal, Ae. aegypti, 
oviposition, model may be optimally expressed using a Levy distribution  as 

.In the medical entomological, remotely sensed, time series, 
model  would be  the Fourier transform of the probability for -step addition of random 
discontinuous, forest-canopied, or riceland, agro-irrigation, sub-mter resolution, LULC variables. 
Lévy showed that for to be nonnegative.( Hosmer and Lemeshew 2002). The Lévy 
distribution has infinite variance and sometimes infinite mean ( Cressie 1993). The case  
may render  a Cauchy distribution, whilst  may render a normal distribution in a geo-
spectrotemporal or geo-spectrotemporal, eco-epidemiological, YF, forecast, vulnerability, sub-
meter resolution, signature paradigm for targeting seasonal Ae. aegypti, oviposition, capture 
point, hypeprproductive foci. The Lévy distribution for a African, agro-irrgation-related, 
predictive, ecosystem, YF, risk model for targeting Ae aegypti, immature, seasonal, prolific 
habitats on newly transitioned inhomogeneous, sub-meter resolution, geoclassified LULCs is 
implementable in the Wolfram Language as LevyDistribution[mu, sigma].  
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 Figure 6. Distributions form a  hypeothetical yelloe fever related regressable,  four-
parameter family of continuous probability distributions parametrized by prolific Ae egypti 
habitat geo location and scale parameters μ and c, respectively wher two shape parameters 
β and α, correspondi to measures of asymmetry and concentration, respectively  

 

      The marginal probabilities in a georferenceable, geosampled, geo-spectyrotemporalized,  
YFV-related, diagnostic , clinical, field or remote, sub-meter resolution,  iteratively intrepoltaive, 
LULC transitioned, discontinuous, deforested-canopy to irrigated African rice agro-village, Ae 
egypti, immature, aquatic habitats would then be  quanatiated by  

= = and = = Let 
and be two independent, diagnostically explanative, time series, clinical, field or remote 

geosampled, normal variates with means and for , 2. Then the variables and 
defined  would  be normal bivariates where the  unit variance and correlation coefficient would 

be  optimally quantitable as : = and = To 
derive the bivariate normal probability function, let and be normally and independently 
distributed variates with mean 0 and variance 1( Hazewinkle 2002). Subsequently, an 
experimenter optimally could define =  and =  in the for 
summarizing the probabistic uncertainities in the residual forecasts, targeting ,prolific Ae geypti 
capture, point aquatic habitats on discontinuous, deforested, sparsely or dense canopied, 
irrigated, riceland tillered, sub-meter resolution, image habitats, for example. In so doing, the 
variates and  would then be  themselves normally distributed with means and , variances 

 or = and covariance The covariance matrix in the 
forecasting, YFV , vulnerability, eco-epidemioloigical, probabilistic paraidigm could then be 

optimally  defined by where using  PROC 
CORR statements. 
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Now, the joint probability density function for and is 

but from (◇) and (◇),  an experimenter  would  have 

 in a  lineraized, elucidative, eco-epidemiological, sub-meter 
resolution,  residual dataset of regressed, explicative, time series, YFV clinical, field or remote 
regressed  forecasts. 

    The underlying, ideal, distributional assumptions for each geospectrotemporally geosampled, 
georefernceable diagnostic, clinical, field or remote  variable are usually different from each 
other. An individual variable might be best modeled as a t distribution or as a Poisson process. 
The correlation of the various variables are very important to estimate as well. A joint estimation 
of a set of  geoclassifiable, sub-meter resolution LULC variables would make it possible to 
estimate a correlation structure but would restrict the modeling to single, simple multivariate 
distribution (for example, the normal). Even with a simple multivariate distribution, the joint 
estimation would be computationally difficult and would have to deal with issues of missing 
data.  

      By using the MODEL procedure ERRORMODEL statement, an experimenter could can 
combine and simulate from sub-meter resolution LULC, Ae egypti, forecasting vulnerability 
paradigms of different distributions. The covariance matrix for the combined model may be 
optimally constructed by using the copula induced by the multivariate YFV, normalized 
distribution. A copula is a function that couples joint distributions to their marginal distributions 
(Hosmer and Lemeshew 2002).- 

       In probability theory and statistics, a copula is a multivariate probability distribution for 
which the marginal probability distribution of each variable ( e.g., empirically geo-
spectrotemrpoally geosampled, georferenceable, Yellow fever related, diagnostic clincial, field 
or remote, sub-mter resolution, geoclassifiable decomposed Ae, egypti  oviposition LULC site on 
a trasnitioned sparsely canopied, deforested, agro-village , irrigation scheme polgonized 
paramterizable covariate)  is uniform. Copulas are used to describe the dependence between 
random variables( Wassermen 2004).  

Sklar's Theorem states that any multivariate joint distribution can be written in terms of 
univariate marginal distribution functions and a copula which describes the dependence structure 
between  variables. Copulas are popular in high-dimensional statistical applications as they allow 
one to easily model and estimate the distribution of random vectors by estimating marginals and 
copulae separately. There are many parametric copula families available, which usually have 
parameters that control the strength of dependence 

       Consider a random vector  for determining high larval desity count of a 
positively autocorrelated geospatialized, ArcGIS-derived, georeferenceable, cluster of  immature 
Ae egypti, aquatic habita,t capture point, transitional, deforested to rice-irriagted,ArcGIS-derived  
polygon. Suppose its marginals are continuous, (i.e. the marginal  and has 
optimizable functions. By applying the probability integral transform to each geoclassifiable 
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geospectrotemporal uncoalesced, iteratively interpolative, elucidative, decomposed, sub-mter 
resolution, explanative, seasonal, trasnitioning disocntinuous deforested canopy  to rice 
agriculture  LULC components, the random vector in the forecast vulnerability paradigm 
parameterized dataset would reveal   which 
would  optimally render robust uniformly distributed marginals.In so doing, the copula of 

 would  be optimally   defined as the joint cumulative distribution function of 
:  The copula C would 

contain all information on the dependence structure between the LULC components of 
whereas the marginal cumulative distribution functions  would contain all 

information on the marginal distributions of the diagnostic, clinical, field or remote –specified, 
Ae egypti aqutic laral habitat capture point, georferenceable, regressors. 

       The importance of the above methodology is that the reverse of these steps can be used to 
generate pseudo-random samples from general classes of multivariate YFV-related explicative 
probability distributions. That is, given a procedure to generate a sample from 
the copula distribution, the required sample may be  optimally constructed in SAS 
as [Eqn.1.1]The inverses may be  
unproblematic as the  may be  assumed to be continuous in the residual forecasts targeting the 
prolic Ae egypti habitats on recently trannstioned , sparsely deforeseted .LULCs along irriagted 
African ricland agro-ecosystem boundaries. Equation 1.1 for the copula function can be rewritten 
to correspond to:  

In probabilistic terms, is a d-dimensional copula if C is a joint 
cumulative distribution function of a d-dimensional random vector on the unit cube with 
uniform marginals (Hazewinkle 2002) In analytic terms, is a d-dimensional 
copula if1) , the copula is zero if one of the 
arguments is zero, 2) , the copula is equal to u if one argument is u and 

all others 1;and, 3) C is d-non-decreasing, (i.e., for each hyperrectangle the C-

volume of B is non-negative: where the 
. For instance, in the bivariate case,  employed to 

tabulate a normalized distribution forexplicative,  an empirical dataset of  optimally regressed 
yellow fever, geo-spectrotemporally geosampled, LULC, sub-meter reoslution, diagnostic, 
clinical, field or remote may express   a bivariate copula if , 

and for all 
and . 

Sklar's theorem, provides the theoretical foundation for the application of copulas ( 
wasserman 2004). Sklar's theorem states that every multivariate, cumulative distribution 
function{ e.g., a  non-normalized plot of  optimally regressed, YFV-related, diagnostic , clinical, 
field or remote geo-spectrotemporally geosampled, Ae.egypti hypeorductive oviposition site 
immature seasoanl productivity rates on a georeferenceable, transitioned deforested, sparsely 
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shaded, discontinuous canopied LULC  to ricland ploughing capture point LULC  could be 
tabulated emplying .of a random vector 

 which may be expressed in terms of its marginals and a 
copula . Indeed: ( Wasserman 2004). 

     The concept of the cumulative distribution function makes an explicit appearance in statistical 
analysis in two (similar) ways. Cumulative frequency analysis is the analysis of the frequency of 
occurrence of values of a phenomenon ( immature counts of a prolific georferenceable, sylvatic,  
Ae egypti , ovipoition, immature habitats on a newly trasnitioned, discontinuous, forest-canopied, 
LULC to riceland flooded  capture point )less than a reference value. The empirical distribution 
function is a formal direct estimate of the cumulative distribution function for which simple 
statistical properties can be derived and which can form the basis of various statistical hypothesis 
tests(Hosmer and Lemeshew 200) . Such tests can assess whether there is evidence against a 
sample of  geoclassified orthogonally decomposed datset of eco-epidemiological, YFV-rleated 
clinical, field or remote specified,  georeferenceable seasonal, LULC, submeter resolution, data 
parameters. having arisen from a given normlized distribution, or evidence against two samples 
of data having arisen from the same, immature, aquatic, habitat, population distribution.The 
Kolmogorov–Smirnov test is based on cumulative distribution functions and can be employed to 
test to see whether two empirical LULC distributions are different based on geosampled, geo-
spectrotemporal, fractionalized regressors or whether an empirical distribution is different from 
an ideal distribution. The closely related Kuiper's test is useful if the domain of the distribution is 
cyclic in a foreasting vulnerability, YFV eco-epidemiogical model as in day of the week. For 
instance Kuiper's test might be used to see if the number of precipitation events varies during the 
year or if  a newly transitioned, sparsely shaded, discontinuous deforested, geoclassifiable 
canopied, LULC to irrigated African riceland, ploughing in gridded, ArcGIS, stratifiable 
polygons vary by day of the week or day of the month. 

           In case that the multivariate LULC distribution has a density , it holds further 
that where is the density of the copula 
in the foreasting, yellow fever, vulnerability model. .The theorem also states that, given , the 
copula is unique on , which is the cartesian product of the ranges of 
the marginal continuous functions.. This implies that the copula in a YFV risk model delineating 
prolific, Ae egypti ,aquatic habitats on a trasnitioned, forest canopied, geoclassifiable  LULC to 
rice agriculture LULC may be  unique if the marginals are continuous in the analyses. The 
converse is also true: given a copula and margins then 

 would define a d-dimensional, geo-spectrotemporal,  YFV-related, sub-
meter resolution., explanative, diagnostic, geoclassifiable,  LULC cumulative distribution 
function. 

 As long as this can be inverted to give 

= =  The joint probability 
distribution in a forecasting vulnerability, yellow fever, LULC  model can be expressed either in 
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terms of a joint cumulative distribution function or in terms of a joint probability density 
function (in the case of continuous diagnostic, geo-spectrotemporally uncoalesced, iteratively 
interpolative, endmember variables) or joint probability mass function (e.g., in the case of 
discrete, dignaostic YFV, clincial, field or remote geos-spectrotemporally, geoeeferenceable, 
geosampled, sub-meter resolution, geo-predictive variables). These in turn can be used to find 
two other types of seasonal,optimizable, YFV distributions:whereby, the marginal 
distributionrendering the probabilities for any one of the explicative, decomposed, LULC 
iteratively interpolative signaturized explanative variables in the regressed datset  with no 
reference to any specific ranges of diagnostic  values for the other  quanatiated clinical, field or 
remote variables, and the conditional probability distribution giving the probabilities for any 
subset of the variables conditional on particular values of the remaining variables in theyellow 
fever  model parameter estimator dataset. 

            A necessary (but, in general, not sufficient) condition for statistical independence of two  
explanative, geo-spectrotemporally, diagnostically geosampled, time series, geo-predictive, 
yellow fever, variables in forecasting eco-epidemiological, sub-meter resolution, Ae egypti 
geoclassifiable, LULC, vulnerability model is that they be statistically uncorrelated; that is, their 
covariance is zero. Therefore,optimally the covariance matrix R of the components of a white 
noise vector w with n elements must be an n by n diagonal matrix, where each diagonal element 
Rii is the variance of component wi; and the correlation matrix must be the n by n identity matrix. 
In linear algebra, the identity matrix, or sometimes ambiguously called a unit matrix, of size n is 
the n × n square matrix with ones on the main diagonal and zeros elsewhere which may be 
denoted by In, or simply by I if the size is immaterial or can be trivially determined by the 
context.(Neter 1990). 

         In probability theory and statistics, a covariance matrix (also known as dispersion matrix or 
variance–covariance matrix) is a matrix whose element in the i, j position is the covariance 
between the i th and j th elements of a random vector ( Wasserman 2004). A randomized geo-
spectrotemrpoal, geospatialized, georeferenceable, sub-mter resolution, uncoalesced, sylvatic,  
YFV, clinical, field or remote geosampled vector would be a random variable with multiple 
dimensions. Each element of the vector would then be a scalar random variable in a forecasting 
vulnerability, yellow fever, risk model. Each element in the model then would have  either a 
finite number of observed empirical values or a finite or infinite number of potential values. The 
potential values for targeting prolific Ae egypti immature capture point, georeferenceable, 
seasonal,immature  habitats  on transitional ,discontinuous, forest-canopy to rice-agriculture 
habitats  in an African,  irrigated village complex  may be  specified by the joint probability 
distribution in SAS/GIS. 

         Intuitively, the covariance matrix would generalize the notion of covariance to multiple 
dimensions in the sylvatic, YFV-related LULC forecasting vulnerability model. As an example, 
let's considere two,  explicatively quantiated, Ae egypti, LULC mathematical vectors 

and . There are four covariances to consider: with , with , 
with , and with . These variances cannot be summarized in a scalar format. Of course, 

a 2×2 matrix is the most natural choice to describe the covariance: the first row containing the 
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covariances of with and , and the second row containing the covariances of with and 
 in the yellow  fever, forecasting vulnerability model. 

Because the covariance of the i th random variable with itself is simply that random 
variable's variance, each element on the principal diagonal of the covariance matrix is just the 
variance of each of the elements in the vector ( Wassermen 2004). Because 

, every covariance matrix in a geo-spectrotemporal, geospatial, 
yellow fever, forecasting vulnerability, LULC regression paraidigm  for remotely optimally 
targetinf Ae egypti  riceland irriaged Ae egypti paddies in an  deforested forecst canopy LULC 
would be  symmetric. In addition, every covariance matrix  would  positive semi-definite. 

        In linear algebra, a symmetric n × n real matrix is said to be positive definite if the scalar 
is positive for every non-zero column vector of real numbers ( e.g., geo-

spectrotemrporal georfernceable, uncoalesced , diagnostic, sub-metre resolution YFV-related 
geosampled, clincial, field or remote specified Ae egypti, orthogonally decomposed discretere 
interger values) . Here  denotes the transpose of  (Hazewinkle 2001). In mathematics, a 
Hermitian matrix (or self-adjoint matrix) is a square matrix with complex entries that is equal to 
its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the 
complex conjugate of the element in the j-th row and i-th column, for all indices i and 
j:  More generally, an n × n Hermitian matrix is said to be positive definite if the 
scalar is real and positive for all non-zero column vectors of complex numbers. Here 

denotes the conjugate transpose of . 

        In mathematics, the conjugate transpose or Hermitian transpose of an m-by-n matrix A with 
complex entries is the n-by-m matrix A* obtained from A by taking the transpose and then taking 
the complex conjugate of each entry (i.e., negating their imaginary parts but not their real parts). 
The conjugate transpose is formally defined b where the subscripts denote the i,j-th 
entry, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and the overbar denotes a scalar complex conjugate. (e.g., the 
complex conjugate of , where a and b are real geospectrotemrpoally georefernceable  
YFV-related, explicative,  clincial, field or remote specified rice agroculture, parameterizable 
covariates  on a geoclassifiable, Ae egypti forest canopied, LULC  r, is .)This definition 
can also be written as where denotes the transpose and denotes the matrix 
with complex conjugated entries.A Hermitian conjugate, bedaggered matrix, adjoint matrix or 
transjugate. The conjugate transpose of a matrix A can be denoted by any of these symbols: or 

, commonly used in linear algebra (sometimes pronounced as "A dagger"), universally 
used in quantum mechanics , although this symbol is more commonly used for the Moore–
Penrose pseudoinverse (Hazewinkle 2002) 

       In mathematics, and in particular linear algebra, a pseudoinverse A+ of a matrix A is a 
generalization of the inverse matrix ( Wasserman 2004)  The most widely known type of matrix 
pseudoinverse is the Moore–Penrose pseudoinverse. When referring to a matrix, the term 
pseudoinverse, without further specification, is often used to indicate the Moore–Penrose 
pseudoinverse. The term generalized inverse is sometimes used as a synonym for 
pseudoinverse.A common use of the pseudoinverse is to compute a 'best fit' (least squares) 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

186 
Copyright © acascipub.com, all rights reserved.  

solution to a system of linear equations that lacks a unique solution Another use is to find the 
minimum (Euclidean) norm solution to a system of linear equations with multiple solutions. The 
pseudoinverse facilitates the statement and proof of results in linear algebra.The pseudoinverse is 
defined and unique for all matrices whose entries are real or complex numbers. It can be 
computed using the singular value decomposition (SVD) 

        In linear algebra, the SVD is a factorization of a real or complex matrix . It is the 
generalization of the eigendecomposition of a positive semidefinite normal matrix (for example, 
a symmetric geo-spectrotemporalized, geospatial, YFV-related disgnostic , clinical, field or 
remote  weighted matrix with positive eigenvalues) to any matrix via an extension of 
polar decomposition. It has many useful applications in signal processing and statistics.  

          The polar decomposition of a square complex matrix A is a matrix decomposition of the 
form where U is a unitary matrix and P is a positive-semidefinite Hermitian matrix. 
Intuitively, the polar decomposition separates A into a component that stretches the space along a 
set of orthogonal axes, represented by P, and a rotation (with possible reflection) represented by 
U. The decomposition of the complex conjugate of is given by .This decomposition 
always exists; and so long as A is invertible, it is unique, with P positive-definite. Note 
that gives the corresponding polar decomposition of the determinant 
of A, since and .The matrix P is always unique, even if A is 
singular, and given by where A* denotes the conjugate transpose of A. This expression 
is meaningful since a positive-semidefinite Hermitian matrix has a unique positive-semidefinite 
square root. If A is invertible, then the matrix U is given by In terms of the singular 
value decomposition of A, A = W Σ V*, one has confirming that P is 
positive-definite and U is unitary. Thus, the existence of the SVD is equivalent to the existence 
of polar decomposition.One can also decompose A in the form Here U is the same as 
before and P′ is given by This is known as the left polar 
decomposition, whereas the previous decomposition is known as the right polar decomposition. 
Left polar decomposition is also known as reverse polar decomposition 

The matrix A is normal if and only if P′ = P. Then UΣ = ΣU, and it is possible to 
diagonalise U with a unitary similarity matrix S that commutes with Σ, giving S U S* = Φ−1, 
where Φ is a diagonal unitary matrix of phases eiφ. Putting Q = V S*, one can then re-write the 
polar decomposition as so A then thus also has a spectral 
decomposition with complex eigenvalues such that ΛΛ* = Σ2 and a unitary matrix of 
complex eigenvectors Q. In the mathematical discipline of linear algebra, eigendecomposition or 
sometimes spectral decomposition is the factorization of a matrix into a canonical form, whereby 
the matrix is represented in terms of its eigenvalues and eigenvectors. 

        In mathematics, particularly linear algebra and functional analysis, the spectral theorem is 
any of a number ( e.g., a regressed,optimizable, eco-epidemiological, African 
riceland,geosampled, YFV, diagnostic, clincial, field and remote parameterizable covariate)  of 
results about linear operators or matrices. In broad terms, the spectral theorem provides 
conditions under which an operator or a matrix can be diagonalized (that is, represented as a 
diagonal matrix in some basis). Intuitively, diagonal matrices are computationally quite 
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manageable, so it is of interest to see whether an arbitrary matrix can be diagonalized. The 
concept of diagonalization is relatively straightforward for operators on finite-dimensional vector 
spaces but requires some modification for operators on infinite-dimensional spaces. In general, 
the spectral theorem identifies a class of linear operators that can be modeled by multiplication 
operators, which are as simple as one can hope to find.  

           In more abstract language, the spectral theorem is a statement about commutative C*-
algebras. See also spectral theory for a historical perspective.Examples of operators to which the 
spectral theorem applies are self-adjoint     operators or more generally normal operators on 
Hilbert spaces.    In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, 
is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states 
that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the 
squares of the other two sides. The theorem can be written as an equation relating the lengths of 
the sides a, b and c, often called the "Pythagorean equation":] where c represents 
the length of the hypotenuse and a and b the lengths of the triangle's other two sides. 

          We begin with the abstract characterization of C*-algebras given in the 1943 paper by 
Gelfand and Naimark.A C*-algebra, A, is a Banach algebra over the field of complex numbers, 
(e.g., geo-spectrotemporal datset of, yellow fever, geosampled, georeferenceable, diagnostic, 
clinical, field or remote,  Ae egypti  forest canopy LULC map * : A → A. An experimenter,  x* 
for the riceland, agro-ecosystem, geo-spectrotemporal, LULC image of an element x of A. The 
forecast, vulnerabilty , YFV map C * has the following properties: It is an involution, for every x 
in A .For all x, y in A:  , For every  
geosampled  λ in C and every x in A For all x in A: The 
first three identities say that A is a C*-algebra. The last identity is the C* identity and is 
equivalent to: which is the B*-identity. 

            In mathematics, especially functional analysis, a Banach algebra, named after Stefan 
Banach, is an associative algebra A over the real or complex numbers (or over a non-
Archimedean complete normed field) that at the same time is also a Banach space, i.e. normed 
and complete. The algebra multiplication and the Banach space norm are required to be related 
by the following inequality: (i.e., the norm of the product is less 
than or equal to the product of the norms). This ensures that the multiplication operation is 
continuous. A Banach space is a vector space X over the field R of real numbers, or over the 
field C of complex numbers, which is equipped with a norm and which is complete with respect 
to that norm, that is to say, for every Cauchy sequence {xn} in X, there exists an element x in X 

such that or equivalently: The vector space structure 
allows one to relate the behavior of Cauchy sequences to that of converging series of vectors. A 
normed space X is a Banach space if and only if each absolutely convergent series in X 
converges,[2] Completeness of a normed space is preserved if the given norm is replaced by an 
equivalent one.All norms on a finite-dimensional vector space are equivalent. Every finite-
dimensional normed space over R or C is a Banach space. 
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The C*-identity is a very strong requirement. For example, together with the spectral 
radius formula, it implies that the C*-norm is uniquely determined by the algebraic 
structure: A bounded linear map, π : A → 
B, between C*-algebras A and B is called a *-homomorphism if For x and y in 
A .For x in A In the case of C*-algebras, any * 
homomorphism π between C*-algebras is contractive, i.e. bounded with norm ≤ 1. Furthermore, 
an injective *-homomorphism between C*-algebras is isometric. These are consequences of the 
C*-identity.A bijective *-homomorphism π is called a C*-isomorphism, in which case A and B 
are said to be isomorphic. 

          The mathematical concept of a Hilbert space, generalizes the notion of Euclidean space. It 
extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane 
and 3-dimensional (D) space to spaces with any finite or infinite number of dimensions. ∗-
algebras (pronounced "C-star") are an area of research in functional analysis, a branch of 
mathematics. A C*-algebra is a complex algebra A of continuous linear operators on a complex 
Hilbert space with two additional properties:1)A is a topologically closed set in the norm 
topology of operators.2) A is closed under the operation of taking adjoints of operators. A Hilbert 
space is an abstract vector space possessing the structure of an inner product that allows length 
and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in 
the space to allow the techniques of calculus to be used. 

       Exact analogs of the Pythagorean theorem and parallelogram law may hold in a Hilbert 
space when constructing a geo-spectrotemporal, geospatial, forecasting, vulnerability YFV-
related eco-epidemiological, sub-meter resolution, geoclassifiable, Ae egypti LULC. At a deeper 
level, perpendicular projection onto a subspace (the analog of "dropping the altitude" of a 
trianglized LULC geoclassified by irigation riceland ) plays a significant role in optimization 
problems and other aspects of the theory. An element of a Hilbert space can be uniquely 
specified by its coordinates with respect to a set of coordinate axes (an orthonormal basis), in 
analogy with Cartesian coordinates in the plane. 

 In mathematics, the simplest form of the parallelogram law (also called the 
parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of 
the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the 
two diagonals. Using the notation in the diagram on the right, the sides are (AB), (BC), (CD), 
(DA). But since in Euclidean geometry a parallelogram necessarily has opposite sides equal, or 
(AB) = (CD) and (BC) = (DA), the law can be stated as, If the 
parallelogram is a rectangle, the two diagonals are of equal lengths (AC) = (BD) so, 

and the statement reduces to the Pythagorean theorem. For the 
general quadrilateral forecast vulnerability model with four sides not necessarily 
equal, where x is the length of the line 
segment joining the midpoints of the diagonals. It can be seen from the diagram that, for a 
parallelogram, x = 0, and the general formula simplifies to the parallelogram law. 
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Applying parallelogram law for geo-classifying agro-irrigated gri-startified, African, 
riceland, agro-villag,e complex ecosystem areas and peripheral, forest-canopy, oviposition, 
Ae. egypti LULC bas  

  

     When that set of axes is countably infinite, this means that the Hilbert space can also usefully 
be thought of in terms of infinite sequences that are square-summable One of the most familiar 
examples of a Hilbert space is the Euclidean space consisting of three-dimensional vectors, 
denoted by ℝ3, and equipped with the dot productThe dot product of two vectors A = [A1, A2, ..., 

An] and B = [B1, B2, ..., Bn] is defined as:[1] where Σ 
denotes summation notation and n is the dimension of the vector space. 

The polar decomposition of any bounded linear operator A between complex Hilbert 
spaces is a canonical factorization as the product of a partial isometry and a non-negative 
operator.The polar decomposition for matrices generalizes as follows: if A is a bounded linear 
operator then there is a unique factorization of A as a product A = UP where U is a partial 
isometry, P is a non-negative self-adjoint operator and the initial space of U is the closure of the 
range of P.The operator U must be weakened to a partial isometry, rather than unitary, because 
of the following issues. If A is the one-sided shift on l2(N), then |A| = {A*A}½ = I. So if A = U |A|, 
U must be A, which is not unitary.The existence of a polar decomposition is a consequence of 
Douglas' lemma: 

If A, B are bounded operators on a Hilbert space H, and A*A ≤ B*B, then there exists a 
contraction C such that A = CB. Furthermore, C is unique if Ker(B*) ⊂ Ker(C).The operator C 
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can be defined by C(Bh) := Ah for all h in H, extended by continuity to the closure of Ran(B), 
and by zero on the orthogonal complement to all of H. The lemma then follows since A*A ≤ B*B 
implies Ker(A) ⊂ Ker(B). 

           In particular. If A*A = B*B, then C is a partial isometry, which is unique if Ker(B*) ⊂ 
Ker(C). In general, for any bounded operator A, where (A*A)½ is the 
unique positive square root of A*A given by the usual functional calculus. So by the lemma, we 
have for some partial isometry U, which is unique if Ker(A*) ⊂ Ker(U). Take P to 
be (A*A)½ and one obtains the polar decomposition A = UP. Notice that an analogous argument 
can be used to show A = P'U' , where P' is positive and U' a partial isometry. 

          When H is finite-dimensional, U can be extended to a unitary operator; this is not true in 
general (see example above). Alternatively, the polar decomposition can be shown using the 
operator version of singular value decomposition. By property of the continuous functional 
calculus, |A| is in the C*-algebra generated by A. A similar but weaker statement holds for the 
partial isometry: U is in the von Neumann algebra generated by A. If A is invertible, the polar 
part U will be in the C*-algebra as well. 

   Formally, the singular value decomposition of an real or complex matrix is a 
factorization of the form , where U is an  real or complex unitary matrix, is a 

rectangular diagonal matrix with non-negative real numbers on the diagonal, and is an 
real or complex unitary matrix. The diagonal entries of  are known as the singular 

values of . The columns of and the columns of are called the left-singular vectors and 
right-singular vectors of , respectively. 

          In the following discussion, the following conventions are adopted. will denote one of 
the fields of real or complex numbers, denoted , respectively. The vector space of 

matrices over is denoted by .For , and denote the 
transpose and Hermitian transpose (also called conjugate transpose) respectively. If , then 

.For , then denotes the range (image) of (the space spanned by 
the column vectors of ) and denotes the kernel (null space) of .Finally, for any positive 
integer , denotes the identity matrix 

            Geovizualization of the SVD of a two-dimensional, real shearing matrix In mathematics, 
a shear matrix or transvection is an elementary matrix that represents the addition of a multiple 
of one row or column to another. Such a matrix may be derived by taking the identity matrix and 
replacing one of the zero elements with a non-zero value.A typical shear matrix is shown below: 
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The name shear reflects the fact that the matrix represents a shear transformation. Geometrically, 
such a transformation takes pairs of points in a linear space, that are purely axially separated 
along the axis whose row in the matrix contains the shear element, and effectively replaces those 
pairs by pairs whose separation is no longer purely axial but has two vector components. Thus, 
the shear axis is always an eigenvector of S. 

          A shear parallel to the x axis results in and . In matrix form: 

Similarly, a shear parallel to the y axis has and . In 

matrix form:  Clearly the determinant will always be 1, as no matter where the 
shear element is placed, it will be a member of a skew-diagonal that also contains zero elements 
(as all skew-diagonals have length at least two) hence its product will remain zero and won't 
contribute to the determinant. Thus every shear matrix has an inverse, and the inverse is simply a 
shear matrix with the shear element negated, representing a shear transformation in the opposite 
direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with 
shear element , then Sn is a shear matrix whose shear element is simply n . Hence, raising a 
shear matrix to a power n multiplies its shear factor by n. 

The negative definite, positive semi-definite, and negative semi-definite matrices are 
defined in the same way, except that 0's are allowed, i.e. the expression or is 
required to be always negative, non-negative, and non-positive, respectively.Positive definite 
matrices are closely related to positive-definite symmetric bilinear forms (or sesquilinear forms 
in the complex case), and to inner products of vector spac 

 In particular, if in addition to being independent every geo-spectrotemporally 
geosampled YFV diagnostic, eco-epidemiological, time series, diagnostic, clinical, field or 
remote, geo-predictive  Ae egypti LULC variable in w also has a normal distribution with zero 
mean and the same variance , w would be  a Gaussian white noise vector. In that case, the 
joint distribution of w would be a multivariate normal distribution; the independence between the 
variables then implies that the distribution has spherical symmetry in n-dimensional space. 
Spherical symmetry refers to any spherical object that can be divided through the center and 
produce two equal halves Therefore, any orthogonal transformation of the vector will result in a 
Gaussian white random vector. In particular, under most types of discrete Fourier transform, 
such as FFT and Hartley, the transform W of w will be a Gaussian white noise vector, too in the 
vulnerability paradigm; that is, the n Fourier coefficients of w will be independent Gaussian 
variables with zero mean and the same variance . 

 The power spectrum P of a random vector w can be optimally defined in a YFV gridded, 
sub-meter resolution model,  as the expected value of the squared modulus of each coefficient of 
its Fourier transform W, that is, Pi = E(|Wi|2). Under that definition, a Gaussian white noise vector 
will have a perfectly flat power spectrum, with Pi = for all i. 

        If w is a white random vector,in  a seasonal, hyperproductive, ovipsoition, YF eco-
epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC ,oviposition , 
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discontinuous, forest-canopied, African riceland model.but not a Gaussian one, its Fourier 
coefficients Wi will not be completely independent of each other; although for large n and 
common probability distributions the dependencies would be very subtle, and their pairwise 
correlations may  be assumed to be zero. Often the weaker condition "statistically uncorrelated" 
is used in the definition of white noise, instead of "statistically independent"(Hosmer and 
Lemeshew 2002). However, some of the commonly expected properties of white noise (such as 
flat power spectrum) may not hold for this weaker version in an eco-epidemiological, sub-meter 
resolution, gridded, YFV-related, geoclassifiable LULC model. Under this assumption, the 
stricter version can be referred to explicitly as independent white noise vector.  

An example of a random vector that is "Gaussian white noise" in a geo-spectrotemporal, 
YFV-related, sylvatic, Ae egypti irrigated ricland LULC model in the weak but not in the strong 
sense could be optimally resolved as x=[x1,x2] where x1 is a normal random variable with zero 
mean, and x2 is equal to +x1 or to −x1, with equal probability. These two variables would be 
uncorrelated and individually normally distributed, but they may  not  be jointly normally 
distributed and may not be independent. If x is rotated by 45 degrees, its two components in the 
YFVforecast vulnerability model may still be uncorrelated, but their distribution will no longer 
be normal. 

        In some situations a experimenter may relax the definition in a yellow fever model a by 
allowing each component of a white random vector w to have non-zero expected value . In 
image processing especially, where samples are typically restricted to positive values, one often 
takes to be one half of the maximum sample value (Jensen 2005). In that case, the Fourier 
coefficient W0 corresponding to the zero-frequency component (essentially, the average of the 
w_i)  in the model will also have a non-zero expected value ; and the power spectrum P 
will be flat only over the non-zero frequencies. 

    In order to define the notion of "white noise" in the theory of continuous-time signals, a 
experimeneter  must replace the concept of a "random vector" by a continuous-time random 
signal; that is, a random process that generates a function of a real-valued parameter  for 
robustly quantitating an empriical dataset of  geo-spectrotemrpoally geosampled, 
georferenceable, explicative, diagnostic, sub-meter resolution, diagnostic,  clinical, field or 
remote dataSuch a process is said to be white noise in the strongest sense if the value for 
any time is a random variable that is statistically independent of its entire history before . A 
weaker definition may only require independence between the geosampled  values and 

at every pair of distinct times and . An even weaker definition requires only that such 
pairs and be uncorrelated ( Rao 1972).  

   However, a precise definition of these concepts is not trivial, because some quantities 
that are finite sums in the finite discrete case must be replaced by integrals that may not converge 
in a YFV forecasting Ae egypti irrigtion, riceland Ae egypti model. Indeed, the set of all possible 
instances of a geoclassified expanding African riceland agro-ecosystem village complex signal 

 may no longer have a finite-dimensional space , but an infinite-dimensional function space. 
In mathematics, a function space is a set of functions of a given kind from a set X to a set Y. It is 
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called a space because in many applications it is a topological space (including metric spaces), a 
vector space, or both. Namely, if Y is a field, functions have inherent vector structure with two 
operations of pointwise addition and multiplication to a scalar.(Griffith 2003) Moreover, by any 
definition a white noise signal in a yellow fever seasonal model for targeting prolific, 
georeferenceable, sylvatic Ae egypti ,riceland, capture point, seasonal,  immature habitats would 
have to be essentially discontinuous at every point; therefore even the simplest operations on , 
like integration over a finite interval would require advanced mathematical machinery. 

Some authors require each value to be a real-valued random variable with some 
finite variance . Then the covariance between the values at two times and is 
well-defined: it is zero if the times are distinct, and if they are equal. However, by this 

definition, the integral over any interval with positive width would be zero. 
This property would render the concept inadequate as a model of physical "white noise" 
signals.Therefore, most authors define the signal indirectly by specifying non-zero values for 

the integrals of and over any interval , as a function of its width . In 
this approach, however, the value of at an isolated time cannot be defined as a real-valued 
random variable. Also the covariance becomes infinite when ; and the 
autocorrelation function must be defined as , where is some real constant 
and is Dirac's "function".In this approach, one usually specifies that the integral of 

over an interval is a real random variable with normal distribution, zero mean, 
and variance ; and also that the covariance of the integrals , is , 
where is the width of the intersection of the two intervals . This model is called a 
Gaussian white noise signal (or process). 

In statistics and econometrics one often assumes that an observed series of data values is 
the sum of a series of values generated by a deterministic linear process, depending on certain 
independent (explanatory) variables, and on a series of random noise values. Then regression 
analysis is used to infer the parameters of the model process from the observed data, e.g. by 
ordinary least squares, and to test the null hypothesis that each of the parameters is zero against 
the alternative hypothesis that it is non-zero. Hypothesis testing typically assumes that the noise 
values are mutually uncorrelated with zero mean and the same Gaussian probability distribution 
— in other words, that the noise is white. If there is non-zero correlation between the noise 
values underlying different observations then the estimated model parameters are still unbiased, 
but estimates of their uncertainties (such as confidence intervals) will be biased (not accurate on 
average). This is also true if the noise is heteroskedastic — that is, if it has different variances for 
different data points. 

Alternatively, in the subset of regression analysis known as time series analysis there are 
often no explanatory variables other than the past values of the variable being modeled (the 
dependent variable). In this case the noise process is often modeled as a moving average process, 
in which the current value of the dependent variable depends on current and past values of a 
sequential white noise process. 
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These two ideas are crucial in applications such as channel estimation and channel 
equalization in communications and audio. These concepts are also used in data compression.In 
particular, by a suitable linear transformation (a coloring transformation), a white random vector 
can be used to produce a "non-white" random vector (that is, a list of random variables) whose 
elements have a prescribed covariance matrix. Conversely, a random vector with known 
covariance matrix can be transformed into a white random vector by a suitable whitening 
transformation. 

 Geospectrally eigen- decomposable, sub-meter resolution, gridded  data [QuickBird, 
visible and near infra-red(NIR),  remotely sensed,   sub-mixel (i.e., mixed pixel), endmember 
(i.e., reference biosignature) fractions of incident radiation reflected, transmitted and absorbed by 
prolific, georeferenced, entomological,  sylvatic,capture point,  YF , Ae aegypti, larval habitats  
is crucial in implementing control strategies in various ecosystems (e.g.,  urbanizing, pre-
flooded, tillering riceland,  discontinuous, deforested, sparsely shaded, forest canopy LULCs). 
However, non-quantitation of probabilistic bidirectional internal and external geometric error 
radiance uncertainties derived in an eco-epidemiological, gridded sub-meter resolution, 
endmember, wavelength-oriented, regression equation constructed from log-transformed 
discrete, categorical and continuous, bionomic, seasonal, hypeprproductive, Ae. aegypti, time 
series, clinical, field and radiance-related, non-diagnosed, heterogeneous explanators  (e.g., daily 
precipitation count and measure of drop sizes from rain gauges defined in disdrometers, 
quantized, uncoalesced, frequencies  of LULC sites measured in  nanometers) heteroskedastic 
(i.e.,uncommon variance)  independently, probabilistic, non-normalities may be a limiting factor 
in forecasting vulnerability paradigms. Injudiciously, endemic, YF, linear regression metamodels 
and their concomitant experimental designs  in literature assume a univariate (not multivariate) 
simulation response and white noise.  By definition, white noise is normally (Gaussian), 
independently (implying no common random numbers), and identically (constant variance) 
distributed with zero mean (valid metamodel)It is important to recognize the source of the 
internal and external error and whether it is systematic (predictable) or nonsystematic (random) 
in a medially entomological,  vector arthropod, forecasting, vulnerability, eco-epidemiological 
model. 
 
 
       Many tests of the constancy of vector arthropod-related geo-spectrotemporally  geosampled, 
empirical datasets of georeferenceable, regression coefficients have been proposed in various  
paradigms in SAS. If the regressed diagnostic,  YF, time series clinical, field or remote, 
geosampled non-parameterizable, sub-meter resolution, uncoalesced, iteratively interpola LULC 
coefficients are suspected of discrete LULC changes a Chow (1960) test or the test proposed by 
Quandt (1960) may be appropriate. If the coefficients are suspected of changing smoothly 
through time, (e.g., are generated by some process, another class of tests can be used. For these 
tests an ARIMA process is used as a proxy for the true generating process. Tests for coefficients 
suspected of following specific ARIMA processes have been proposed in the literature. A simple 
white noise process generates the random coefficients model, which can be tested using the 
Lagrange multi-plier test of Breusch and Pagan (1979). For coefficients suspected of following a 
random walk, tests have been proposed by Brown, Durbin, and Evans (1975), Garbade (1977), 
Pagan and Tanaka (1979), LaMotte and McWhorter (1978), and a series of tests have been 
proposed and compared by Harvey and Phillips (1976). Cooley and Prescott (1976) introduced a 
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model where the coefficients follow an ARIMA (0, 1,1) process, and proposed a likelihood ratio 
test.    
 

There are four principal assumptions which justify the usage of linear regression models 
for purposes of eco-epidemiological,  inferences or geo-prediction for YFV surveillance on 
geoclassifiable, time series expanding geoclassifiable LULCs:(i) linearity and additivity of the 
relationship between dependent and independent variables:  (a) The expected value of dependent 
variable (e.g.,  prevalence of yellow fever in an African, agro-village, complex escalating  LULC 
ecosystem ) is a straight-line function of each geo-spectrotemporally, iteratively interpolative, 
explicatively, heuristically  optimal, diagnostic, time series endmember, dependent, diagnostic, 
clinical, field or remote, uncoalesced,  geosampled, signaturized, independent variable, holding 
the others fixed. (b) The slope of that line does not depend on the values of the other 
probabilistic, LULC explicative, YFV variables. (c)  The effects of different diagnostic, 
independent variables on the expected value of the dependent variable (e.g., prevalence of yellow 
fever ) are additive.(ii) statistical independence of the errors (in particular, no correlation 
between consecutive errors in the empirical, georefernceable, yellow fever ,time series 
regressors). (iii) homoscedasticity (constant variance) of the errors including; (a) versus time 
(e.g., remotely sensed, unmixed,clustered, yellow fever,iteratable  data)   (b) versus the LULC 
geo-predictions of prolific, seasonal, sylvatic Ae egeypti , capture point, immature, seasonal, 
georferenceable habitats (c) versus any independent geosampled, diagnostic, clinical, field or 
remote, optimizable  variable;and, (iv) quanatiation of time series normality of the error 
distribution. If any of these assumptions is violated (i.e., if there are non-quantized, nonlinear, 
explanativerelationships between YFV-related, time series dependent and independent, 
geoclassified, diagnostic, LULC variables in a forecasting vulnerability model or the errors 
exhibit correlation, heteroscedasticity, or multicolineraity, then the forecasts, confidence 
intervals, and scientific insights yielded by a yellow ferver regression geo-predictive,eco-
epidemiological model may be (at best) inefficient or (at worst) seriously biased or misleading.  

       In inferencial forecasted datasets rendered from linearization of  seasonally geo-
spectrotemporally geosampled, empiricalized, vector arthropod-related, time series, sub-meter 
resolution, uncoalesced LULC and other endmember explanators [ 3 dimensional (D) catchment 
slope coefficients)  associated with seasonally hyperproductive, vector arthropod-related], 
multicollinearity is a common phenomenon. Collineraity occurs when two or more explanatorial 
variables in a multiple regression model are highly correlated, meaning that one can be linearly  
forecasted from the others with a substantial degree of accuracy. In this situation the coefficient 
estimates of the multiple regression may change erratically in response to small changes in the 
model or the data. Multicollinearity will not reduce the explanative, geo-predictive power or 
reliability of a seasonal, YFV-related, Ae. egypti, optimally sub-meter resolution,  
geoclassifiable,georeferenceable,  LULC, eco-epidemiological model  as a whole, at least within 
the sample dataset; it only would affect calculations regarding individual  regressors. That is, a 
multiple regression forecasting, vulnerability model with correlated geo-spectrotemporal, 
uncoalesced,  endmember, Ae egypti LULC, submeter resolution geo-predictors can indicate how 
well the entire bundle of geo-predictors render the outcome variable, but it may not give valid 
results about any individual regressors, or about which  explanators are redundant with respect to 
others. 
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         In case of perfect multicollinearity the design matrix is singular and therefore cannot be 
inverted in most statistical packages. The design matrix is defined to be a matrix X such that the 
jth column of the ith row of X represents the value ( e.g, weigthage of a forest canopy LULC  
visible band)  of the jth variable associated with the ith object ( Hosmer and Lemeshew 2002).A 
geo-spectrotemporal, YFV-related,  regression model which would be  a linear combination of 
the georeferenceable,  explanatory variables may therefore be represented via matrix 
multiplication as where X is the design matrix, is a vector of the model's coefficients 
(one for each geosampled, clinical, field or remote  variable, and y is the vector of geo-predicted 
model outputs for each object ( e.g., geoclassifiable discontinuous , georeferenceable riceland 
pre-harvesting, flooded , immature capture point habitat). 

  Under these circumstances, for quantitating a generalizable YFV-related explanative, 
seasonal endmember, sub-meter resolution. sylvatic, Ae. egypti, linearized,  LULC ec-
epidemiological, geo-spectrotemporal, geospatialized,geo-predicti ve model , the 
ordinary least-squares estimator does not exist.Note that in statements of 
the assumptions underlying regression analyses of most medically important, seasonally,  
georeferenceable,  geo-spectrotemporally uncoalesced, hyperproductive, vector, arthropod-
related, immature, capture point, habitat  endmember,  sub-meter resolution,  iteratively 
interpolative, signaturizeable, orthogonalized,  data feature attribute,  an ordinary least squares, 
may reveal the absence of  multicollinearity . However, an exact , non-stochastic,  linearizable 
relationship qualitatively quantized  among the  YFV-related  LULC,weighted  regressors ( e.g., 
geo-spectrotemporally uncoalesced, georeferenced, time series, diagnostic, clinical, field or 
remote geosampled, Ae egypti, fractionalized,  radiance  endmember,  wavelength , visble and 
NIR frequencies from a georferenced forecast canopy habitat protruding onto a tillering ricland 
agro-ecosystem immature habitat). 

Two variables in a YFV, forecat model are perfectly collinear if there is an exact linear 
relationship between them. For example, and are perfectly collinear in a forecasting, 
iteratively interpolative, seasonally explanative, georeferenceable, geo-spectrotemporal, 
geospatialized,  yellow fever vulnerability paradigm if there exists parameters  and such 
that, for all the signaturizable, diagnostic, uncoalesced, Ae egypti, illuminative, LULC 
explicative observations I,then a model may berobustly constructed in a statsistical software 
package ( SAS or R) employing [Eqn;1.1] and the  robustness of the 
rendered probabilsitic non-normalities may be qualitatively quantitated with parsimony and 
precisison. 

Perfect multicollinearity exists in a geo-spectrotemporal, geospatial, YFV-related Ae. 
egypti LULC , forecasting, vulnerability model  if, for example, as in equation 1.1 , the 
correlation between two diagnostic geo-spectrotemporalized, endmember, clinical, field or 
remote, diagnostic,  independent variables is equal to 1 or −1. More commonly, the issue of 
multicollinearity arises when there is an approximate linear relationship among two or more 
independent variables (Rao 1972).Mathematically, a dataset of geo-spectrotemporally 
geosampled,georeferenceable,  seasonal, YFV-related, geoclassifiable, Ae. egypti, explicatively 
uncoalesced, parameterized LULC, capture point, immature habitat, eco-epidemiological dataset  
is perfectly multicollinear if there exist one or more exact linear relationships among some of the 
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variables. For example, an experimenter could optimally have 
holding for all the  diagnostic, time series 

explanative, sylvatic, YFV-related, diagnostic clinical, field or remote geosampled observations 
i, where are constants and is the ith observation on the jth explanatory endmember, 
iteratively interpolatable, geo-predictive variable. In so doing, explorations may be optimally 
conducted where one issue caused by multicollinearity in the yellow fever, forecasting, 
vulnerability model is invasively examined  by attempting to obtain  estimates for the parameters 
of the multiple regression equation  

         The ordinary least squares estimates involve inverting the matrix  

where ( Hosmer and Lemeshew 2002) In statistics, OLS or linear least 
squares is a method for estimating the unknown parameters in a linear regression model, with the 
goal of minimizing the differences between the observed responses in some arbitrary dataset  ( 
e.g., geo-spectrotermporally uncoalesced, sub-meter resolution, yellow fevere georferenceable, 
geosampled, Ae egypti, geoclassifiable sparsely shaded, discontinuously canopied, forest 
canopied, explanative LULC,  neigbouring an agro-ecosystem riceland ploughing, capture point, 
immature habitat)  and the responses predicted by the linear approximation of the data . Geo-
visually this may be efficiently optimally delineated cartographically in an ArcGIS 
cyberenvironment whiah can render the sum of the vertical distances between each explanative 
capture point in the set and the corresponding point on the regression line. Importanttly, the 
smaller the differences in the OLS model the better the model fits the data). The resulting 
diagnostic, clinical, field or remote estimator can be expressed by a simple formula, especially in 
the case of a single regressor on the right-hand side of the geopredictive, geo-spectrotemporal, 
endmember equation.. 

         The OLS estimator is consistent when the regressors are exogenous and there is no perfect 
multicollinearity, and optimal in the class of linear unbiased estimators when the errors are 
homoscedastic and serially uncorrelated. Under these conditions, the method of OLS can  
provide minimum-variance mean-unbiased estimation  for a geo-spectrotemporal, geospatial, 
yellow fever-related, eco-epidemiological, sylvatic, Ae egypti, uncoalesced, sub-meter resolution, 
sub-mixel, iteratievly , quantaitively  interpolative, LULC,  forecasting  vulnerability  
paradigmwhen the errors have finite variances. Consider estimation of based on  a dataset of 
uncoalesd sub-meter resolution, YFV-related, LULC explanators I and are if 
identically independently distributed  from some member of a family of densities ( e.g., 
uncoalesed geoclassifiable meterological data varaiables  , where is the parameter 
space. An unbiased,  explanative, LULC estimator of  would then be  
unbiased estimator or minimum-variance unbiased estimator UMVUE if , 

for any  unbiased georferenceable estimator  in 
the forecasting vulnerability model residual forecast. 

 If an unbiased estimator of exists, in the yellow fever, time series  eco-epidemiological 
LULC model then  an expeimenter can can prove there is an essentially unique MVUE in the 
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resdiualized YFV forecasts ( targets of hyperproductive clustering, Ae egypti , eco-
epidemioloigical, capture points).  Using the Rao–Blackwell theorem an expeimemter  can also 
prove that determining the MVUE  in aYFV-related forecasting, vulnerability paradigm is 
simply a matter of finding a complete sufficient statistic for the family and 
conditioning any unbiased estimator on it. An estimator δ(X) is an observable random variable 
(i.e. a statistic) used for precisely estimating some unobservable quantity( geospatial  
heterosekedascitic outlier) . For example,  an yellow fever experimeneter may be unable to 
observe the average weight of all  sylvatic,Ae egypti, geoclassifiable, geo-spectrotermporal, 
uncoalesced, iteratively interpolated forest canopied, discontinuous, sparsely shaded, LULCs 
adjacent to a tillering riceland agro-village comapled, captiure point, immatire habitatt ) in  X, ( a 
georeferenceable, agro-ecosystem, African,  ricleand agro-ecosystem) but the expeimenter  may 
observe the  regreession weights  of a random sample of 4 of them. The average weight of those 
4—the "sample average"—may however not be used as an estimator of the unobservable 
"population average". If an experimenter allow linerations to occur in PROC REG  and then the 
endmember data is exported into PROC VAROGRAM for  interpolation, then the endmember 
estimators may be misspecified.  

A sufficient statistic T(X) may be a statistic calculated from  non-normalized uncoalesced, 
geo-spectrotermporialized, sub-meter resolution data X to estimate some parameter θ for which it 
is true that no other statistic which can be calculable,  from  sylvatic, Ae egypti LULC data X  
may provide any additional information about θ forecasting vulnerability. The output ( e.g., 
targets of hyperproductive,georferenceable, geolocations of Ae egypti habitats on  seasonlly 
transitioned , sparsely shaded, discontinuously  canopied, Ae egypti forest-canopy, 
geoclassifiable LULCs  may be be optimally  defined as an observable georferenceabloe, 
explicative, random variable such that the conditional probability distribution of all observable 
data X given T(X) does not depend on the unobservable parameter θ, such as the mean or 
standard deviation of the whole population from which the data X was geosampled.. In the most 
frequently cited examples, the "unobservable" quantities are commonly  LULC estimators that 
can  parametrize a known family of probability distributions according to which the data  ( e.g., 
diagnostic time series, clinical, fielsd or remote YFV paramterizable covariates) are distributed. 
In other words, a sufficient statistic T(X) for a parameter in a robust YFV-related explicative Ae 
egypti, LULC vulnerability, paraidigm, θ is a robustifiable  statistic for geopredicting  yellow 
fever prevalance   if the conditional distribution of the geo-spectrotemporal, geo-
spatializable,diagnostic, clincial, field or remote specified, geo-spectrotemporally geosampled 
regressors and  the conditional distribution of the data X, given T(X), does not depend on the 
parameter θ. 

The mean squared error of an geo-spectrotemporally orthogonally explicatively 
decomposeable, sub-meter resolution, yellow fever, iteratively interpolative, explicative sub-
meter resolution, regression LULC estimator is the expected value of the square of its deviation 
from the unobservable quantity being estimated. One case of Rao–Blackwell theorem states:  
The mean squared error of the Rao–Blackwell estimator does not exceed that of the original 
estimator.In other words In statistics, the Rao–Blackwell 
theorem, sometimes referred to as the Rao–Blackwell–Kolmogorov theorem, is a result which 
characterizes the transformation of an arbitrarily crude estimator into an estimator that is optimal 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

199 
Copyright © acascipub.com, all rights reserved.  

by the mean-squared-error criterion or any of a variety of similar criteria.The Rao–Blackwell 
theorem states that if g(X) is any kind of estimator of a parameter θ, then the conditional 
expectation of g(X) given T(X), where T is a sufficient statistic, is typically a better estimator of 
θ, and is never worse. It may be possible that a yellow fever experimneter utilize   a regression 
froemweork in PROC REG so as to easily construct a very crude estimator g(X), and then 
evaluate that conditional expected value to  achive an optimal munbiased Ae egypti LULC 
estimator that can orthogonally , cartographoically represent a sub-meter resoltuioon, uncoalesed 
endmember signature  estimator that is in various senses optimal for mtragetimng 
hyupeporductiev Ae egypti habitats in an African riseland  agro-ecosysem,  

        The essential tools of the proof besides the definition provided in literature arebased on the  
the law of total expectation and the fact that for any random variable Y, E(Y2) in an eco-
epidemiological, predictive,  sylvatic Ae. aegypti, YFV–related LULC model residualizable 
explantorial,  paramterizable covariate estimator dataset cannot be less than [E(Y)]2. That 
inequality may be logically ascertained employing  Jensen's inequality, although it may also be 
shown in PROC LOGISTIC  to follow instantly in a YFV related forecasting sub-meter 
resolution, linear decomposition algorith that a Ae egypti , eco-epidemioloigicasl, capture point, 
georefrenecable, geo-spectrotemporal, geospatialized, model that the 

 

          In probability theory, a convex function applied to the expected value of a 
geospectrotemrpaolly geosampled, Ae egypti, LULC sub-meter resolution, forecast vulnerabiliy 
model randomized  variable would be  always less than or equal to the expected value of the 
convex function of the random variable. This result,is due to  Jensen's inequality, which  
underlies many important inequalities (including, for instance, the arithmetic–geometric mean 
inequality and Hölder's inequality). 

         Exponential growth is a special case of convexity. Exponential growth narrowly means 
"increasing at a rate proportional to the current value", while convex growth generally means 
"increasing at an increasing rate (but not necessarily proportionally to current value)" (Grifftyh 
2003)For a real convex function φ,  geospectrotermpaolly geosampled, georeferenceable, YFV-
related  geoclassifiable Ae egypti LULCs x1, x2, ..., xn in its domain, and positive weights ai, 

Jensen's inequality can be stated as: [Eqn 1.2]and the inequality 

is reverseable  if φ is concave, which is] [Eqn 1.3]. Equality holds if 
and only if or φ is linear ( Rao 1972) As a particular case, if the weights 
in a geo-spectrotermporally uncoalesced, YFV-related, geoclassifiable, Ae egypti, sub-meter 
resolution , discontinuously canopied, sparsely shaded, forest-canopy LULC  neigboring an 
African agro-system ricleand irrigated LULC  ai are all equal, then (equation 1.21) and  equation 

1.3 become [Eqn 1.4] and [Equn 1.5]. 

For instance, the function log(x)  would be concave in a precisoion, yellow fever, 
forecasting, vulnerability paradigm so substituting φ(x) = log(x) in the previous regression 
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formula (Equn 1.5) establish the (logarithm of the) familiar arithmetic mean-geometric mean 

inequality:  

The more general version of the Rao–Blackwell theorem speaks of the "expected loss" or 
risk function: where the "loss function" L may be any convex function. 
For the proof of the more general version, Jensen's inequality cannot be dispensed with.The 
improved estimator is unbiased if and only if the original estimator is unbiased, as may be seen at 
once by using the law of total expectation. The theorem holds regardless of whether biased or 
unbiased estimators are used. 

       The theorem seems very weak: it says only that the Rao–Blackwell estimator is no worse th 
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates 
the value of a convex function of an integral to the integral of the convex function. It was proven 
by Jensen in 1906.[1] Given its generality, the inequality appears in many forms depending on the 
context, some of which are presented below. In its simplest form the inequality states that the 
convex transformation of a mean is less than or equal to the mean applied after convex 
transformation; it is a simple corollary that the opposite is true of concave transformations. 

        Jensen's inequality  can generalizes the statement that the secant line of a convex function 
lies above the graph of the function, which may be usable in an  Jensen's inequality 
quantaifiaction  for two  geoclassifiable explanative, georfernecable, geo-spectrotemporal, 
fractionalized, endmember, forecast-oriented, YFV-related, sub-meter resolution, non-
orthogonalized, geoclasisified eco-epidmeiolgioical, uncoalesced, wavelength, frequency  points: 
the secant line consists of weighted means of the convex function, while 
the graph of the function is the convex function of the weighted means, In 
the context of probability theory, itthe forecasting vulnerability paradigm  residual forecast ( i.e., 
targets of  hyperproductive,  sylvatic Ae egypti , immature, capture points, on  geoclassified 
LULCs generally stated in the following form: if X is a randomizable explanatorial unmixed 
YFV-related  regressable variable and φ is a convex function, then an the original estimator. In 
practice, however, the improvement is often enormous. Further, by the Lehmann–Scheffé 
theorem, an unbiased estimator that is a function of a complete, sufficient statistic is the 
UMVUE estimator. Put formally, suppose is unbiased for , and that is a 
complete sufficient statistic for the family 
ofdensities.Then is the MVUE for A Bayesian 
analog is a Bayes estimator, particularly with minimum mean square error (MMSE).  Under 
the additional assumption that the errors be normally distributed, OLS is the maximum 
likelihood estimator. OLS is used in economics (econometrics), political science and electrical 
engineering (control theory and signal processing), among many areas of applications in Yellow 
fever modelling . The Multi-fractional order estimator is an expanded version of OLS. 

        The multi-fractional order estimator (MFOE) is a straightforward, practical, and flexible 
alternative to the Kalman filter (KF) for tracking targets( seasonal hyperproductive Ae aegypti 
oviposition geolocations in expanding  African ricelands). The MFOE may be  focused strictly 
on simple and pragmatic fundamentals along with the integrity of mathematical forecast 
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modeling. Like the KF, the MFOE is based on the least squares method (LSM) and the 
orthogonality principle at the center of Kalman's derivation ( Cressie 1993). Optimizing, the 
MFOE  may yield better accuracy than the KF in a YF model  and subsequent algorithms such as 
the extended KF  and the interacting multiple model (IMM). MFOE is an expanded form of the 
LSM, which effectively includes the KF and OLS( Hosmer and Lemeshew 2002).  as subsets 
(special cases).. The MFOE offers two major advances for YF target modelling seasonal 
hypeproductive foci on newly transitioned : (1) minimizing the mean squared error (MSE) with 
fractions of estimated coefficients (useful in target tracking)[1][2] and (2) describing the effect of 
deterministic OLS processing of statistical inputs (of value in econometrics)[  

Consider equally time spaced noisy measurement samples of a target trajectory described 

by ]where n represents both the time samples and the index in a 
YF , eco-epidemiological, oviposition, African, riceland, discontinuous, forest-canopy, 
vulnereability, Ae aegypti, capture point, forecast,LULC model. The polynomial describing the 
trajectory may be ay a  degree J-1; and  may be  zero mean, stationary, white noise (not 

necessarily Gaussian) with variance .Estimating x(t) at time with the MFOE  may then 

describe where the hat (^) denotes an estimate, N which may be  the number 
of ovispoition hyperproductive samples in the data window. In the YF model would be  the 
time of the desired estimate, and the data weights would be measured as 

The  would be  orthogonal polynomial LULC, sub-mter 
resolution.coefficient estimators. ,a function may  detai iprojects and  estimate the 
polynomial coefficient  from  the desired estimation time . The MFOE parameter 0≤ ≤1 
may apply a fraction of the projected coefficien YF  estimate. 

      The combined terms effectively constitute a novel set of expansion functions with 
coefficients ( Cressie 1993). The MFOE  in the YF model may be optimized at time as a 
function of the s for given geo-spatiotemporal or geo-spectrotemporal, LULC measurement 
noise, target ( hyperproductive Ae aegypti riceland habitat)  dynamics, and non-recursive sliding 
data window size, N. However, for all , the MFOE nay  reduce and hence would be 
equivalent to the KF in the absence of process noise, and to the standard polynomial LSM in the 
model output. 

       As in the case of coefficients in conventional series expansions, the s typically decrease 
monotonically as higher order terms are included to match complex target trajectories. For 
example, in the s monotonically decreased in the MFOE from to , where 

for m ≧ 6. The MFOE may consist of five point, 5th order processing of composite real 
(but altered for declassification). A window of only 5 data points( geosampled seasonal, 
hypeproductive Ae. aegypti, ovipsoition sites in an African, riceland, expanding environment)  
provided excellent maneuver following; whereas, 5th order processing included fractions of 
higher order terms to better approximate the complex maneuvering target trajectory. The MFOE 
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overcomes the long-ago rejection of terms higher than 3rd order because, taken at full value (i.e., 
), estimator variances increase exponentially with linear order increases. (This is 

elucidated below in the section "Application of the FOE".) 

          As described inthe MFOE can be written more efficiently as where the 
estimator weights of order m are components of the estimating vector . By 
definition and . The angle brackets and comma denote the inner 
product, and the data vector comprises noisy measurement samples .Perhaps the most useful 
MFOE tracking estimator is the simple fractional order estimator (FOE) where and 

for all m > 3, leaving only . This is effectively an FOE of fractional order 
, which linear interpolates between the 2nd and 3rd order estimators 

describedin)as where the 
scalar fraction is the linear interpolation factor, the vector , and 

(which comprises the components ) is the vector estimator of the 3rd polynomial 

coefficient (a is acceleration and Δ is the sample period). The vector is the 
acceleration estimator from . 

             The mean-square error (MSE) from the FOE applied to an target (e.g., seasonal, 
hyperproductive,  African, Ae. aegypti, oviposition, LULC, sub-meter, resolution, capture point, 
riceland,  is , where for any vector , 

.The first term on the right of the equal sign is the FOE target habitat location 

estimator variance composed of the 2nd order location estimator variance 
and part of the variance from the 3rd order paramter estimator as determined by the interpolation 

factor squared . The second term is the bias squared from the 2nd order 
target habitat location estimator as a function of acceleration in .Setting the derivative of the 
MSE with respect to equal to zero and solving yields the optimal 

: where , as 
defined in  an eco-epidemiological, forecast-oriented,  YF , eco-georeferenceable, vulnerability, 
vulnerability, endmember, sub-meter resolution, LULC model.The optimal FOE is then very 

simply Substit
uting the optimal FOE into the MSE yields the minimum:  
Although not obvious, the   may includs the bias squared. The variance in the FOE MSE 
is the quadratic interpolation between the 2nd and the 3rd order location estimator variances as a 

function of . Whereas, the is the linear interpolation between the same 2nd and 
the 3rd order location estimator variances as a function of . The bias squared accounts for 
the difference( Griffith 2003).. 
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          Since a target's future immature habitat, capture point,  riceland, Ae egypti habitat  location 
is generally of more interest than where it is or has been, consider one-step prediction. 
Normalized with respect to measurement noise variance, the MSE for equally spaced samples 
reduces for the predicted, capture point, oviposition, LULC, position 

to where N is the number of habitat 
samples in the non-recursive sliding data window. Note that the first term on the right of the 
equal sign is the variance from estimating the first coefficient (position); the second term is the 
variance from estimating the 2nd coefficie nt (velocity); and the 3rd term with is the 
variance from estimating the 3rd coefficient (which includes acceleration). This pattern continues 
for higher order terms. Further, the sum of the variances from estimating the first two 

coefficients is ). Adding the variance from estimating the 3rd coefficient yields 

. 

            Estimator variances obviously increase exponentially with unit order increases. In the 
absence of process noise, the KF yields variances equivalent to these. (A derivation of the 
variance from a 1st degree polynomial corresponding to for the generalized case 
of arbitrary estimation time and sample times is given in reference. In addition, establishing a 
multi-dimensional tracking gate at the predicted position may easily be aided with the simple 
approximation of the error function in an eco-epidemiological, forecast-oriented,  YF , eco-
georeferenceable, vulnerability, endmember, sub-meter resolution LULC model. 

Tuning the KF consists of a trade-off between measurement noise and process noise to 
minimize the estimation error. The KF process noise serves two roles: First, its covariance is 
sized to account for the maximum expected target acceleration. Second, process noise covariance 
establishes an effective recursive , LULC geoclassified,YF data window (analogous to the non-
recursive sliding data window), described by Brookner as the Kalman filter memory.  

Contrary to process noise covariance as a single independent parameter in the KF serving 
two roles, the FOE has the advantage of two separate independent eco-epidemiological, forecast-
oriented, YF, eco-georeferenceable, vulnerability, endmember, sub-meter resolution,  LULC 
model parameters: one for acceleration and the other for sizing the sliding data window. 
Therefore, as opposed to being limited to just two tuning parameters (process and measurement 
noises) as is the KF, the FOE includes three independent tuning parameters: measurement noise 
variance, the assumed maximum deterministic target acceleration (for simplicity both target 
acceleration and measurement noise are included in the ratio of the single  parameter ), and the 
number of Ae,aegypti ovispoition samples in the data window. 

A YF model curve can yield the RMSE (square root of the MSE). On the other 
hand, choosing a vaable n yields the second curve As shown the optimal FOE is essentially a 3rd 
order non-recursive capture point, LULC estimator which may yieldsless than, for example,  4% 
RMSE improvement over  an optimal FOE in the case of no acceleration. However, in the case 
of maximum acceleration the optimal MSE form a remotely sensed, riceland, African, capture 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

204 
Copyright © acascipub.com, all rights reserved.  

point, eco-epidemiology, YF model markedly volatile and can have large error spikes that can 
confuse an arborvirologist, medical entomology, or expeimenter one spike exceeding the optimal 
MSE for worst case. Obviously, higher values of YF immature habitat N produce larger error 
spikes.Since trackers encounter greatest difficulties and often lose track during target capture 
point, Ae aegypti, forecasts., the much smoother transition of the optimal FOE has a 
major advantage over larger  YF data siumations  windows. 

One consequence of a high degree of multicollinearity is that, even if the matrix is 
invertible, a computer algorithm may be unsuccessful in obtaining an approximate inverse, and if 
it does obtain one it may be numerically inaccurate. But even in the presence of an accurate 

matrix, the following consequences arise. 

In the presence of multicollinearity in a seasonal, hyperproductive, YF eco-
epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC, oviposition , 
African, riceland model, the estimate of one variable's impact on the discontinuous, forest-
canopied, dependent variable while controlling for the others tends to be less precise than if 
predictors were uncorrelated with one another. The usual interpretation of a sub-meter resolution, 
explanatorial, time series, regression coefficient is that it provides an estimate of the effect of a 
one unit change in an independent variable, , holding the other variables constant. If is 
highly correlated with another independent variable, , in the given  eco-epidemiological, 
LULC, riceland African, orthogonal, forest-canopied, discontinuous, orthogonal, grid-stratified, 
geosampled dataset, then we have a set of observations for which and have a particular 
linear stochastic relationship. Currently a set of YF geosampled observations for which all LULC 
changes in riceland are independent of changes in inhomogeneous, forest-canopy , so we 
have an imprecise, forecasted, LULC estimate of the effect of independent changes in . 

In some sense, the collinear variables contain the same information about the dependent 
variable. If nominally "different" measures actually quantify the same phenomenon then they are 
redundant. Alternatively, if the YF variables are accorded different names and perhaps employ 
different numeric measurement scales but are highly correlated with each other, then they suffer 
from redundancy.One of the features of multicollinearity is that the standard errors of the 
affected coefficients tend to be large. In that case, the test of the hypothesis that the coefficient is 
equal to zero may lead to a failure to reject a false null hypothesis of no effect of the explanator, 
a type II error. 

In statistical hypothesis testing, a type I error is the incorrect rejection of a true null 
hypothesis (a "false positive"), while a type II error is the failure to reject a false null hypothesis 
(a "false negative"). More simply stated, a type I error is detecting an effect that is not present, 
while a type II error is failing to detect an effect that is present. The terms "type I error" and 
"type II error" are often used interchangeably with the general notion of false positives and false 
negatives in binary classification, such as medical testing, but narrowly speaking refer 
specifically to statistical hypothesis testing in the Neyman–Pearson framework In statistics, the 
Neyman–Pearson lemma, , states that when performing a hypothesis test between two simple 
hypotheses H0: θ = θ0 and H1: θ = θ1, the likelihood-ratio test which rejects H0 in favour of H1 
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when where is the most powerful test at significance level 
α for a threshold η. If the test is most powerful for all , it is said to be uniformly most 
powerful (UMP) for alternatives in the set . 

       Each of the two competing models, the null model and the alternative model, is separately 
fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice 
the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods: 

 

The model with more parameters (here alternative) will always fit at least as well; that is: They 
have a greater or equal log-likelihood, than the model with less parameters (here null). Whether 
it fits significantly better and should thus be preferred is determined by deriving the probability 
or p-value of the difference D. Where the null hypothesis represents a special case of the 
alternative hypothesis, the probability distribution of the test statistic is approximately a chi-
squared distribution with degrees of freedom equal to .[10] Symbols and 

represent the number of free parameters of models alternative and null, respectively. 

       Here is an example of use. If the YF null model has 1 Ae aegypti, parameter and a log-
likelihood of −8024 and the alternative model has 3 parameters and a log-likelihood of −8012, 
then the probability of this difference is that of chi-squared value of 

with degrees of freedom, and is equal to . 
Certain assumptions[6] must be met for the statistic to follow a chi-squared distribution, and often 
empirical p-values are computed. 

The likelihood-ratio test requires nested models – models in which the more complex one 
can be transformed into the simpler model by imposing a set of constraints on the parameters. If 
the models are not nested, then a generalization of the likelihood-ratio test can usually be used 
instead: the relative likelihood. 

Suppose that the  ML estimate for θ is  in a seasonal, hyperproductive, YF eco-
epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC ,oviposition , 
discontinuous, forest-canopied, African riceland model.Relative plausibilities of other θ values 
may be then found by comparing the likelihood of those other values with the likelihood of . 
The relative likelihood of θ is defined[3][4] as A 10% likelihood region for θ 
is and more generally, a p% likelihood region for θ is defined[3][4] 
to be If θ is a single real parameter, a p% likelihood region will 
typically comprise an interval of real values. In that case, the region is called a likelihood 
interval.  
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Likelihood intervals can be compared to confidence intervals in  a seasonal, 
hyperproductive, YF eco-epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter 
resolution, LULC ,oviposition , discontinuous, forest-canopied, African riceland model 
especially Likelihood ratio tests based on Wilks's theorem, which says that 2 times 
log(likelihood ratio) of nested hypotheses is approximately chi-square under certain commonly 
met criteria. Most importantly, the parameters of the larger YF model fixed to produce the 
smaller model must lie in the interior of the parameter space; one or more cannot be on a 
boundary. In such cases, the approximating chi-square distribution has degrees of freedom equal 
to the number of parameters in the larger model fixed to produce the smaller model. The 
indexing percentage for likelihood intervals is quite different from confidence intervals: If θ is a 
single real parameter, then under certain conditions, a 14.7% likelihood interval for θ will be the 
same as a 95% confidence interval.  

Ideally, statistical software (e.g., SAS, R) automatically can provide charts and statistics 
that test whether regression assumptions in a are satisfied for any given eco-epidemiological, 
LULC<, YF forecast vulnerability, eco-epidemiological model.  Unfortunately, many software 
packages do not provide such output by default (i.e., additional menu commands must be 
executed or code must be written) and some (such as Excel’s built-in regression add-in) offer 
only limited options.  RegressIt does provide such output and in graphic detail.  Example of 
outputs from YF explicatively, geopredictive paradigms that violate all of the assumptions  
previously mentioned is littered in literature.  In most of these models the naïve experimeneter 
has accepted the diagnostic, clinical ,field or remote LULC  forecasts due to s large value of  R-
squares.  R-squared is a statistical measure of how close the data are to the fitted regression line. 
It is also known as the coefficient of determination, or the coefficient of multiple determination 
for multiple regression. The Coefficient of Determination Interpretation is the accuracy of the 
predictor of the independent variable on the dependent variable value. Multiple regression 
analysis expresses a relationship between a set of predictor variables and a single criterion 
variable by the multiple correlation R, multiple coefficient of determination R2, and a set of 
standard partial regression weights β , β , etc 

A eco-epidemiological, robust YF , time series, forecasting, vulnerability, Ae egypti, 
African riceland, habitat, ovispoition, LULC model that satisfies regression assumptions at least 
reasonably well by the usage of robust, nonlinear explanative, log-transformations of an 
empiricial  geosampled, geo-spectrotempora, eco-epidemiologicall datset of diagnostic, clinical, 
field or remote explanatory variables doe not currently exist.  In literature normalized quantile 
plots from  diagnostic, vector arthropod-related medical entomological geo-predictive  models 
are rare.   

             In statistics, a Q–Q plot ("Q" stands for quantile) is a probability plot, which is a 
graphical method for comparing two probability distributions by plotting their quantiles against 
each other. First, the set of intervals for the quantiles is chosen. A point (x, y) on the plot 
corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against the 
same quantile of the first distribution (x-coordinate). Thus the line is a parametric curve with the 
parameter which is the (number of the) interval for the quantile.If the two distributions being 
compared are similar, the points in the Q–Q plot will approximately lie on the line y = x. If the 
distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but 
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not necessarily on the line y = x. Q–Q plots can also be used as a graphical means of estimating 
parameters in a location-scale family of distributions. 

            A Q–Q plot is used to compare the shapes of distributions, providing a graphical view of 
how properties such as location, scale, and skewness are similar or different in the two 
distributions. Q–Q plots can be used to compare collections of data, or theoretical distributions. 
The use of Q–Q plots to compare two samples of a seasonal, hyperproductive, YF eco-
epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC ,oviposition , 
discontinuous, forest-canopied, African riceland.data can be viewed as a non-parametric 
approach to comparing their underlying distributions. A Q–Q plot is generally a more powerful 
approach to do this than the common technique of comparing histograms of the two samples, but 
requires more skill to interpret( Anselin 1995).. Q–Q plots are commonly used to compare a data 
set to a theoretical model. This can provide an assessment of "goodness of fit" that is graphical, 
rather than reducing to a numerical summary. Q–Q plots are also used to compare two theoretical 
distributions to each other.[4] Since Q–Q plots compare distributions, there is no need for the 
values to be observed as pairs, as in a scatter plot, or even for the numbers of values in the two 
groups being compared to be equal.  

           A scatter plot (also called a scatter graph, scatter chart, scattergram, or scatter diagram) is 
a type of plot or mathematical diagram using Cartesian coordinates to display values for typically 
two variables for a set of data. If the points are color-coded you can increase the number of 
displayed variables to three. The data is displayed as a collection of points, each having the value 
of one variable determining the position on the horizontal axis and the value of the other variable 
determining the position on the vertical axis. A scatter plot can be used either when one 
continuous variable that is under the control of the experimenter and the other depends on it or 
when both continuous variables are independent. If a parameter estimator exists in a a seasonal, 
hyperproductive, YF eco-epidemiological, Ae. aegypti, forecast, vulnerability, sub-meter 
resolution, LULC ,oviposition , discontinuous, forest-canopied, African, riceland model that is 
systematically incremented and/or decremented by the other, it is called the control parameter or 
independent variable and is customarily plotted along the horizontal axis. The measured or 
dependent variable is customarily plotted along the vertical axis. If no dependent variable exists, 
either type of variable can be plotted on either axis and a scatter plot will illustrate only the 
degree of correlation (not causation) between two variables. 

             A scatter plot can suggest various kinds of correlations between variables with a certain 
confidence interval. For example, weight and height, weight would be on y axis and height 
would be on the x axis. Correlations may be positive (rising), negative (falling), or null 
(uncorrelated). If the pattern of dots slopes from lower left to upper right, it indicates a positive 
correlation between the variables being studied. If the pattern of dots slopes from upper left to 
lower right, it indicates a negative correlation. A line of best fit (alternatively called 'trendline') 
can be drawn in order to study the relationship between the variables. An equation for the 
correlation between the variables can be determined by established best-fit procedures. For a 
linear correlation, the best-fit procedure is known as linear regression and is guaranteed to 
generate a correct solution in a finite time. No universal best-fit procedure is guaranteed to 
generate a correct solution for arbitrary relationships. A scatter plot may be very useful when an 
arbovirologist, medical entomologist or YF experiment  wishs to see how two comparable a 
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seasonal, hyperproductive, Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC 
,oviposition , discontinuous, forest-canopied, African riceland datasets agree with each other. In 
this case, an identity line, i.e., a y=x line, or an 1:1 line, is often drawn as a reference. The more 
the two data sets agree, the more the scatters tend to concentrate in the vicinity of the identity 
line; if the two data sets are numerically identical, the scatters fall on the identity line exactly. 

         One of the most powerful aspects of a scatter plot, however, is its ability to show nonlinear 
relationships between variables. The ability to do this can be enhanced by adding a smooth line 
such as LOESS. Further, if the a seasonal, hyperproductive, YF eco-epidemiological, Ae.aegypti, 
forecast, vulnerability, sub-meter resolution, LULC ,oviposition , discontinuous, forest-canopied, 
African riceland model data are represented by a mixture model of simple relationships, these 
relationships will be visually evident as superimposed patterns. 

The scatter diagram is one of the seven basic tools of quality control( Griffith 2003). 
Scatter charts can be built in the form of bubble, marker, or/and line charts.[6] For a set of data 
variables (dimensions) X1, X2, ... , Xk, the scatter plot matrix shows all the pairwise scatter plots 
of the variables on a single view with multiple scatterplots in a matrix format. For k variables, in 
a a seasonal, hyperproductive, YF eco-epidemiological, Ae.aegypti, forecast, vulnerability, sub-
meter resolution, LULC ,oviposition , discontinuous, forest-canopied, African riceland model,the 
scatterplot matrix will contain k rows and k columns. A plot located on the intersection of i-th 
row and j-th column is a plot of variables Xi versus Xj. .This means that each row and column is 
one dimension, and each cell plots a scatterplot of two dimensions. 

          The Tukey-lambda PPCC plot is used to suggest an appropriate distribution. One should 
follow-up with PPCC and probability plots of the appropriate alternatives  In probability theory 
and statistics, the beta distribution is a family of continuous probability distributions defined on 
the interval [0, 1] parametrized by two positive shape parameters, denoted by α and β, that 
appear as exponents of the random variable and control the shape of the distribution. The beta 
distribution has been applied to model the behavior of random variables limited to intervals of 
finite length in a wide variety of disciplines. For example, it has been used as a statistical 
description of allele frequencies in population genetics; time allocation in project management / 
control systems; sunshine data; variability of soil properties proportions of the minerals in rocks 
in stratigraphy and heterogeneity in the probability of HIV transmission.  

The probability density function (pdf) of the beta distribution, for 0 ≤ x ≤ 1, and shape 
parameters α, β > 0, is a power function of the variable x and of its reflection (1−x) as follows: 
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where Γ(z) is the gamma function. The beta function, , is a normalization constant to ensure that 
the total probability integrates to 1. In the above equations x is a realization—an observed value 
that actually occurred—of a random process X.This definition includes both ends x = 0 and x = 1, 
which is consistent with definitions for other continuous distributions supported on a bounded 
interval which are special cases of the beta distribution, for example the arcsine distribution, and 
consistent with several authors, like N. L. Johnson and S. Kotz. However, several other authors, 
including W. Feller, choose to exclude the ends x = 0 and x = 1, (such that the two ends are not 
actually part of the density function) and consider instead 0 < x < 1.   

 Statistical tests can be divided in two large groups based on the distribution of the 
variables to be investigated (Précsényi et al., 2000). Parametric tests, as it is in their name, 
estimate a parameter of the investigated population. They assume that the distribution of the 
investigated variable (or the error) is normal. The power of parametric tests is high (also small 
differences can be detected), but they have several assumptions and usually they can be used 
only on variables measured in a  seasonal, hyperproductive, YF eco-epidemiological, Ae.aegypti, 
forecast, vulnerability, sub-meter resolution, LULC ,oviposition , discontinuous, forest-canopied, 
African riceland model.on ratio or interval scale. In contrary, non-parametric tests do not 
estimate a parameter. They do not require normality, but in case of some of them it is assumed 
that the distribution has a particular shape (e.g. symmetric). Non-parametric tests have fewer 
assumptions and can be used also on variables measured on nominal or ordinal scale( Griffth 
2003).. They have usually lower power then their parametric counterpart, and many, especially 
the more complex parametric tests, do not have a non-parametric counterpart. 

Violations of independence are potentially very serious in time series regression models: 
serial correlation in the errors (i.e., correlation between consecutive errors or errors separated by 
some other number of periods) means that there is room for improvement in the model, and 
extreme serial correlation is often a symptom of a badly mis-specified model. Serial correlation 
(also known as autocorrelation”) is sometimes a byproduct of a violation of the linearity 
assumption, as in the case of a simple (i.e., straight) trend line fitted to data which are growing 
exponentially over time which may render mis-specified itaretively interpolated sub-mter 
resolution, Ae. aegypti, ovispoition, LULCs in a African, riceland, agro-ecosystem, forecast, 
vulnerability model. 

 Estimation of conditional choice probabilities in a binary choice, medical entomological, 
vector, arthropod-related, YFV, forecast, vulnerability model under uncertainty is considered 
weak due to nonparametric restrictions on expectations and the error distribution. The estimation 
method follows a two-stage strategy: the first stage estimates expectations employing 
realizations of  elucidative, geo-spectrotemporal,  diagnostic, clinical, field or remote-specified, 
explanatory, futuristically-oriented,,  YFV-related descriptor ( prevalanace rate)  and their second 
stage, forecasted conditional choice probabilities employing choice parameterizable, covariate, 
coefficient data and their regression expectations estimates . Although under given conditions the 
two-stage nonparametric kernel estimator is uniformly, strongly consistent and asymptotically 
normal, geospectrotemporally geospatialized, explucatively  diagnostic, georeferenced, time 
series, log-transmformed clinical data(e.g., annual adult, Ae. egypti,  biting rates), field covariates 
(e.g., GPS ground cordinates of a hyperendemic, gridded, startified, land cover cluster centroid 
and its bidirectional wavelength remotely sensed  frequencies (e.g., uncoalesced, iteratively 
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interpolatable, visible and near infra-red, transmittance) can render  precision forecasts, primarily 
due to conflicting measurement coefficient values in the negative log-likelihood computation. 
Hence, the chi-square distributions are commonly erroneous in these geo-predictive eco-
epidemiological, time series,probabilistic paraigidms.  
 
        The usual approach in   discrete choice problem solving when optimally  quantizing 
explanatorial, geo-spectrotemporal, uncoalesced,geospatialized,  sub-meter resolution, 
uncoalesced, wavelength  frequency and  clinically diagnostic, YFV-related, vector, forecastable, 
vulnerability analysis for  targeting, immature, Ae egypti seasonal, georeferenceable, prolific, 
immature  habitats   has maintained strong assumptions in regard to probability distributions 
based on a fixed set parameter expectations. For example,see Khormi (2013) and Gerade (2004).  
The disadvantage of these parametric assumptionsis the danger of incorrect specification, which 
may distort inference on preferences or choice  probabilities. 
 
    Logistic regression was optimally employed in Reyes-Villanueva and, Rodríguez-Pérez                                                                 
2004 for quantitating the likelihood of occurrence of a non-gonoactive Aedes aegypti female, 
previously fed human blood, with relation to body size and collection method.This study was 
conducted in Monterrey, Mexico, between 1994 and 1996. Ten samplings  of 60 mosquitoes of 
Ae. aegypti females were carried out in three dengue endemic areas: six of biting females, two of 
emerging mosquitoes, and two of indoor resting females. Gravid females, as well as those with 
blood in the gut were removed. Mosquitoes were taken to the laboratory and engorged on human 
blood. After 48 hours, ovaries were dissected to register whether they were gonoactive or non-
gonoactive. Wing-length in mm was an indicator for body size. The logistic regression model 
was used to assess the likelihood of non-gonoactivity, as a binary variable, in relation to wing-
length and collection method.Of the 600 females, 164 (27%) remained non-gonoactive, with a 
wing-length range of 1.9-3.2 mm, almost equal to that of all females (1.8-3.3 mm). The logistic 
regression model showed a significant likelihood of a female remaining non-gonoactive (Y=1). 
The collection method did not influence the binary response, but there was an inverse 
relationship between non-gonoactivity and wing-length.  
 
     Logistic regression was a useful tool to estimate the likelihood for an engorged female to 
remain non-gonoactive in Reyes-Villanueva  and Rodríguez-Pérez  (2004). The forecasts 
revealed necessity for a second blood meal is present in any female, but small mosquitoes are 
more likely to bite again within a 2-day interval, in order to attain egg maturation. However, 
when building a logistic regression, Ae.egypti, time series, eco-epidemiological, forecast 
vulnerability model,a experimeneter  may assume that the logit of the outcome variable is a 
linear combination of the independent variables. This involves two aspects, as the model 
dichotomous framework are dealing with the two sides of a logistic regression equation in the 
YFV-related vulnerability analyses. First, consider the link function of the outcome geosampled , 
diagnostic, explicative, time series, geo-variable on the left hand side of the equation. A 
experimenter may assume that the logit function is the correct function to use for quantitating an 
empirical geomapled datset of  geo-spectrotemporally paramterizable, diagnostic, YFV, clinical, 
field an remote specified covariates. Secondly, on the right hand side of the equation, an 
experimenter may assume that all the relevant variables,that are not included should not be in the 
model, and the logit function is a linear combination of the explanative geo-predictors. It could 
happen that the logit function (i.e., link function) is not the correct choice or the relationship 
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between the logit of outcome variable and the independent variables is not linear. In either case, 
a specification error would occur. The misspecification of the link function is usually not too 
severe compared with other alternative link function choices such as probit (based on the normal 
distribution) (Griffith 2003). In practice, a yellow fever experimenter should be concerned with 
whether the Logistic binary forecasting vulnerability model has all the relevant geo-predictors 
and if the linear combination of them is sufficient. 
 

Logistic regression models are commonly used to study the association between a binary 
response variable and an exposure variable. Besides the exposure of interest, other covariates are 
frequently included in the fitted model in order to control for their effects on outcome. 
Unfortunately, misspecification of the main exposure variable and the other covariates is not 
uncommon, and this can adversely affect tests of the association between the exposure and 
response. We allow the term "misspecification" to cover a broad range of modeling errors 
including measurement errors, discretizing continuous explanatory variables, and completely 
excluding covariates from the model.  

 
Suppose that x denotes the explanatory variable of interest, and z denotes a vector of 

other explanatory variables in a  a seasonal, hyperproductive, YF eco-epidemiological, 
Ae.aegypti, forecast, vulnerability, sub-meter resolution, LULC ,oviposition , discontinuous, 
forest-canopied, African riceland model.For simplicity of presentation, we shall hereafter refer to 
x and z as the exposure variable andcovariates, respectively. When the outcome of interest  is 
binary, logistic regression models are commonly used to study the association between exposure 
and response. If Y denotes the binary response, then the relationshipbetween exposure and 
response is modeledas:logit Pr(Y = lIx,z) = 0 + ax + ,'z (1) where 0, a, and , are unknown 
parameters. The hypothesis of no association between exposure and outcomecan be expressed as: 
Ho:a = 0 Given n independent and identically distributed observations of the form (Yi, xi, zi), i = 
1,2, .. ,n, this hypothesis can be assessed using the likelihood score testof a - 0, say Q (x,z), 
which is asymptotically equivalentto tests of a = 0 based on the maximum likelihoodestimator of 
a and on the likelihood ratio statistic (1). 
 

Alternatively, Manski (1988b, 1991) introduced a two-stage semiparametric method 
applicable if expectations are fulfilled and are conditioned only on variables ( i.e., geo-
spectrotemporal, kriged, proxy, Ae egypti, forest-canopy, LULC, sub-meter resolution, unmixed  
biosignatures) observed by the researcher. The first stage estimates expectations 
nonparametrically using realizations of agents’ futures, and the second stage estimates preference 
parameters employing choice data and estimated expectations under a parametric restriction on 
the error distribution. The strong consistency of the two-stage estimator was shown in Manski 
(1991). The rate of convergence and the asymptotic distribution of the estimator was studied by 
Ahn and Manski (1993). In this semiparametric method, conditional choice probabilities are 
inferred from a triple: estimated expectations, two-stage estimation of the preference parameters, 
and a parametrically specified error distribution. This two-stage semiparametric method may be 
promising for elucidating geo-predictive explanators of hypeproductive, Ae egypti aquatic larval 
habitats on geoclassified,  seasonal geoclassifiable LULCs in that it does not prespecify the 
functional form of expectations and separates inference on expectations from inference on 
preferences. Also, it substantially simplifies what would be a complicated finite-horizon dynamic 
choice problem; it begins with the observation (e.g., geosampled georeferenced, Ae. egypti, 
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riceland, agro-village complex, sub-meter resolution, geoclassified LULC centroid prolific 
oviposition, capture point) and the assumption that any dynamic choice problem has an 
observationally equivalent static representation. As such solving a backward recursion problem 
in a  forecast vulnerability, georferenceable, geo-spectrotemporal, geosampled, Ae. egypti which 
is very often computationally intractable.  

      Recursion is the process of repeating items in a self-similar way(Cressie 1993). For instance, 
when the surfaces of two seasonally geoclassifiable, georeferenceable, Ae.egypti LULCs are 
exactly parallel with each other, the nested images that occur may be a form of infinite recursion, 
The most common application of recursion is in mathematics and computer science, in which it 
refers to a method of defining functions in which the function being defined is applied within its 
own definition. Specifically, this defines an infinite number of instances (function values), using 
a finite expression that for some instances may refer to other instances, but in such a way that no 
loop or infinite chain of references can occur. The term is also used more generally to describe a 
process of repeating objects in a self-similar way. 

 Finite subdivision rules are a geometric form of recursion, which can be used to create 
fractal-like images. A subdivision rule can start with a collection of seasonally geoclassifiable, 
georeferenceable, sub-meter resolution, Ae.aegypti LULCs polygons labelled by finitely many 
labels ( e.g.,  discontinuous, forest canopy, riceland, agro-ecosystem, post tillering) , and then 
each polygon can be  subdivided into smaller labelled polygons (e.g., sparsely shaded, trailing 
vegetation) in a way that depends only on the labels of the original polygon. This process can be 
iterated in SAS or R. The standard `middle thirds' technique for creating the Cantor set is a 
subdivision rule, as is barycentric subdivision. 

    In mathematics, the Cantor set is a set of points lying on a single line segment that has a 
number of remarkable and deep properties. Through consideration of this set, Cantor and others 
helped lay the foundations of modern point-set topology. Although Cantor himself defined the 
set in a general, abstract way, the most common modern construction is the Cantor ternary set, 
built by removing the middle thirds of a line segment. Cantor himself only mentioned the ternary 
construction in passing, as an example of a more general idea, that of a perfect set that is 
nowhere dense. 

The Cantor ternary set is created by deleting the open middle third from each of a set of 
line segments repeatedly. One starts by deleting the open middle third (1/3, 2/3) from the 
interval [0, 1], leaving two line segments: [0, 1/3] ∪ [2/3, 1]. Next, the open middle third of each 
of these remaining segments is deleted, leaving four line segments: [0, 1/9] ∪ [2/9, 1/3] ∪ 
[2/3, 7/9] ∪ [8/9, 1]. This process is continued ad infinitum, where the nth set is 

and  
 
 
 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

213 
Copyright © acascipub.com, all rights reserved.  

A Cantor ternary set contains all points in the interval [0, 1] that are not deleted at any step 
in this infinite processwher  

 

 

An explicit closed formula for the Cantor set may be 

or for a a seasonal, 
hyperproductive, YF eco-epidemiological, Ae.aegypti, forecast, vulnerability, sub-meter 
resolution, LULC ,oviposition , discontinuous, forest-canopied, African riceland model. This 
process of removing middle thirds is a simple example of a finite subdivision rule. In 
mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-
dimensional shape into smaller and smaller pie. 

To construct a Canto function, an arbovirologist, medical entomologist or  YF expeimenter, 
may consider a seasonal hyperproductive, capture points in the [0, 1] interval in terms of base 3 
(or ternary) notation. Recall that some points admit more than one representation in this notation, 
as for example 1/3, that can be written as 0.13 but also as 0.022222...3, and 2/3, that can be written 
as 0.23 but also as 0.12222...3. This alternative recurring representation of a number with a 
terminating numeral occurs in any positional system. When an arbovirologist, medical 
entomologist or YF expeirmenter remove the middle third, this contains the numbers with 
ternary numerals of the form 0.1xxxxx...3 in  aYF model where xxxxx...3 is strictly between 
00000...3 and 22222...3. So the numbers remaining after the first step consist of 

 Numbers of the form 0.0xxxxx...3 
 1/3 = 0.13 = 0.022222...3 
 2/3 = 0.122222...3 = 0.23 
 Numbers of the form 0.2xxxxx...3. 

This can be summarized by saying that those numbers that admit a ternary representation such 
that the first digit after the decimal point is not 1 are the ones remaining after the first step. 

The second step removes numbers of the form 0.01xxxx...3 and 0.21xxxx...3, and (with 
appropriate care for the endpoints) it can be concluded that the remaining numbers are those with 
a ternary numeral where neither of the first two digits is 1. Continuing in this way, for a number 
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not to be excluded at step n, it must have a ternary representation of a YF model whose nth digit 
is not 1. For a number to be in the Cantor set, it must not be excluded at any step, it must admit a 
numeral representation consisting entirely of 0s and 2s. It is worth emphasising that numbers like 
1, 1/3 = 0.13 and 7/9 = 0.213 are in the Cantor set, as they have ternary numerals consisting entirely 
of 0s and 2s: 1 = 0.2222...3, 1/3 = 0.022222...3 and 7/9 = 0.2022222...3. So while a number in 

may have either a terminating or a recurring ternary numeral, one of its representations will 
consist entirely of 0s and 2s. 

The function from to [0,1] is defined by taking the numeral that does consist entirely of 
0s and 2s, replacing all the 2s by 1s, and interpreting the sequence as a binary representation of a 

real number. In a formula, (Cressie 1993) For any number y in [0,1], 
its binary representation can be translated into a ternary representation of a number x in by 
replacing all the 1s by 2s. With this, f(x) = y so that y is in the range of f in any eco-
epidemiological, YF , geo-spectrotemrpoal or geo-spatiotemrpoal, Ae. aegypti , forecast, 
vulnerability, LULC model For  example, if y = 3/5 = 0.100110011001...2, an arbovirologist , 
medical entomologist or other expiementer couls  write x = 0.200220022002...3 = 7/10. 
Consequently, f  would be  surjective; however, f  would not be injective in the African riceland 
YF model— interestingly enough, the model values for which f(x) coincides with would be those 
that would be at opposing ends of one of the middle thirds removed. For exmaple, 7/9 = 
0.2022222...3 and 8/9 = 0.2200000...3 so f(7/9) = 0.101111...2 = 0.112 = f(8/9). 

So there are as many points in the Cantor set as there are in [0, 1], and the Cantor set is 
uncountable (see Cantor's diagonal argument). However, the set of endpoints of the removed 
intervals is countable, so there must be uncountably many numbers in the Cantor set which are 
not interval endpoints. As noted above, one example of such a number is ¼, which can be written 
as 0.02020202020...3 in ternary notation. 

The Cantor set contains as many points as the interval from which it is taken, yet itself 
contains no interval of nonzero length. The irrational numbers have the same property, but the 
Cantor set has the additional property of being closed, so it is not even dense in any interval, 
unlike the irrational numbers which are dense in every interval.It has been conjectured that all 
algebraic irrational numbers are normal. Since members of the Cantor set are not normal, this 
would imply that all members of the Cantor set are either rational or transcendental. 

The Cantor set  for a YF, ricland , African ecosystem, Ae. aegypti, sub-meter resolution, 
LULC,forest-canopy risk model would be of  the prototype of a fractal. It would be  self-similar, 
because it would be  equal to two copies of itself, if each copy is shrunk by a factor of 3 and 
translated. More precisely, there may be  two functions, the left and right self-similarity 
transformations, and , which leave the Cantor set invariant 
tabulated from a  YF forecast vulnerability model up to homeomorphism:  

 Jacob et al. (2014) considered estimation of conditional choice probabilities without 
estimating preference malaria, mosquito, vector, An. arabiensis sub-meter resolution, QuickBird, 
waveband dataset of  geo-spectrotemporal uncoalesced parameters (i.e., the only parametric 
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component of the entomological, forecast, vulnerability model) under weak nonparametric 
restrictions on expectations and the error distribution.The analysis was then two-stage 
nonparametric: The first stage estimates expectations nonparametrically, and the second stage 
estimatsd conditional choice probabilities nonparametrically.  
 
          In Jacob et al. (2014) the authors spectrally decomposed a sub-meter spatial resolution, 
riceland, agro-village complex,  paddy preparation, An. arabiensis capture point, immature, 
habitat, mixed pixel (mixel) for iteratively interpolating a hyperproductive,immature habitat, 
uncoalesced signature in a neighboring  riceland agro-ecosystem, study site, georferenceable, 
environment. Initially,the authors  constructed a regression model which revealed that paddy 
preparation An. arabiensis habitats were the most productive based on spatiotemporal, geo-
spectrotemporal, field-geosampled count data. Individual mixel, geospectral, wavelength, 
frequency,emissivity  radiance  estimates from the  QuickBird visible and near-infra-red (NIR) 
data of a paddy preparation An. arabiensis habitat were then extracted by using a Li-Strahler 
geometric-optical model. The model used three scene components: sunlit canopy (C), sunlit 
background (G) and shadow (T) generated from the image. The G, C, T components’ classes 
were estimated using ENVI, an object-based classification algorithm. ENVI bundles together a 
number of scientific algorithms for image processing a lot of which are contained in automated, 
wizard-based approach that walks users through complex tasks 
(http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts.aspx) 

 
In ENVI®, the Digital Number (DN) of the mixel in every QuickBird band was viewed 

using the z-profile from a spectral library. After making an atmospheric correction from the 
image for the study site, the DN was converted into ground reflectance. At the “hotspot,” (e.g., a 
paddy preparation, An. arabiensis capture point georferenced immature habitat) when 
illumination and viewing positions coincide, shadows were hidden behind sparsely canopied, 
plant crowns and the scene appeared bright. As the viewing position diverged from that of 
illumination, the shadows behind the crowns were progressively revealed and the scene 
darkened. Because, in general, the shadows of the habitat were not  circular, the amount of 
shadow revealed  was a function of both the zenith and azimuth angles by which the viewing and 
illumination positions diverged, rather than a simple phase angle between them. This effect 
creates an assymetric hotspot, in which the shape of the habitat hotspot was related to the shape 
of the plant crowns in the QuickBird scene. At large zenith angles, mutual shadowing of crowns 
becomes an important factor(Jensen 2005).. Illumination shadows will tend to fall on other 
crowns, rather than the background, and will preferentially shadow the lower portions of 
adjacent crowns. Further, these shadows were obscured since adjacent crowns tended to obscure 
the lower portions of other crowns. This effect produces a “bowl-shaped” bidirectional 
reflectance distribution function (BRDF) in which the scene brightness increases at the 
function’s edges. Deriving formulas describing the hotspot and mutual shadowing effects and 
presents examples showed how the shape of the BRDF was dependent on the shape of the An. 
arabiensis capture point habitat crowns, their density and their  their brightness relative to the 
background. A convex geometrical model was also used for endmember validation of the 
spectrally decomposed paddy preparation habitat. An ordinary kriged-based interpolation was 
performed in ArcGIS Geostatistical AnalystTM employing  the reference signature generated 
from the unmixing models. Linear unbiased predictors and variance estimates were derived of all 
productive paddy preparation An. arabiensis habitats in the study site based on the extracted 
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decomposed mixel endmember reflectance estimates. Spectral unmixing tools may be used to 
decompose QuickBird visible and NIR mixel reflectance of a productive Ae egypti capture poin 
,georferenced, immature habitat. Thereafter, an ordinary interpolator can use the sub-mixel data 
along with other spatially continuous explanatory variables geosampled from productive 
immature Aedes habitats for targeting other high density foci habitat sites which can help 
implement larval control strategies in a riceland expanding environment.  

 
       In the literature, the ‘two-stage’ approach is often used due to the presence of a nuisance 
parameter or nuisance function in the equation of interest when  risk modeling, uncoalesced, sub-
meter resolution,  geo-spectrotemporal, explicatively geospatialized, medical entomological, 
geopredictive paraidigms. See, for example, Ahn and Powell (1993) Heckman (1976), Powell 
(1987) or Robinson (1988). This two-stage method is appealing since it is conceptually simple 
and easily applicable. In the first stage, one estimates the nuisance parameter (or function); in the 
second stage, one proceeds to the equation of interest with the first-stage estimate replacing the 
unknown nuisance parameter (or function). 

             From a technical perspective, the present two-stage method in an explicatively  
robustifiable, geo-spectrotemporal, sylvatic, Ae egypti LULC, forecast vulnerability, geospatial 
model for inference on conditional choice probabilities would involve nonparametric estimation 
of conditional mean functions in both the first and second stages, commonly qualitatively 
quantiated  in SAS/GIS. The estimation method in the entomological model would be  
‘nonparametric’ because neither the functional form of the mean regression nor the error 
distribution woulod be  prespecified. Basically, the nonparametric method can be understood by 
the following ‘local average’ idea (see Eubank, 1988; Hardle, 1990). If the mean regression 
function is believed to be smooth, information about the function at a  georferenceable Ae. egypti 
larval habitat, geoclassifiable LULC, capture point,  should be contained in the data near the 
point. Then, a local average of the signature data of  the point can be used to construct an 
estimator of the function at the point.In the context of kernel estimation,  a researcher may 
investigate two main properties of the two-stage yellow fever vulnerability, diagnostic, sub-
meter resolution LULC polgonized parameter estimator in ArcGIS: uniform rate of strong 
convergence and pointwise asymptotic normality of the Ae. egypti geo-spectrotemporally 
geosampled, seasonal covariates. In statistics, kernel density estimation (KDE) is a non-
parametric way to estimate the probability density function of a random variable( Hosmer and 
Lemeshew 2002) Since both the first and the second stages in the algorithm  would be  
nonparametric, one can easily guess that the convergence rate (either uniform or pointwise) 
would be  slower especially when the n is the sample size of 10,000 YFV clinical, field and 
remote datatset variables, and are dependent on the dimensions of the forecasted 
arguments.Jacob et al. (2015) determined that, if kernels and bandwidth sequences for both 
stages of a black fly  S. damnosoum s.l., vector of onchcercisis are chosen appropriately, the 
pointwise convergence rate for asymptotic normality would be  equal to the minimum of the 
convergence rates of the first-stage estimate and of the hypothetical estimate presuming the first-
stage regression is known. A lower bound on the uniform convergence rate was obtained by the 
authors of Jacob et al. (2014) , which was slower than the minimum of the rates of convergence 
of the first stage and thegeopredicted, targeted hypeproductive trailing vegation, sparsely 
canopied, immature S. damnosum s.l. immature estimates. 
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        Residual, aympoptically normalized, elucidative, diagnostic, regression plots from 
previously constructed time series, malaria, mosquito, vector, An. arabiensi,s aquatic larval 
habitat, PROC REG models has revealed that errors in variance uncertainty estimation can 
substantially alter numerical predictions of a model by inflating the value of test statistic thereby, 
increasing the chance of a Type I error – incorrect rejection of the null hypothesis, H0: no spatial 
autocorrelation [Jacob et al. 2009]. Spatial autocorrelation is the correlation among values of a 
single variable strictly attributable to their relatively close geolocational positions on a two-
dimensional surface, introducing a deviation from the independent observations assumption of 
classical statistics [Griffith 2003]. The complexity of techniques for optimally conducting a 
yellow fever regression estimation analyses of seasonally,geosampled, geoclassifiable, 
explicative, LULC assessment ranges from simple correlations between different types to species 
abundance and distribution of vector mosquito arthropod species (Mwangangi et al. 2007, 
Kalluri et al. 2007, Patz 2000).  
 
      The autoregressive conditional variance is important in mapping vector arthropods, as it is 
used in immature habitat prediction and confidence intervals, tests of hypotheses and for 
estimating, geo-spatiotemporal, geospectral prediction error in a vunerability model framework( 
See Griffith 2005, Jacob et al. 2005). Nuisance parameters are often variances, but there are 
exceptions:for example, in an optimizable dataset of errors-in-variables model parameter 
estimates,the unknown true habitat location of each georeferenceable observation is a nuisance 
parameter (see Jacob et al. 2009). Stochastic models have been generated with non-linear 
nuisance parameters for examining the interrelationship between mosquito productivity and 
oviposition of gravid mosquitoes (Jacob et al. 2010, Jacob et al. 2013). By designing a model 
that explicitly features non-stationary behavior of regressed,  YFV, mosquito vector, LULC, 
aquatic, immature habitat data, a hierarchy of conditional variance components may be  linked 
by applying Bayes theorem in PROC MCMC.  

       PROC MCMC uses a random walk Metropolis algorithm to obtain posterior samples. The 
algorithm is simple but practical, and it can be used to obtain random samples from any 
arbitrarily complicated target distribution (e.g., prolific, georeferenced, Ae. egypti, capture point 
immature habitat)  of any dimension that is known up to a normalizing constant. The Bayesian 
procedures use a special case of the Metropolis algorithm called the Gibbs sampler to obtain 
posterior samplers (Cressie 1993). 

        The Gibbs sampler, is a special case of the Metropolis sampler in which the proposal 
distributions exactly match the posterior conditional distributions and proposals are accepted 
100% of the time(Geman and Geman 1984. Gelfand et al. 1990). Gibbs sampling would require 
decomposing the joint posterior distribution into full conditional distributions for each geo-
spectrotemporal uncoalesced, sylvatic, YFV-related, elucidative or non-elucidative, explanatorily 
diagnostic, normalized, clinical, field or remote geosampled, parameter estiamtors in the 
forecasting vulnerability model and then sample from them. The sampler may be efficient when 
sub-meter resolution   LULC wavelength, sub-meter resolution,  emissivity parameters are not 
highly dependent on each other and the full conditional distributions are easy to sample from.  
Unfortunately while deriving the conditional distributions in a regression YFV model it may  be 
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relatively easy to find an efficient way to sample from quantitable, frequency  conditional 
distributions.  

Suppose is the parameter vector, is the likelihood, and is the 
prior distribution in a  robustifiable, forecasting, sylvatic, YFV-related,  vulnerability , Bayesain 
regression. The full posterior conditional distribution of  would then be  
proportional to the joint posterior density; that is, For example, the 
one-dimensional conditional distribution of given , may be then computed as 
the following in PROC MCMC 

 The Gibbs sampler 
in the YFV, forecasting vulnerability  model would optimally works as follows: 1) Set , and 

choose an arbitrary initial value of ,( e.g., yellow fever prevalance)  
2)Generate each  geosampled forest-canopy, geoclassified, seasonal LULC component of :3) 
Draw from ,4) draw from ...4) Draw 

from and finally 5) Set . If , the number of desired 
seasonal, forecasted YFV-related samples would be non-specified. 

     Suppose an expeimneter wants to obtain samples from a univariate, YFV Bayesianized 
regression  distribution with probability density function . Suppose is the th sample from 
. To employ  the Metropolis algorithm for qualitatively quantating geospectrotemporally 

uncoalesced sub-meter resolution, diagnostic, Ae egypti-related clinical, field or remote 
geosampled parameterizable covariate coefficients an  order must be prescribed  in order have an 
initial value and a symmetric proposal density  in the risk model. For the th 
iteration, the algorithm would optimally generate a sample from based on the quantized 
sample , and would make a decision to either accept or reject the new sample. If the new YFV 
sample is accepted, the algorithm would repeat itself by starting at the new sample. If the new 
sample is rejected, the algorithm would start at the current point and then repeat in geospace. 
Since the algorithm is self-repeating, it can be carried out as long as required in order to facilitate 
the LULC radiance frequency transmittance endmember quantitation. In practice,a  reseracher 
must  decide the total number of YFV-related diagnostic clinical, field or remote samples needed 
in advance and stop the sampler after that many iterations has been completed.  

          Suppose is a symmetric distribution in a exploratory diagnostic clinical, field or 
remote geo-spectrotemrpoally geosampled, YFV-related, sylvatic, Ae. egypti forecast, 
vulnerability model. The proposal distribution should be an easy distribution from which to 
sample, and it must be such that , meaning that the likelihood of jumping 
to from  would be  the same as the likelihood of jumping back to from . The most 
common choice of the proposal distribution is the normal distribution with a fixed  ( 
www.sas.edu). The Metropolis algorithm for qualitatively quantitating an optimizable  dataset of 
uncoalesced, sub-meter resolution, YFV-related, LULC, wavelength irradiance frequency 
estimators can be summarized as follows: 1) Set  and choose a starting point  which an 
arbitrary capture point (e.g., prolific geosampled Ae egypti immature, seasonal habitat )  as long 
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as . 2) Generate a new sample, , by using the proposal distribution . 3) 

Calculate the following quantity: 4) Sample from the uniform 
distribution ., 5)Set if ; otherwise set : and,  6) Set . If 

, the number of desired YFV-related samples would  return to step 2.  

Note that the number of iteration keeps increasing in a robustifiable, explanative, 
diagnostic, sylvatic,  YFV-related, clinical, field or remote geo-spectrotemporally geosampled, 
probabilistic, LULC-oriented,  forecast,  vulnerability model regardless of whether a proposed 
sample is accepted. This algorithm can  metaheursitically optimally define a chain of randomized  
geo-spectrotemporally geosampled,YFV-related, parameterizable,explanative, seasonal, 
uncoalesced, sub-meter resolution, Ae egypti, LULC-oriented, covariates whose distribution may 
converge to the desired distribution , and so from some point forward, the chain of samples 
is a sample from the distribution of interest. In Markov chain terminology, this distribution is 
called the stationary distribution of the chain, and in Bayesian statistics, it is the posterior 
distribution of the model parameters. The random-walk Metropolis algorithm is used in PROC 
MCMC.  

       Fortunatley, a yellow fever regresssion probabilsic paradigm would  not be limited to a 
symmetric random-walk proposal distribution for establishing a valid sampling algorithm. A 
more general form, the Metropolis-Hastings (MH) algorithm, was proposed by Hastings (1970). 
The MH algorithm uses an asymmetric proposal distribution: . The 
difference in its implementation comes in calculating the ratio of densities: 

. The extension of the Metropolis algorithm to a higher-
dimensional is straightforward. Suppose is a geosampled, clincially 
diagnostic,  sylvatic, YFV-related  parameterizble covariate of intetrest. To start the Metropolis 
algorithm, an experimenter would select an initial value for each and use a multivariate version 
of proposal distribution , such as a multivariate normal distribution, to select a -dimensional 
new parameter. Other steps would remain the same as those previously described, and this 
Markov chain eventually would converge to the target distribution of  (forecasted, 
georeferenced, seasonally hyperproductive , sylvatic, Ae egypti, immature habitat, capture point)  

       Another type of Metropolis algorithm is the "independence" sampler. It is called the 
independence sampler because the proposal distribution in the algorithm does not depend on the 
current point as it does with the random-walk Metropolis algorithm. For this sampler to work 
well in a YFV-related, forecast, vulnerability, wavelength model, the experimeter would have  to 
have a proposal distribution that mimics the target distribution ( hypeprodutcive, Ae egypti, 
oviposition site) and have the acceptance rate be as high as possible. In order to do so, the 
experimenter would have to set . Initially there would be a requirement to choose a starting 
point . This can be an arbitrary point as long as .  Thereafter a new sample, , 
may be genereated by using the proposal distribution . The proposal distribution does not 
depend on the current value of  (Cressie 1993). Then b calculating the following quantity: 
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 , the sample from the uniform YFV distribution would be 
precisly . By setting  if ; or otherwise set . All the geo-
spectrotemporally geosampled, georferenced, YFV-related, explanative, diagnostic, clinical, 
field or remote geosampled, time series data would then be efficiently quantized. Finally a set 

 would be robustly rendered. If , is rendered this discretre inter value would be the 
number of desired samples in the Ae. egypti stcochastic or deterministic, uncoalesced, sub-meter 
resolution, LULC biosignature, iterative interpolator. 

        An ideal proposal density in a geo-spectrotemporal, geospatialized, sylvatic,  YFV-related,  
forecasting, vulnerability model  should have thicker tails than those of the target distribution. 
This requirement sometimes can be difficult to satisfy especially in cases where you do not know 
what the target posterior distributions are like  In addition, this sampler does not produce 
independent samples as the name seems to imply, and sample chains from independence 
samplers can get stuck in the tails of the posterior distribution if the proposal distribution is not 
chosen carefully. The independence sampler is used in PROC MCMC(www.sas.edu). 

       For the actual implementation details of the Metropolis algorithm in PROC MCMC for 
constructing a robust, YFV, forecasting regression, Ae egypti, LULC sub-meter 
resolution,vulnerability model, the blocking of the parameters and tuning of the covariance 
matrices must be highlighted. One key factor in achieving high efficiency of a Metropolis-based 
Markov chain in a YFV simulation model may be finding a good proposal distribution for each 
block of parameters (i.e.,tuning). The tuning phase consists of a number of loops.  

In SAS, the minimum number of loops is controlled by the option MINTUNE=, with a 
default value of 2 (www.sas.edu). The option MAXTUNE= controls the maximum number of 
tuning loops, with a default value of 24. Each loop lasts for NTU= iterations, where by default 
NTU= 500. At the end of every loop, PROC MCMC would examine the acceptance probabilities 
of the regressed, sylvatic, YFV-related Ae.aegypti, geoclassified, LULC explanators for each 
block. The acceptance probability is the percentage of NTU= proposals that have been 
accepted(www.sas.eud). If the probability falls within the acceptance tolerance range (the current 
configuration of /  or  for the  forecasting vulnerability model would be kept. Otherwise, the 
geo-spectrotemporally geosampled landscape parameters are modified before the next tuning 
loop.  
       
  A good proposal distribution should resemble the actual posterior distribution of the YFV-
related georeferenceable, Ae.aegypti, geoclassified, LULC parameters. Large sample theory 
states that the posterior distribution of the parameters approaches a multivariate normal 
distribution (see Gelman et al.; 2004, and Schervish; 1995,). That is why a normal proposal 
distribution would work well in practice in a forecast, YFV-related vulnerability model. The 
default proposal distribution in PROC MCMC is the normal distribution: 

. In addition, Roberts and Rosenthal (2001) empirically 
demonstrated that an acceptance rate between 0.15 and 0.5 is at least 80% efficient, so there is 
really no need to fine-tune the algorithms to reach acceptance probability that is within small 
tolerance of the optimal YFV-related, geoclassified, LULC paramterized covariate coefficient 
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values ( e.g, targeted forest-canopy capture point, immature, hypeproductive, georferenced  
Ae.aegypti oviposition sites). PROC MCMC works with a probability range, determined by the 
PROC options TARGACCEPT ACCEPTTOL (www.sas.edu).  

 
The default value of TARGACCEPT would then be a function of the number of sylvatic, 

Ae.egypti, geoclassified, LULC sub-mter resolution explanators in the YFV model. The default 
value of ACCEPTTOL is  (www.sas.edu) If the observed acceptance rate in a given tuning 
loop is less than the lower bound of the range, the scale is reduceable; if the observed acceptance 
rate is greater than the upper bound of the range, the scale is increased (Gelmans 1996). During 
the tuning phase, a scale parameter in the normal distribution is adjusted as a function of the 
observed acceptance rate and the target acceptance rate( www.sas.edu). The following updating 
scheme imay be used in PROC MCMC for constructing a robust, stochastic, yellow fever, 
forecast eco-epidemiological, diagnostic, clinical, field or remote geosampled, georferenced, risk 

model  1: for optimally targeting prolific, seasonal, Ae egeypti habitats 
where is the current scale, is the current acceptance rate, is the optimal acceptance 
probability. Alternative, an experimeneter may choose a multivariate t-distribution as the 
proposal distribution for quantitating a dataset of geo-spectrotemporally optimizable,  YFV-
related Ae.aegypti, geoclassified, LULC, sub-meter resolution, geosampled, explanators It  may 
be a good distribution to use if the posterior distribution has thick tails and a t-distribution which 
may improve the mixing of the Markov chain during burn in periods 

      By default, PROC MCMC would assume that all the geospatialized YFV-related 
explanatorial observations in the dataset are independent, and as such the logarithm of the 

posterior density could be calculatable as follows: where 
is a parameter or a vector of parameters. The term is the sum of the log of the prior 

densities specified in the PRIOR and HYPERPRIOR statements( www.sas.edu). The term 
 would then be the log likelihood specified in the MODEL statement. The MODEL 

statement specifies the log likelihood for a single observation in the dataset( www.sas.edu).  

     The statements in PROC MCMC are in many ways like DATA step statements; PROC 
MCMC evaluates every statement in order for each observation. The procedure cumulatively 
would add the log likelihood for each diagnostic, YFV-related, clinical, field or remote 
geosampled, sylvatic, Aea.egypti, geoclassified, LULC observation. Statements between the 
BEGINNODATA and ENDNODATA statements are evaluated only at the first and the last 
observation (www.sas.edu). At the last sylvatic, YFV observation, the log of the prior and 
hyperprior distributions may be added to the sum of the log likelihood to obtain the log of the 
posterior distribution.  

         With multiple PARMS statements (e.g., multiple blocks of YFV parameters), PROC 
MCMC updates each block of explanatorial, LULC sub-meter resolution, uncoalesced, geo-
spectrotemporalized,  geospatial parameters while holding the others constants. The procedure 
still steps through all of the programming statements to calculate the log of the posterior 
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distribution, given the current or the proposed wavelength, frequency values of the updating 
block of landscape parameters. In other words, the procedure would not calculate the conditional 
distribution explicitly for each block of YFV-related Ae.egypti, geoclassified, LULC explanators. 
Instead the Bayesain paradigm would use the full joint distribution in the Metropolis step for 
every block update. If a seasonal YFV-related model dependent data—that is, 

— the PROC option JOINTMODEL may be appropriate 

      PROC MCMC will assume that the input geo-spectrotemporally geosampled YFV-related 
georeferenceable explicative Ae.egypti, geoclassified, LULC explanators are independent then 
the joint log likelihood would be the sum of individual log-likelihood functions. By specifying 
the log likelihood of one YFV-related observation in the MODEL  statement. PROC MCMC 
would be then able to evaluate that function for each successive observation in the geospatialized 
explanatorial dataset and cumulatively sum them up. If  the YFV-related observations are not 
explicity  independent of each other, this summation would produce the incorrect log likelihood.  

      There are two ways to analyzed geo-spectrotemporally uncoalesced, YFV-related , Ae.egypti, 
geoclassified, LULC, signature model dependent data. An experimenter can either use the 
DATA step LAG function or use the PROC option JOINTMODEL. The LAG function returns 
values of a variable from a queue (www.sas.edu). As PROC MCMC steps through a YFV—
related geo-spectroterporally uncoalesced dataset, the LAG function would queues each dataset 
eco-epidemiological, irradiance variable.  If the log likelihood for a diagnostic, clinical, field or 
remote geosampled georcferenceable observation depends only on observations to in the 
dataset, an experimenter can use this SAS function to construct the log-likelihood function for 
each YFV observation. Note that the LAG function enable access observations from different 
rows, but the log-likelihood function in the MODEL statement must be generic enough that it 
applies to all the geosampled YFV observations.  

      A second option is to create arrays, store all relevant variables in the arrays, and construct the 
joint log likelihood for the entire dataset instead of for each geo-spectrotemporally geosampled, 
YFV-related, sylvatic, Ae.egypti, geoclassified, LULC observation. Following is a simple 
example that illustrates the usage of this option.  

   /* allocate the YFV-related Ae.egypti, geoclassified, LULC explanators sample size. */ 
   data exi; 
      call streaminit(17); 
      do ind = 1 to 100; 
         y = rand("normal", 2.3, 1); 
         output; 
      end; 
   run; 

     The log-likelihood function for each YFV-related georeferenceable, explicative, time series 
signature observation would then be quantited in the forecasting vulnerability, geo-
spectrotemrpoal, geospatial  model as follows:  The joint 
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log-likelihood function would be  as follows: The 
following statements may fit a simple model with an unknown mean (mu) in PROC MCMC, 
with the variance in the likelihood assumed known. The MODEL statement may indicate a 
normal likelihood for each YFV-related Ae.egypti, geoclassified, LULC observation y.  

   proc mcmc data=exi seed=7 outpost=p1; 
      parm mu; 
      prior mu ~ normal(0, sd=10); 
      model y ~ normal(mu, sd=1); 
   run; 

The following statements specify the log-likelihood function for an entire dataset of geo-
spectrotemporally geospatialized, metaheursitically optmizable ,YFV-related diagnostic, clinical, 
field or remote–geosampled ,Ae.egypti, geoclassified, LULC explanatorial, covariate 
coefficiuents values.  

   data a; 
   run; 
    
   proc mcmc data=a seed=7 outpost=p2 jointmodel; 
      array data[1] / nosymbols; 
      begincnst; 
         rc = read_array("exi", data, "y"); 
         n = dim(data, 1); 
      endcnst; 
     
      parm mu; 
      prior mu ~ normal(0, sd=10); 
      ll = 0; 
      do i = 1 to n; 
         ll = ll + lpdfnorm(data[i], mu, 1); 
      end; 
      model general(ll); 
   run; 

     The JOINTMODEL option can indicate that the function used in the MODEL statement 
calculated for the log likelihood for the entire geo-spectrotemporally geosampled YFV dataset, 
rather than just for one observation. Given this option, the procedure would no longer step 
through the input data during the simulation. Consequently, an experimenter would not be able 
use any YFV-related dataset explanatorial, georefernceable, Ae.egypti, geoclassifiable, LULC 
explanators to construct the log-likelihood function. Instead, an experimenter can  store the  
geosampled geo-spectrotemporalized, uncoalesced wavelength, sub-meter resolutionm signature 
dataset in arrays . In so doing, arrays instead of dataset variables would be employeable to 
calculate the log likelihood in the forecasting vulnerability paradigm.  



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

224 
Copyright © acascipub.com, all rights reserved.  

        The ARRAY statement allocates a temporary array(www.sas.edu) The READ_ARRAY 
function selects the y variable from the exi data set and stores it in the data array. In the 
programming statements, an experimenter may use a DO loop to construct the joint log 
likelihood in a geo-spectrotemporal, YFV-related, geoclassified, Ae.egypti, LULC sub-meter 
resolution, explanative, forecast, vulnerability model. In so doing, the expression in the YFV 
model in the GENERAL function would takes the value of the joint log-likelihood for all the 
geosampled geo-spectrotemporal, uncoalesced, probabilistically regressed, iteratively 
interpolative, fractionalized, iterative, interpolative, endmember, biosignature data.  

     To work with a new density that is not listed in the section Standard Distributions, a 
researcher  can use the GENERAL and DGENERAL functions. The letter “D” stands for 
discrete (www.sas.edu). The new, diagnostic, clinical, field and remote geosampled, YFV-
related Ae.egypti, geoclassified, LULC, normalized distributions would  have to be specified on 
the logarithm scale. Suppose that a researcher wants to use the inverse-beta distribution: 

The following statements in PROC MCMC could 
then  define the density of the YFV-related, sylvatic, Ae.egypti, LULC geoclassifiable, 
explanators on its log scale as:  

a = 3; b = 5; 
const = lgamma(a + b) - lgamma(a) - lgamma(b); 
lp = const + (a - 1) * log(alpha) - (a + b) * log(1 + alpha); 
prior alpha ~ general(lp); 

The symbol lp is the expression for the log of an inverse-beta (a = 3, b = 5). The function 
general(lp) will assigns the YFV-related forecasted distribution to alpha. Note that the constant 
term, const, can be omitted as the Markov simulation requires only the log of the density kernel.  

    Let (x1, x2, …, xn) be an independent and identically distributed sample drawn from some 
distribution with an unknown density ƒ. If an experimenter is interested in estimating the shape 

of this function ƒ. Its kernel density estimator is where 
K(•) is the kernel — a non-negative function that integrates to one and has mean zero — and h > 
0 is a smoothing parameter called the bandwidth. A kernel with subscript h is called the scaled 
kernel and defined as Kh(x) = 1/h K(x/h) (Griffith 2003). Intuitively, one wants to choose h as 
small as the data allow, however there is always a trade-off between the bias of the estimator and 
its variance; more on the choice of bandwidth below. 

       A range of kernel functions are commonly used: uniform, triangular, biweight, triweight, 
Epanechnikov, normal, and others. The Epanechnikov kernel is optimal in a mean square error 
sense (Cressie 1993) though the loss of efficiency is small for the kernels listed previously,[4] and 
due to its convenient mathematical properties, the normal kernel is often used, which means K(x) 
= ϕ(x), where ϕ is the standard normal density function. 

        The construction of a kernel density estimate finds interpretations in fields outside of 
density estimation (Rosenblatt,1956). For example, in thermodynamics, this is equivalent to the 
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amount of heat generated when heat kernels (the fundamental solution to the heat equation) are 
placed at each data point locations xi. Similar methods are used to construct discrete Laplace 
operators on point clouds for manifold learning  In mathematics, the discrete Laplace operator is 
an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a 
discrete grid. For the case of a finite-dimensional graph (having a finite number of edges and 
vertices), the discrete Laplace operator is more commonly called the Laplacian matrix. 

           When you use the GENERAL function in the MODEL statement, specify the dependent 
variable (e.g., YFV-related explanatorial, dataset ofgeo-spectrotemporal,  georefernceable, 
Ae.egypti, geoclassifiable, LULC forest-canopy) on the left of the  regression equation . The 
log-likelihood function would take the YFV-related explanatorial, dependent variable into 
account; hence there is no need to explicitly state the dependent variable in the MODEL 
statement. However, in the PRIOR statements, a researcher may need to explicitly state the 
diagnostic, clinical, field or remote geosampled LULC sub-meter resolution defined  parameter 
names with the GENERAL and DGENERAL functions.  

       A researcher can specify any YFV-related, optimizable, explanatorial, dataset of 
georefernceable, sylvatic,  Ae.egypti-related,  geoclassifiable, LULC explanative, normalized,  
distribution function by using the GENERAL and DGENERAL functions as long as they are 
programmable with SAS statements. When the function is used in the PRIOR statements, the 
reseacher must supply initial values. This can be done in either the PARMS statement (PARMS 
Statement) or within the BEGINCNST and ENDCNST statements (e.g., 
BEGINCNST/ENDCNST Statement). It is important to remember that PROC MCMC does not 
verify that the GENERAL function you specify is a valid distribution—that is, an integrable 
density. You must use the function with caution.  

 
 
      Given a time series of geo-spectrotemporally geosampled, uncoalesced, YFV-related, 
explanatorial, dataset of georefernceable, Ae.egypti, geoclassifiable, LULC, sub-meter 
resolution,  data where is an integer index and the are geosampled covariate coefficient 

values, then an ARMA(p' ,q) model may be given by: where is the 
lag operator, the are the parameters of the autoregressive part of the model, the are the 
parameters of the moving average part and the are error terms. The error terms are generally 
assumed to be independent, identically distributed variables sampled from a normal distribution 

with zero mean.Assume now that the polynomial has a unitary root of multiplicity d. 
Then the YFV-related,time series, weighted, equation  can be rewritten as: 

in PROC ARIMA. An ARIMA(p,d,q) process would  express 
this polynomial factorization property with p=p'−d, which would be given by: 

. Thus  this YFV-related, probabilistic, forecasting 
vulnerabil;ity model construction can be thought as a particular case of an ARMA(p+d,q) 
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process having the autoregressive polynomial with d unit roots. (For this reason, every ARIMA 
model with d>0 is not wide sense stationary.)The model  can be generalized as 

follows. In so doing, the residual forecast would  
define an ARIMA(p,d,q) process with drift δ/(1−Σφi). 

        The explicit identification of the factorization of the autoregression geoclassifiable, YFV-
related dataset of georefernceable, Ae.egypti, LULC oriented, explanatorial polynomial into 
factors as mentioned  previously can be extended to other cases, by firstly applying the moving 
average polynomial and secondly including other special factors. For example, having a factor 

in a yelow fever model is one way of including a non-stationary seasonality of period s 
into the model; this factor has the effect of re-expressing the geos-epctrotemporally uncoalesced, 
sub-meter resolution, log-transmformed, wavelength, frequency, transmittance  data as changes 
from s periods ago. Another example is the factor , which includes a (non-
stationary) seasonality of period 2. The effect of the first type of factor would allow each 
season's geoclassifiable LULC uncoalesced explanative, wavelength value to drift separately 
over time, whereas with the second type values for adjacent seasons move together. 

        Identification and specification of appropriate factors in an ARIMA model can be an 
important step in a geo-spectrotemporal,  YFV-related dataset of explanatorial, georefernceable, 
Ae.egypti, geoclassifiable, uncoalesced LULC model estiamators as it can allow a reduction in 
the overall number of parameters to be estimated, while allowing the imposition on the model of 
types of behaviour that logic and experience suggest should be there.The ARIMA model can be 
viewed as a "cascade" of two models. The first is non-stationary: while the second 

is wide-sense stationary: (Griffith 003) As such, geo-
spectrotemporally uncoalesced, sub-mteer resolution, YFV-related explanatorial, geospatialized, 
wavelength, frequency  datasets of uncoalesced iteratively interpolative, georefernceable, 
Ae.egypti, geoclassifiable, diagnostic, clinical and LULC explanators forecasts can be made for 
the process , using a generalization of the method of autoregressive forecasting. 

         Some well-known special cases can arise naturally in a geo-spectrotemrpoal Ae.egypti 
LULC ARIMA-related YFV model. For example:An ARIMA(0,1,0) model (or I(1) model) is 
given by — which is simply a random walk. A random walk is a 
mathematical formalization of a path that consists of a succession of random steps (Cressie 
1993).An ARIMA(0,1,0) forecast vulnerability YFV-related paradigm may be generated  with a 
constant, given by — which is a random walk with drift. If the random 
walk model predicts that the value at time "t" will equal the last period's value plus a constant, or 
drift (α), and a white noise term (εt), then the process is random walk with a drift. The resdiual 
forecast   would not revert to a long-run mean and has variance dependent on time. 
An geospectrotemrpoal, geosampled, ARIMA(0,2,2) model may be  given by 

—  in PROC ARIMA which is 
equivalent to Holt's linear method with additive errors. Holt (1957) extended simple exponential 
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smoothing to allow forecasting of data with a trend which involves a forecast equation and two 
smoothing equations (one for the level and one for the trend). 

         Although the exponential smoothing methods have been around since the 1950s, there has 
not been a well-developed vector medical entomological modelling framework for incorporating 
stochastic immature habitat targeting sub-meter resolution LULC models, likelihood calculation, 
prediction intervals and procedures for model selection. Some important steps toward this 
framework for other disciplines were established by Gardner (1985), and Ord, Koehler, and 
Snyder (1997). Earlier work in establishing prediction intervals for exponential smoothing 
methods appeared in Chatfield and Yar (1991), Ord et al. (1997) and Koehler, Snyder, and Ord 
(2001). 

          The work of Brown (1959) and Gardner (1985) led to the use of exponential smoothing in 
automatic forecasting (e.g., Stellwagen & Goodrich, 1999). Makridakis, Wheelwright, and 
Hyndman (1998) advocate the methods in the taxonomy proposed by Pegels (1969) and 
extended by Gardner (1985)However, for  developing a more general class of methods with a 
uniform approach to calculation of prediction intervals, maximum likelihood estimation and the 
exact calculation of a YFV-related, optimizable, explanatorial, dataset of georefernceable, 
Ae.egypti-related,  geoclassifiable, LULC explanative, normalized,  distribution model selection 
criteria  such as Akaike’s Information Criterion AIC). 

.     To determine the order of a non-seasonal ARIMA model, is  (AIC) which is written as:AIC= 
−2log(L)+2(p+q+k+1), where L is the likelihood of the data, k = 1 if c ≠ 0 and k = 0 if c = 0, p is 
the order of the autoregressive part and q is the order of the moving average part.The corrected 
AIC for ARIMA,geo-spectrotemporal, geospatial,  YFV-related datasets of  georefernceable, 
explanatorial, Ae.egypti, geoclassifiable, sub-meter resolution, uncoalesced, iteratively 
interpolative, LULC explanatorial models can be written as:AICc= AIC+ 
(2(p+q+k+1)(p+q+k+2))/(T−p−q−k−2)The Bayesian Information Criterion (BIC) can be written 
as:BIC= AIC+(log(T)−2)(p+q+k+1)( Gelman 1996). The objective is to minimize the AIC, AICc 
or BIC values for a good model 

          Commonly, having obtained the joint conditional distribution of all of the unknown, 
random, explanatorial, geo-spectrotemporal, uncoalesced, geo-predictive, YFV-related, 
explicatively diagnostic clinical and  geoclassifiable LULC explanators given an optimizable  
datset of known  geosampled, larval habitat, georeferenceable, parametrizable covariates, by 
applying Bayes theorem, nuisance variables  may be marginalized to obtain the conditional 
distribution for determining ecological parameters associated with georeferenceable, prolific, Ae. 
aegypti,  geospatialized, sub-meter resolution, LULC, aquatic, habitat data. However, even 
though this generalized treatment of the conditional variance can generate an autoregressive error 
model, the residual estimates may not be able to spatially target prolific Ae. egypti aquatic 
habitats based on larval/pupal productivity. Treatments of vector mosquito auatic habitat 
perturbations should be based on surveillance of larvae in the most productive areas of an 
ecosystem [ Gu and Novak 2005]. 
 
         Accurate diagnostic, autoregressive forecasts of  Ae egypti aquatic habitat geolocations 
requires an absolute relative error estimator to identify prolific habitats for developing habitat-
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based intervention nmodels for implementing Integrated Vector Management(IVM). Integrated 
Vector Management is a decision-making process for the management of vector populations, so 
as to reduce or interrupt transmission of vector-borne diseases (http://www.ivmproject.net); the 
strategy is based on the premise that effective control is not the sole preserve of the health sector 
but of various public and private agencies, including communities. Salient attributes of IVM 
including methods based on knowledge of co-ecofactors influencing local vector biology. For 
example, hyperendemic, yellow fever transmission and morbidity statistics analyzed in an 
ArcGIS cyberenvironment  may use  a range of interventions, ( e.g., insectide treatment of Ae. 
egypti, immature, capture point, prolific habitat) often in combination and synergistically for 
combating  uncertainty plagued, (e.g., heteroskedastic independent variables), probabilistic, 
seasonal, explicative, LULC-oriented,  regression variables One of the key assumptions of 
regression is that the variance of the errors is constant (i.e., homoscedastic) observations. 
(Hosmer and Lemeshew 2002). Standard estimation methods are inefficient when the errors are 
heteroscedastic or have non-constant variance (Rao 1972). Typically, vector, seasonal, 
arthropod-related, diagnostic regression, residuals are plotted to assess assumptions. In so doing, 
precise collaboration model scenarios employing within health sector, explanative  geosampled 
variables  and with other public and private sector covariates and their   impact on dependent 
variables (e.g., monthly prevalance yellow ferver statistics) representing vector data may be 
efficiently mapped. Also an experimenter can create robust, eco-epidemiological, forecast-
oriented, vulnerability, canopy-forested, Ae. egpti, LULCs, to quantiate georefernceable, 
illuminative, prolific, riceland complex,geo-classified LULC protusions  that  may reveal 
relationships between expanding riceland irrigated, agro-ecosystem polygons and immature 
productivity in ArcGIS. Linking tabular data in SAS with geospatial, immature habitat, canopy 
forested, decomposeable, Ae. egypti,  LULC data in ArcGIS queries may also aid in quantitating 
geospatial proximities of the LULCs which then may be log-transformed regressors as part of the 
risk analysis. Driving forces in an IVM for yellow fever eradication could include the need to 
overcome challenges experienced with conventional single-intervention approaches to targeted 
vector control in an ArcGIS cyberenvironments and in other software packages (C ++)  for 
promoting multi-sectorial approaches to human health.  

 
IVM pilot studies, especially for the control of malaria have been successful in sub-

Saharan Africa. Castro and colleagues (2004) described a successful intervention in Dar es 
Salaam, Tanzania, from the late 1980's through the 1990's, with elements of IVM included in the 
strategy. Gilroy et al. (1945) reported decreases in malaria incidence and sporozoite prevalence 
rates in Nigeria using a variety of environmental management techniques, including source 
reduction and drainage. Keiser et al. (2005) conducted a meta-analysis on EM studies globally 
and concluded that EM can have a significant impact on clinical malaria in Kenya, if EM is 
appropriate to the eco-epidemiological setting. EM was also used with available larvicides to 
control malaria in the coastal city of Mombasa. Schliessmann et al. (1973) employed a 
combination of water drainage techniques and larviciding to reduce the number of malaria cases 
by 98% from 1969 to 1970 in a coastal flood plain of Haiti. In India, Sharma et al. (1986) 
reported over 95% reduction in malaria incidence over a four-year period for communities 
receiving a combination of water-source reduction activities and biological control in larval 
habitats. Collectively, these studies suggest that multiple vector control strategies (i.e., IVM) 
may be beneficial for yellow fever eradication. 
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Importantly, an ArcGIS cyberenvironment IVM approach for YFV vector control  may 
take into account available health infrastructures and resources in the surrounding eco-
epidemiological, riceland, agro-ecosystem study sites  and integrate all available and effective 
measures, whether chemical, or biological.  In so doing, IVM for yellow fever control for a 
riceland, agroecosystem, village–complex, eco-geographical, eco-hydrological, orthogonlized, 
gridded, time series, geoclassified, LULC in an ArcGIS cyberenvironment  would effectively 
model coordination of the control activities of all LULC sectors ( e.g., bordering forest canopied 
LULC) that would have an impact on the vector borne disease, including health, water, solid 
waste management, housing and agriculture.  
 
 
     For remote identification of vector, medical entomological, georeferenced datasets of 
mosquito larval habitats the first step is often to construct a discrete tessellation of the 
region(Jacob et al. 2007). In applications where complex geometries do not need to be 
represented such as urban habitats, regular orthogonal grids are constructed in ArcGIS and 
overlaid onto satellite images. However, some vector mosquito aquatic habitats are rarely 
uniform in space or character (e.g., a sparsely canopied, Ae. egypti, tillering riceland  seasonal 
hypeproductive ovipoistion site),  An orthogonal grid overlaid on satellite data of Riceland agro-
village complex  areas may fail to capturephysical or man-made structures, (i.e paddies, canals, 
berms) at these habitats. Unlike an orthogonal grid, digitizing each habitat converts a polygon 
into a grid cell, which can conform to rice-land, immature seasonal geosampled  habitat 
boundaries.   
 

Jacob et al. (2006) illustrated the application of a random sampling 
methodology,comparing an orthogonal and a digitized grid for assessment of riceland habitats in 
the Mwea rice scheme in Kenya. A land cover map was initially procured in Erdas Imagine 
V8.7® using QuickBird visible and near infra –red (NIR) data acquired July 2005, for three agro-
village complexes, Karima, Kururi, and Kangichiri within the Mwea Rice Scheme, Kenya. 
Information from visible and NIR channels can distinguish between high and low mosquito 
producing rice fields (Washino and Woods 1994). QuickBird  multispectral products provides 4 
discrete non-overlapping spectral bands covering a range from 0.45 μm to 0.72 μm. The 
QuickBird products were delivered as radiometrically corrected image mixed pixels (mixels). 
The projection used for all of the spatial datasets is the UTM Zone 37S datum WGS-84 
projection. After geographic registration alignment of the satellite's Universal Transverse 
Mercator(UTM) coordinates with known reference objects.  
        
 
         An orthogonal grid was overlaid on the images. In the digitized dataset, each 
georferenceable habitat was traced in Arc Info 9.1®.  All habitats in each study site rice-village 
complex were stratified based on levels of rice stage. The QuickBird 0.61 m visible and NIR data 
was classified using the Iterative Self-Organizing DataAnalysis Technique (ISODATA) 
supervised routine inERDAS Imagine V8.7®. A supervised classification cana ssign spectral 
signatures automatically generated by the ISODATA algorithm (www.esri.com) for remote 
identification ofmosquito aquatic habitats [Jacob et al. 2011]. 
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       The grid cell size in the orthogonal grid was calculated by the mean size of the paddy in 
ArcInfo 9.1®. The area of the orthogonal grids that were overlaid on the QuickBird visible and 
NIR data which were  64.3 m × 64.3 m by polyon size.Unique identifiers were placed in each 
grid cell unit. The grids extended out to a 1 km distance from the external boundary of each 
study site providing a 1 km radial area. A digitized grid tracing each rice land An. arabiensis 
aquatic habitat was generated in Arc Info 9.1® for the 3 study sites. Unique identifiers were 
placed in each grid cell . The grid extended out to a 1 km distancefrom the external boundary of 
each study site.The orthogonal grid and the digitized gridded image were'screened' to determine 
fit and to provide an indication ofthe geolocation of riceland An. arabiensis aquatic habitats..Due 
to the variation in the number of dips collected per habitat based on the size, the authors based 
their results on thenumber of larvae collected per dip. The entomological variable was total rice 
land anopheline larvae.  
 
      An ANOVA test was performed to compare the differences in larval abundance between 
different paddy categories in each study site. An independent sample t-test was used to compare 
differences in larval abundance between paddies and canals as well as between vegetated and 
non-vegetated canals. Robust standard errors were used because data were collected at both the 
orthogonal grid cell and digitized grid cell level. An alpha level of 0.05 was used to indicate 
significance. All data management and calculationswere performed using SAS 9.1.3® (SAS inc. 
Carey,NC, USA). 

 
     The digitized grid captured each riceland An. arabiensis aquatic habitat in the study sites 
while the orthogonal grid was unable to identify any aquatic habitats in any of the three sites.The 
digitized grid cell data was used determine abundance of riceland Anopheles larvae in the paddy 
and canal habitats in each study site. The abundance of 1st instar larvae/dip collected in Rurumi 
and Kangichiri study sites was 0.99 and 1.95, respectively and significantly lower than 4.81 in 
the Kiuria study site (F = 5.16, df 2, 751, p < 0.01).Similarly, the abundance of 2nd instar larvae 
differed significantly among villages with that of 0.66 in the Rurumi study site being 
significantly lower than 1.09 or 2.11 in the Kangichiri and Kiuria study sites, respectively (F = 
3.79, df2, 751, p < 0.05). The abundance of 3rd and 4th instar larvaeas well as that of pupae did 
not differ significantly among villages (F = 1.64, 0.97 and 1.04, df 2, 75, p >0.05).The 
abundance of riceland An. arabiensis larvae/20 dips collected in the paddy and canal habitats at 
the 3 study sites. In the Kangichiri study site,the difference in the abundance of pupae and 1st, 
2nd and 3rd instar larvae collected in paddy and canal habitats was not significant (p > 0.05) 
while that of 4th instar larvae was significantly higher in the paddy habitats than in the canals (F 
= 5.19, df 1, 179, p < 0.05). In the Kiuria studysite, significantly higher abundance of 3rd instar 
larvae were collected in the canals (F = 4.68, df 1, 179, p < 0.05) while the other immature stages 
did not differ significantly between canal and paddy habitats. In the Rurumi study site, paddy 
habitats had significantly higher abundanceof 1st and 2nd instar larvae compared with the 
canals(F = 5.60 and 3.94, df 1, 188, p < 0.05) but the otherimmature stages did not vary 
significantly between paddyand canal habitats. 

 
 Alternate wet/dry (intermittent) griided, rice-irrigation geoclassifiable, eco-

epidemiological, predictive maps combined with other vector control methods in an ArcGIS 
cyberenvironment 3-D module may reveal effective  methods in controlling prolific, seasonal, 
georferenceable,  larval  habitats in interface regions between eco-geographically expanding 
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riceland agroecoystem, partially and  dense canopied, sylvatic,  Ae egypti, prolific, habitat 
regions and  their surrounding forested canopied LULCs.  In so doing, a remotely regressively, 
quantitative,  targeted IVM may be implemented in riceland agroecosystems and a more 
economic usage of rice-irrigation, ,ecohydrological, ecogeographic-related, geo-spatiotemporal, 
explanatorial,  georefereceable, explanative LULCs  may be also determined thereby reducing 
farmers’ costs. 

 
An IVM approach conceived in an ArcGIS cyberenvironment for yellow fever however 

must be evidence-based. Thus, an essential feature of IVM for yellow fever control in ArcGIS 
should optimally be based on the ability to generate geo-localized ecobiological, eco-
geographical, ecohydrological,YFV-related, orthogonally decomposed, iteratively interpolated 
geo-spectrotemrpoally geosampled. proxy biosignature, gridded, sub-mter resolution( e.g., 
panchromatic  QuickBird 0,61m data) explanatorial geoclassifiable, LULC data. IVM integrates 
all available resources to achieve a maximum impact on vector-borne disease 
(http://www.ivmproject.net/).  In so doing, an IVM strategy in an ArcGIS cyberenvironment 
server  may utilize multitemporal, geo-spectrotemporally geosampled,  optimal sub-resolution  
satellite imagery for constructing robustifable, forecasting, seasonal, vulnerabilty, eco-
epidemiological, ecogeographical, ecohydrological, probabilsitic, predictive, risk maps for 
remotely targeting YFV, transmission-related, geoclassifiable LULC, explanatorial, orthogonally 
decomposed, endmember, wavelength, reflectance, emissivity, transmittance data, for example. 
Cartographic, vulnearbility, time series, risk descriptions of seasonally georefernceable, 
explanatorial, geopredictive, geosampled  points in the transmission cycle (e.g., positively 
autocorrelated, explanative, georeferenceable clusters of prolific, Ae. egypti, canopy sparsely, 
forested LULC, immature habitats) at the periphery of a georeferenceable, riceland irrigated, 
seasonal agroecosystem,  geoclassified LULC, may then act synergistically with field level 
strategies (e.g., indoor residual  targeted insecticide spraying) in a cyberenvironment simulatiuon  
model to improve upon single-tool interventions. Thus, rather than relying upon blanket 
solutions, vector control managers – together with managers in health, rice agriculture, water 
resources, and land use  can examine the local eco-setting of seasonal, YFV-related, disease, 
transmission  LULC zones(e.g., mesoendmeic, hypoendemic) and seasonal, explanatorial, 
topographic, sub-meter resolution, reflectance, emissivity, transmittance of decomposed 
explicative, LULC, patterns  employing ArcGIS  tactics and thereafter, systematically design and 
qauis-periodically update strategies (e.g., geo-spectrotemporal, iteratively  interpolating,  
unmixed  shade, canopied forestland proxy  biosignature of a  prolific ricleand,  Ae.egypti, LULC 
endmembers based on geosampled, immature, seasonal, count data)  and actionizable IVM plans. 
New scientific knowledge about the bioecology and behavior of seasonal, YFV mosquitoes and 
their hosts and natural seasonal  predators on geoclassified forest canopy and ricland 
agroecosystem LULCs can improve the precision of vector control methods in general, in an 
ArcGIS cyberenvironmnent and would permit better precision targeting of prolific, seasonal,  
immature habitats in a customized  IVM, ecogeographical, ecohydrological framework.  
 

    In particular,  advances in  newe,r ArcGIS, geospatial, cartographic, analytical tools 
can contribute to more precise, forecastable, iteratively interpolative, endmember endemic, 
wavelength reflectance, emissivity, transmittance, time series dependent,  eco-epidemiological, 
risk mapping of the distribution of vector mosquito species and their ecogeographic, LULC-
related, ecohydrological, larval habitats areas, and other disease transmission  covariate, 
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parameterizable explanatorial, coefficient estimator values. For example, ET Surface is a set of 
tools for ArcGIS that enable users to create surfaces and perform surface analysis without the 
need of 3D or Spatial Analyst extensions. The only requirement would be an ArcGIS license 
(ArcView, ArcEditor or ArcInfo). The functionality of ET Surface is available in three different 
ways for explanatorily geoclassifying, geopredictive, geoclassifiable, eco-epidemiological, 
LULC, forecast, risk mapping, orthogonally decomposed, canopied, Ae. egypti proxy LULC 
habitat biosignature, unmixed data;1)Via the user friendly wizard type interface 2)Via a set of 
tools for Arc Toolbox which can be used in the Model Builder, at Command Line or in Python 
scripts  and 3) in NET customizations  (www.esri.com).  In so doing, explanatorily geo-
spectrotemporally, iteratively interpolatable, seasonal ecogeographic, ecohydrological, 
geoclassified, LULC, surface endmembers (e.g., forest, canopied, riceleand perpiherial) may be 
constructed in TIN from points, polylines or polygons of the georeferenced, hyperproductive, 
seasonal, YFV-related, larval habitats and their geo-spatiotemporally, spectrotemporally 
geosampled, parameterizable, covariate, estimator, coefficient values. The output can be an ESRI 
TIN or PolygonZ TIN.  For ESRI TIN features can be triangulated as Mass LULC points or Hard 
breaklines. For PolygonsZ,, TIN georeferenceable, elucidatively, optimally  decomposeable, 
YFV-related, eco-epidemiological, seasonal, data feature attributes  may be triangulated as Mass 
points (e.g., prolific, irrigated riceland,  Ae. egypti habitats). The TIN features may then be 
triangulated as Mass points employing Contours to Raster tools, an inverse distance weighted 
matrix or Kernel Density. In so doing, seasonally bordering, riceland agroecosystem and sparsely 
shaded, forest canopied LULC, Ae. egypti habitat, explanatorily orthogonally decomposed 
fractionalized endmember,  vulnerability,   forecastable, risk, mapping ecogeographic, 
ecohydrological variables maybe robustly empirically quantitable   employing  TIN surface 
analysis  which would identify and quantitatively regressively represent  productive estimate all 
Slope, Aspect, Visibility, Volume, Cut/Fill  variables. A  Raster Surface Analysis can then 
diagnosis  Slope, Aspect, Hillshade, Viewshed, Volume, Cut/Fill, iteratively interpolatable, 
seasonal, Ae. egypti habitats, Contours  Raster Calculator performs complex mathematical 
operations on rasters employing Raster Distance Analysis, Euclidean Distance, Direction and 
Allocation, Weighted Voronoi (Thiessen) allocation, Cost Distance and Allocation 
(www.esri.com). Ecohydrological, explanatorial, geo-spatiotemporal, operationizable, ArcGIS 
functions  may then include  Flow Direction, Flow Accumulation, Derive Streams, Watershed, 
Fill depressions, of  partially canopied geoclassfiable, LULCs related to prolific, seasonal, Ae. 
egypti habitats.  ET TerrainViewer can generate 3-D geo-visualizationa of expanding riceland 
agroecosystem LULC surfaces into forested canopied LULC employing Polygon Z TINs and 
rasters as well as shapefiles. Areal photography can be draped on the LULC surfaces as well as 
Digitized 3-D features or graphics with elevation extracted from ESRI TIN, Raster, PolygonZ 
TIN may reveal seasonal variation in these habitats.  

 
The analytical tools within an ArcGIS cyberenvironment may be used to guide targeted 

control efforts, improve cost-effectiveness and minimize unwanted ecosystem disruption or 
damage (Jacob et al. 2014, Jacob et. al. 2007, Griffith 2005, Wood et al. 1991a, Wood and 
Washino 1994) for implementing IVM. Technical advances in knowledge about larval control 
and ArcGIS have made the use of biological insecticides more practical and feasible today than 
in the past. Remote sensing and GIS are powerful tools for larval surveillance, predicting 
potential outbreaks and targeting intervention programs (CDC, 2006). 
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Fortunately, remote sensing techniques for seasonal, YVR-related, time series, eco-
epidemiological, forecast, regression-related, probabilistically optimizable, risk mapping and 
other time series dependent, endemic, transmission-oriented, explanatorial, LULC, riceland 
agroecosystem  and forest canopied, explanatorial, geo-classifiable, parameterizable diagnostic, 
clinical,  field and remote, geosampled covariate, estimator, coefficient estimates has evolved 
considerably during the past two decades for implementing  IVM. Currently, time-series, 
optimally forecasting, risk  analysis and geospatial trend analysis encompass a range of 
technologies and approaches, including digital mapping vulnerability  analysis of remotely 
sensed sub-meter resolution, waveband imagery, spatial statistics, ecological niche modeling, the 
use of global positioning systems, and others (Jacob et al. 2010, Jacob et al. 2007 et al. 2000; 
Griffith 2005, Hay 2000). Common, time series-related, vector, explanatorial, entomological-
related, ecogeographic, ecohydrological data analyses include LULC overlay analysis of 
thematic data and geospatial intersection, buffer generation, neighborhood analysis, vector-
based, grid generation, network analysis and geo-morphological, terrain-related, surface and 
elevational, 3-D, eco-epidemiological, modeling.  Singh (1989) and Coppin and Bauer (1996) 
summarized eleven different LULC change detection algorithms that were found to be 
documented in the literature. These include: 1. Mono-temporal change delineation. 2. Delta or 
post-classification comparisons. 3. Multi-dimensional temporal feature geospace analysis. 4. 
Composite analysis. 5. Image differencing. 6. Multitemporal linear data transformation. 7. 
Change vector analysis. 8. Image regression. 9. Multitemporal biomass index 10. Background 
subtraction and 11 Image rationing. As such, currently the complexity of explanatorial, 
diagnostic, LULC techniques in ArcGIS cyberenvironments range from  employing correlations 
between simple techniques that link satellite-derived, seasonal, field distribution traits (e.g., 
georeferenced, Ae. egypti, larval habitat coordinates overalid  onto Google EarthTM maps) to 
explanatorily, iteratively interpolated, decomposed, sub-meter resolution, fractionalized, 
endmember, geospectral biosignatures extracted from different ecogeographic, ecohydrological 
LULC cover types and proxy remotely sensed indicators [normalized vegetation difference index 
(NDVI)]  for species  interpolation and abundance mapping  in ArcGIS (e.g., see Jacob et al. 
2013, Jacob et al. 2012). 

 
ArcGIS layers of environmental information (such as topography, climate, and 

vegetation), eco-epidemiological and geospatial, explanatorial, time series,  risk-related, 
orthogonal, LULC stratification can also be analyzed for regressively qualitatively, 
hierarchically, explanatively quantitatable, seasonal, geosampled, ecogeographic, 
ecohydrological, YVR-related, georeferenced,endemic, transmission-oriented, geolocational, 
explanatorial, orthogonally parameterizable, covariate, estimator, coefficient values. This 
approach has been successfully used in the case of Chagas disease and for vectors of 
leishmaniasis, forexample,   (see Peterson et al. 2002, 2004, 2004) filarsis(Jacob et al. 2006), 
malaria (Jacob et al. 2005, Jacob et al. 2009, Jacob et 2011), Eastern Equine Encephalitis Virus 
(EEEV) (Jacob et al. 2010b), West Nile Virus (WNV)(Jacob et al. 2010ab) and most recently for 
onchocerciasis (“river blindness’)(Jacob et al. 2012, Jacob et al. 2013). ArcGIS has many 
digitizing tools that can seasonally cartographically display similar non-linear, explanatorily, 
empirically, probabilsitically regressed, georefernced, uncoalesced, YFV-related, data, feature 
attributes geo-classified by themes and strategically archived them in a time series-dependent  
geodatabase format. These ecogeographic, ecohydrological, seasonal, explicative, time series, 
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orthogonalized geodata (e.g., seasonal, geosampled, Ae. egypti,immature habitat observations) 
may then be combined with riceland agroecosystem, geoclassified, georeferenced, LULC-
related, infrastructure data (e.g., roads, rivers, village boundaries) in a seamless, stand-alone 
Windows-based application. While a variety of numerical techniques may be employeable to 
create robust, geo-predictive, eco-epidemiological,YFV-related, riceland  agroecosystem, 
explanatorial, LULC-oriented, seasonal, forecast,vulnerability maps in time and space from sub-
resolution  satellite data, only those that models that possess  statistical operational logistics (e.g., 
residual autocorrelation risk maps of prolific, seasonal shaded, forest canopied, Ae. egypti 
habitat, ground corrdinates) can aid in understanding the biophysical explanatorial, clustering 
processes related to Aedes and other YFV-related mosquitoes which may provide meaningful 
eco-epidemiological LULC information for developing and implementing an IVM in a 
expanding riceleand agro-ecosystem.  For instance, since seasonal YFV has three transmission 
cycles geo-spectrotemporally geospatially and seasonally associated with varying geoclassfiable, 
georeferenceable, LULCs: jungle (sylvatic), intermediate (savannah) and urban, swaths, optimal, 
image acquisitions of seasonal,  geosampled, explanatorial,  YFV-related, LULC reflectance, 
emissivty, transmittance wavelength, sub-meter resolution, orthogonally decomposable,  
georeferencable  data, feature attributes, may be optimized in as ArcGIS cyberenvironment by   
constructing Thessian polygons which may be subsequently  regressively remotely quantitatively 
analyzed for ecogeographically representing LULC zones and their boundaries in a riceland 
agroecosystem,  geoclassified LULC. Further, since the jungle (sylvatic) cycle involves 
transmission of the virus between non-human primates (e.g., monkeys) and mosquito species 
found in forest-canopied LULCs, remote strategies should be specifically ecogeographically, 
ecohydrologically, seasonally, optimally determined for these geoclassifiable LULC data in the 
cyberenvironment. 
 
   Attacking multiple, georeferencable, geo-spectrotemporally geosampled, explanatorial, LULC-
related, seasonal weighted, explicative  regressors in the transmission cycle may act synergistic 
ally and improve upon current YFV-related interventions by enabling larval habitat source 
reduction.For example, environmental management of YFV on seasonally geoclassified LULCs 
can complement insecticide-treated bednets (ITNs) because of a potential secondary mode of 
action that both control strategies share. In addition to increasing vector mortality, ITNs reduce 
the rate at which female Aedes mosquitoes geolocate human hosts for blood feeding, thereby 
extending their gonotrophic cycle (Novak 2012).Similarly, while reducing adult vector 
emergence and abundance, source reduction of larval habitats may prolong the cycle duration by 
extending delays in geolocating, optimal, seasonally prolific, Ae. aegypti oviposition sites. 
Treatments of vector mosquito  auatic habitat perturbations should be based on surveillance of 
larvae in the most productive areas of an ecosystem( Gu and Novak 2005). 

 
However, source reduction of seasonally prolific, Ae. aegypti larval habitats may only 

operate through a secondary mode of action when larval habitat density is below a critical 
threshold. Regardless, an ArcGIS seasonal, YFV-related, control program (e.g., targeted 
insectide treatment) can  be effective even when larval habitats are limited. In ArcGIS. an 
experimenter may also precisely cartographically illustrate, forecasted regression resdiuals for 
revealing covariates trageting georferenceable,  geolocations seasonal hypeproductive Ae. 
aegypti paramterizable covariates whiles parsimonioulsy demonstrating how a, prolific, seasonal, 
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YFV-related, larval habitat source reduction technique is better suited to human populations in 
higher  urbanizing geo-spectrotemporally geoclassifiable, explanatorial,  LULCs (e.g., expanding 
riceland agroecosystems into geoclassifieable sparsely shaded forest canopy) in the presence of 
insecticide resistance, or when the insecticidal properties of ITNs are depleted.Importantly, since 
the Ae. aegypti mosquito spreads YFV when it bites non-infected humans, ArcGIS can establish 
the environmental conditions for an epidemic which may occur on or within a specific vicinity of 
an eco-geographically explicatively remotely delineateable seasonal, rice agriculture, 
geoclassifiable LULC (e.g.,post tillering). A biting frequency distribution may be georeferenced 
in ArcGIS. As such, by travel patterns of  infected humans or infected Ae. aegypti mosquitoes, an 
YFV epidemic  spread from  non-urbanized, explanatorial, seasonal transitioning, LULC habitats 
into a more urbanized LULC habitat especially in areas of low yellow fever prevalence (e.g., 
turbid meandering riverine pathways), may be optimally qualitatively regressively quantized and 
subsequently  seasonally mapped in ArcGIS.  
 

Remotely sensed, anthropogenic, explanative, time series, explanatively geoclassifiable, 
LULC, dependent, geo-spectrotemporally, geosampled, environmental, eco-epidemiological  
drivers that especially affect  YFV- risk ( positively autocorrelated cluster of georeferenced 
riceland Ae. aegypti, immature habitats)  can include encroachment, site destruction or 
regressands associated with wildlife,  particularly through logging and road building or, changes 
in the distribution and availability of surface waters.  A 3-dimensional (D) digital terrain model 
constructed in ArcGIS may  identify process thresholds to predict the extent of a stable gully 
network in a 5 km2 catchment in an eco-epidemiological, agro-village, georeferenceable, riceland 
ecosystem, study site, for example. The model, may optimally explicatively forecast 
georeferenceable, LULC controls on channel networks and interpret these in terms of a critical 
shear stress for channel incision (τc) modelling applied by saturation overland flow. The 
ecohydrological ArcGIS model may compare the shear stress applied by Hortonian overland 
flow to that applied by saturation overland flow in a riceland model delineating agro-village 
complex, time seris expansions into neighboring tilled land cover and its precise protusion( 
i.e.,deforestation) levels into forest-canopy, geoclassified, georeferenced, LULC polygons. In 
soil science, Horton overland flow describes the tendency of water to flow horizontally across 
geoclassifiable LULC surfaces when rainfall has exceeded infiltration capacity and depression 
storage capacity (Hortian 1933). 

 
Discrete, seasonal, explanative, Ae. aegypti eco-epidemiological, time series, geo-

spectrotemporally geosampled,immature, empirical,   habitat  data may also be thought of as 
thematic data in ArcGIS. As such, georeferenceable, iteratively interpolated, uncoalesced, 
capture point, proxy biosignature data feature attributes may be eco-geographically represented 
in an optimizable dataset of archived seasonal, expanding, explanatorial,  geoclassfiable, LULC 
time series, eco-epidemiolgical, geo-predictive,  risk maps. Points, lines, or polgonized areas in 
an urbanizing, riceland, georeferenceable, agro-ecosystem environment may be optimally 
delineated in ArcGIS [Jacob et al. 2007, Jacob et al. 2008]. Eco-epidemiological, regression-
related, probablistic, explanatorily, metaheuristically optimizable,LULC forecast risk, mapping 
of uncontrolled urbanization may reveal accidental introduction of pathogens from neighboring, 
forest-canopied, goclassifiable LULCs into a riceland, agroecosystem, village complex.  
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            For raster geo-representation of a discontinuous explanative, surface such as those 
seasonal LULCs associated with meandering, infrequently sparsely canopied, stream diversional 
tributaries (e.g., irrigation dam), agricultural LULC, explanatorial, time series changes , geo-
spectrotemporally explicatively geoclassified in ArcGIS, fractionalized endmember deposition 
with subsequent sub-mixel (i.e., mixed pixel) iterative interpolation (e.g., co-kriging) in ArcGIS 
may reveal seasonal, hyperproductive, georeferenceable, sylvatic,  Ae. aegypti capture point, 
immature habitats. Discrete, Ae. aegypti, endemic, categorical or continuous  explanative, 
orthogonally decomposeable, spatial filtered  data, may represent georeferenced objects in both 
the feature and raster data storage systems in_3D_Analyst as well  (see 
http://webhelp.esri.com/arcgisdesktop/). 

ArcGIS technologies in a cyberenvironment offer a unique way to collect and manage 
multiple, explicative, bio-ecological, seasonal geo-spectrotemporally geosampled, explanatorial, 
georeferenceable, diagnostic, clinical, field or remote, endemic, Ae. aegypti,, transmission-
oriented, explantorial, regression variables. For example, developing and implementing 
streamlined data collections, aggregations and reporting methodologies employing Personal Dital 
Assitant (PDA) handheld computers equipped with differentially coirrected global positioning 
systems (DGPS) can provide eco-geographically explanatively detailed, georeferenceable, Ae. 
aegypti, immature habitats and geoclassifiable, elucidative, LULC information when conducting 
overhead  surveys in Riceland, irrigated, agro-village ecosystems.  

         Differential Global Positioning System (DGPS) is an enhancement to Global Positioning 
System that provides improved geolocation accuracy, from the 15-meter nominal GPS accuracy 
to about 0.178m cm in case of the best implementations for vector arthropod-related habitat 
monitoring (Jacob et al. 200imaging tec).DGPS uses a network of fixed, ground-based reference 
stations to broadcast the difference between the positions indicated by the GPS satellite systems 
and the known fixed positions. These stations broadcast the difference between the measured 
satellite pseudoranges and actual (internally computed) pseudoranges, and receiver stations may 
correct their pseudoranges by the same amount. The digital correction signal is typically 
broadcast locally over ground-based transmitters of shorter range. 

       A similar system that transmits corrections from orbiting satellites instead of ground-based 
transmitters is called a Wide-Area DGPS (WADGPS) or Satellite Based Augmentation System. 
Augmentation of a global navigation satellite system (GNSS) is a method of improving the 
navigation system's attributes, such as accuracy, reliability, and availability, through the 
integration of external information into the calculation process. A satellite-based augmentation 
system (SBAS) is a system that supports wide-area or regional augmentation through the use of 
additional satellite-broadcast messages. Such systems are commonly composed of multiple 
ground stations, located at accurately-surveyed points (e.g., a prolific seasoanal Ae. egypti, forest 
canopy , sparsely canopied, habitat geosampled along a riceland tillered habitat boundary). There 
are many such systems in place and they are generally named or described based on how the 
GNSS sensor receives the external information. Some systems transmit additional information 
about sources of error (e.g., clock drift, ephemeris, or ionospheric delay), while others provide 
direct measurements of how much the signal was off in the past. Further, a third group can  
provide additional vehicle information to be integrated in the calculation process (e.g., 
determining exact geolocation of a kriged seasoanl,  Ae. egypti, forest canopied, oviposition 
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sites). The ground stations take measurements of one or more of the GNSS satellites, the satellite 
signals, or other environmental factors which may impact the signal received by the user 
(www.nas.gov).. Using these measurements, information messages are created and sent to one or 
more satellites for broadcast to the end users. SBAS is sometimes synonymous with WADGPS, 
wide-area DGPS  Post-processing may be  used in Differential GPS to obtain precise positions of 
geo-predicted, unknown, remote, YFV –related, riceland and forest-canopy, georeferenced 
LULC points by relating them to known points such as survey markers.       

Remotely targeted larval interventions as conceived in an ArcGIS cyberenvironment has 
great potential to maximize limited resources for accurate ecogeographic robust geo-predictions 
of vector arthropod immature , hypeproductive , ovipoistion, capture points. For instance, Jacob 
and Novak (2014) developed a new model Perersonl Digital Assistant (PDA), regression-based, 
sub-meter resolution [i.e.,QuickBird visible and near-infra-red (NIR) 0.61m wavebands] 
orthogonally gridded, autoregressive framework to evaluate larval interventions employing 
entomological inoculation rates (EIR), incidence, and prevalence of malaria in a riceland 
agroecosystem village complex in Mwea, Kenya. The authors determined the feasibility of using 
a PDA –related, seasonal, ArcGIS cyberenvironment as a mobile field data collection system by 
monitoring, and mapping multiple, malaria, mosquito vector, Anopheline arabiensis s.s., aquatic, 
larval, habitat, Thessian polygons and other field-geosampled georeferenceable, parameterizable, 
covariate, estimator, time series, dependent, decomposed, coefficient values. The system 
employed QuickBird raster imagery displayed on a Trimble Recon X 400 MHz Intel PXA255 
Xscale CPU®. The mobile mapping platform was employed to identify specific explanatorial, 
LULC geolocations of treated and untreated, seasonally, prolific, An. arabiensis s.s. aquatic 
larval habitats in the riceland complex. As data pertaining to prolific geosampled, An. arabiensis 
s.s. larval habitats were entered into the PDA, all treated and untreated rice paddies within a 2 
km buffer of the agro-village, riceland-complex, study site were viewed in real-time and 
managed in the cyberenvironment. 

To account for the seasonal variability in immature productivity of the An. arabiensis s.s. 
related, riceland, agro-ecosystem, geoclassified,seasonal,  LULC habitats in Jacob and Novak 
(2014), the authors conceived a conceptual quantity, (i.e., total immature productivity). This 
explanatorial geopredictive dependent variable consisted of proportional, field geosampled, 
contributions as aggregated in the PDA-ArcGIS cyberenvironment of each individual, 
georefernced, larval habitat, seasonal count and other  georeferenceable, regressable, feature data 
attributes ( e.g., Depth of habitat, Daily precipitation rates).  The impact of various scenarios of 
larval interventions on the empirically, geo-spectrotemporally geosampled, riceland, 
parasitological indicators of malaria transmission were then examined from the perspective of 
the immature habitat geolocations within the cyberenvironment employing a linear model. The 
objectives of the modeling effort  were twofold: 1) to evaluate to what extent larval control 
should be undertaken to achieve specified goals in reducing incidence and prevalence of malaria 
in the riceland agroecosystem, eco-epidemiological, study site  and, 2) to put into perspective 
how bioecological, geo-spatiotemporal, geosampled  surveys of larval populations on specific 
seasonally geoclassified LULCs ( e.g., post-harvesting) and prolific, aquatic habitats could  assist 
in designing intervention programs.  
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The PDA models in the ArcGIS cyberenvironment generated had important messages 
with respect to planning of larval interventions. First, management of all aquatic habitats was 
deemed unnecessary for obtaining specified objectives of reductions in incidence and prevalence 
of malaria as in Gu and Novak (2005). This reduction in habitats,  for geosampling, for 
implementing control strategies the authors in Jacob and Novak (2014) deemed especially 
important as the seasonally geo-spatiotemporally, geosampled, georeferenced An. arabiensis s.s.,  
aquatic, larval habitats were not uniform in productivity at the rice agroecosystem village, 
complex, study site. Second, given the enormous variability observed in anopheline productivity 
between the habitats, the authors concluded that optimal intervention could be achieved by 
remotely targeting control efforts toward specific geoclassifiable, seasonally hyperproductive, 
capture point, immature habitats. In many situations, the majority of female mosquitoes in a 
focal area are likely to emerge from prolific habitats, which might account only for a small 
proportion of habitats (Novak 2012). Third, for targeted interventions, the authors in Jacob and 
Novak (2014) surmised it was crucial to survey seasonally, georeferenceable, prolific, aquatic 
larval habitats to robutstly forecast their seasonal larval productivity within a PDA-friendly, 
ArcGIS cyberenvironment. Targeted YFV-related interventions may require field and remote 
seasonal regressive quantification of georeferenceable, larval habitat productivity based on  on-
going, geosampled,  mosquito data collections, (e.g. larval density and surface size of habitats) 
on a specific LULC (e.g., sparsely canopied, flooded, riceland habitat )  for effectively 
implementing control strategies in an ArcGIS cyberenvironment.  

While proper identification of mosquito species and knowledge of their bionomics 
focuses on control efforts, remote inspection of georeferenced, Aedes, larval habitats and/or  
weekly trapping for adult mosquitoes can ensure knowledge of the mosquito population in a 
given geoclassified LULC in an ArcGIS cyberenvironment (Jacob et al. 2011). Accurate, 
georeferenceable, entomological collection data is crucial for understanding mosquito 
biogeography, ecology, and the impact of environmental changes, as well as for species 
distribution landscape modeling, planning mosquito surveys, and for determining disease risk 
[www.cdc.gov]. A mobile collection system combined with newer ArcGIS software may help 
prioritize health interventions based on  empirical, seasonal datasets of georeferenceable, geo-
spectrotemporal, geo-spatiotemporal, empirically  explanatorial, diagnostic, clinical, field or 
remote-specified, eco-epidemiological,optimizable predictors  (e.g., parameterizable 
georeferenceable, sylvatic, Ae. aegypti-related, endemic, transmission-oriented, geoclassified, 
post-harvested, LULC, ricleand agro-ecosystem, estimator coefficients) in a more standardized 
regressionable fashion(e.g., Possionized probability distributions) .  

 
Developing and implementing streamlined data collection, aggregation and reporting 

methodologies, employing a PDA-GIS-DGPS-remote sensing cyberenvironment can provide 
precise eco-geographically detailed, real-time, elucidative, LULC information which can lower 
overall seasonal, Ae. aegypti -related, larval habitat, treatment costs. For example, a bidirectional 
PDA-GIS-DGPS-remote sensing,  web-based reporting system using a broadband satellite access 
point and the Internet can provide optimally efficient and timely amounts of relevant field-level  
information of immatures on geoclassified riceland agroecosystem LULCs. This is important, as 
seasonal, riceland, Ae. aegypti-related, treatment and management information (risk vulnerability 
maps of hyperproductive,  flooded, seasonal habitats)  would have  the most value when it is 
quick, clear and easy to understand, and relevant to decisions that need to be made immediately. 
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An adaptable modular information surveillance system in the cyberinfrastrure can help insure 
that the right decisions are made to reduce the parasite, the vector or both in geo-classfiable, 
explanative, seasonal, riceland agroecosystem, LULC areas. This system can also support 
dissemination of information such as geosampled data about field activities and costs as they are 
compiled to provide an expedited understanding of how much is being spent in seasonal, Ae 
egypti, immature, habitat treatment. The cyberenvironment may also determine whether the 
intended outcomes (i.e., insectide trtreatement of predicted prolific larval habitats) are being 
realized. The cyberenvironment would allow both field managers and health ministries timely 
and optimal information to make field operational adjustments and maintain the most efficient 
and economically feasible pressure on the immature habitat, Ae. egypti, capture point 
populations. For example, once geoclassifiable explicative, LULC patterns and seasonal 
quantizable, explanatory correlations of geo-spatiotemporal, geosampled, hyperproductive, 
Ae.egypti, aquatic habitats are mapped in ArcGIS, field and remote, management practices can 
be modified to optimize applications of fertilizers and pesticides yielding lower overall costs and 
minimizing environmental impacts caused by excessive insecticide applications. In addition, a 
PDA-GIS-DGPS-remote sensing, cybernvironment, web-based, reporting system can provide a 
module that is dedicated to measuring the economic status of a riceland community and clusters 
of communities, in order to monitor and measure the LULC impacts of yellow fever and the 
economic benefits of control interventions. These LULC optimizations may be a critical factor 
for yellow fever eradication. 

 
 Unfortunately, it is very difficult to control or eliminate Ae aegypti or any seasonal, 

YFV-related, mosquito on any seasonally related, eco-geographical, ecohydrological, 
explanatively geoclassifiable, elucidative, orthogonally decomposed, proxy LULC, geo-
spectrotemporal sub-meter resolution,  endmember, biosignature, reflectance, emissivity 
wavelength transmittance dataset in any ArcGIS cyberenvironment  especially based if the 
pameterizable covarites are stochastically and/or deterministically explanatorily iteratively 
interpolated, geo-spatializable, unmixed,  feature, attribute value as the vector can make adequate 
adaptations to changing environments. The vector is highly remotely resilient to homogenous 
landscapes. Immature Aedes have the ability to rapidly bounce back to initial numbers after 
disturbances resulting from natural phenomena (e.g., droughts) or human interventions (e.g., 
mosquito control measures)(see Novak 2012). One such eco-adaptation of YF viruses is the 
ability of the Aedes eggs to withstand desiccation on specific LULCs (e.g., riceland-irrigation). 
People not only provide the mosquitoes with blood meals but also water-holding containers in 
and around the home for drinking, washing and cooking necessary for the mosquito to complete 
their development (www.dengue.gov.) The Aedes mosquito lays her eggs on the sides of 
containers above the water and eggs hatch into larvae when the eggs are submerged (Novak 
1992). Thus, the Ae. egypti mosquito population in a riceland agroecosystem transitional LULC 
can be  maintained as a result of eggs hatching following rainfall or by the man-made addition of 
water to containers harboring eggs. During the dry seasons productive containers with eggs limit 
the mosquito population to only those containers that are filled artificially with water primarily 
for home use or for home-grown plants in container (www.cdc.gov). YFV may be episodically 
transmitted by Ae. aegypti as well as by other, YFV-related mosquitoes even during the dry 
season  since the habitats may originate in both rural and densely settled, urbanized, riceland 
non-homogenous, geoclassifed, seasonally explanatorial,  partially canopied, LULC areas and 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

240 
Copyright © acascipub.com, all rights reserved.  

forest canopied LULCs. These expanding LULC seasonal habitats may be remotely captured in 
an ArcGIS cyberenvironment.  

  
Aedes mosquiotes have been geo-spatiotemporally/spectrotemrporally geosampled on 

many different, multitemporal, explanatorial, ecogeographical, ecohydrological, geo-classifiable 
LULCs. Intensive sampling for eggs of Aedes vexans (Meigen) in upland wet-prairie habitats 
revealed that three species of plant, Echinochloa crusgalli (barnyard grass), Polygonum 
pennsylvanicum (smartweed), and Cyperus esculentus (yellow nutgrass), commonly occurring in 
contiguous U.S.A. and southern Canada and dense mats of vegetative LULC detritus, could be 
used as remotely sensed indicators of oviposition sites (Novak 2012). Where a slope was steep, 
specific elevations captured in a DTM indicated oviposition site preferences. Plant species and 
elevation were both indicators of areas where soil moisture was attractive to gravid females. Soil 
moistures between 55% and 69% were found optimal for oviposition.  

 
Natural breeding habitats of Aedes aegypti in the Caribbean region were reviewed by 

Chadee (1993)  by conducting larval surveys in Trinidad,  Puerto Rico, and the U.S. Virgin 
Islands. Twelve types of natural LULC  habitats were recorded: rock holes (9.7%), calabashes 
(2.4%), tree holes (19.5%), leaf axils (4.8%), bamboo joints (14.9%), papaya stumps (7.3%), 
coconut shells (4.8%), bromeliads (7.3%), ground pools (14.9%), coral rock holes (9.7%), crab 
holes (2.4%), and conch shells (7.3%), of which the coconut shell and calabash habitats were 
new to the Caribbean. The countries having the highest prevalence of natural habitats were 
Trinidad. Puerto Rico, and Jamaica, with  9 types (22.0%), 7 types (17.0%), and 6 types (14.6%), 
respectively. In Gargan II et al. (1988), floodwater Aedine mosquito eggs were recovered from 
soil samples taken from grassland, ecohydrological, LULC, depressions, called pans, in the 
Orange Free State Province of South Africa. Asedge, Mariscus congestus (Vahl) C. B. C1., was 
a useful indicator of Aedes (Ochlerotatus) juppi Mcintosh oviposition areas. No transovarial 
transmission of virus was demonstrated by Ae. juppi females reared from the eggs and allowed to 
feed shortly after eclosion on hamsters. No virus was recovered from 557 pools of 5,425 adult 
Ae. juppi that were collected as eggs and reared to the adult stage in the laboratory. Rift Valley 
fever virus replicated to high titres in experimentally infected Ae. juppi females, but horizontal 
transmission experiments proved inconclusive. 

 
 Historically, between 1959 and 1962, an explosive epidemic of yellow fever occurred in 

the Blue Nile region of the southern Sudan and then in the Omo River Valley of Ethiopia 
(Lindrec et al., 1968). The epidemic is estimated to have caused 30,000 fatalities. Yellow fever 
was again reported from east of Lake Margarita in Ethiopia during 1966. The occurrence of 
epidemic yellow fever in Ethiopia stimulated immunity surveys in 5 localities of the arid 
northern districts of Kenya specifically in two communities; Lokitaung Township and Marsabit 
Mountain (see Hendersen et al. 1968). Approximately 14% of the sera collected at Lokitaung and 
Marsabit Mountain were yellow-fever-immune. Although the immunity detected at Lokitaung 
could have resulted from a southward extension of the Ethiopian epidemic, the immunity 
detected in children and adults at Marsabit Mountain seemed likely to have resulted from YFV 
transmission within the vicinity of that township although this was not proven. However, the 
finding of yellow fever immunity in both regions was of sufficient importance to necessitate 
further serological surveys. Eco-epidemiological studies were then initiated at the sites to locate 
possible vectors and reservoir hosts of YFV. The initial collection of mosquitoes found that 
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Aedes (Stegomyia) africanus was common in eco-agricultural, explanatively geoclassified, 
LULC areas. The commonest mosquito in the forest collections was Mansonla (Mansonioides) 
africana (Theobald) and at forest edge LULC Aedes (Finlaya) embuensi. Additionally, the 
collections at three areas of the forest edge yielded 1,042 mosquitoes of the Aedes 
(Aedimorphus) dentatus group. One additional isolate came from Culex zombaensis (Theobald).  

 
Further, at the forest, ecogeographical, cartographically delineated, LULC edge and in 

the areas of gum trees, a total of 30 Aedes (Stegomyia) aegypti (Linnaeus) were collected. On 
two occasions Ae.aegypti was found biting man indoors. Apart from Ae aegypti, the only 
Stegomyia collected was one specimen of Aedes (Stegomyia) keniensis van Someren. Although 
Aedes and Haemagogus mosquito species are relevant for the transmission of YVR, only Ae 
aegypti is particularly important because of its adapted ecobiology to the human domestic 
environment (www.cdc.gov/yellowfever/transmission/index.html).  

 
Although in Hendersen et al. (1968) and other research thereafter, yellow fever mosquito 

vectors  have been identified on varying geoclassifiable, explanatorial, ecogeographical, 
ecohydrological LULCs, no possible mechanisms of endemic, disease transmission have been 
remotely elucidated based on empirically seasonally, regressed, endemic, explanatorial, 
transmission-oriented, geo-spatiotemporal, geo-spectrotemporal, diagnostic, clinical, field 
geosampled, endmember reflectance emissivity, wavelength transmisstance, involving 
uncoalesced, iteratively interpolated parameterizable, covariate, estimator, coefficient values. It 
is evident that considerable additional information is necessary before YFV transmission activity 
can be resolved in a seasonal LULC in an ArcGIS cyberenvironment.  
          

One of the limitations overlooked by Hendersen et al. (1968) and others may have been 
the non-detection of seasonally, explanatorial YFV–related, ecogeographical, ecohydrological 
orthogonally decomposeable, partially canopied, endmember, sub-mixel,unmixed riceleand, 
agro-ecosystem, proxy biosignatures representing LULC reflectance emissivity, transmisstance, 
wavelength, seasonal,  explanatorily iteratively  interpolative, parameterizable, covariate 
coefficient, estimator values in ArcGIS. This data may be optimally employable in  elucidative, 
time series dependent, eco-epidemiological, forecast-oriented,  regression-based,  risk-related, 
hierarchical, SAS trees and other programs (Python, C++)  for accurate explanatorial, 
ecogeographical, ecohydrological, explicative,  LULC, predictions of case distribution data and 
other seasonally hyperproductive, sparsely or dense canopied, endmember, YFV-related, 
endemic, transmission-oriented, seasonal covariates of LULC dynamics( geolocations of con 
needed to implement integrated vector management (IVM). In epidemic areas malaria control 
programmescould make significant inroads in morbidity and mortality who.gov]. Recent 
analyses  by Jacob and Novak 2014,  and Gu  and Novak 2005 ,  suggest that  spatial statistics 
and remote sensing data   can  develop enand implement larval control strategies and  play an 
important role in future control programmes suh as IVM, especially under  hyperendmeic 
circumstances .  

   
 Typical time series, ArcGIS applications of  simulated riceland and forest canopied, 

LULCs and  vector, arthrpod-related, immature, explanative, field geo-
spectrotemporally/spatiotemporally, larval habitat, seasonal data involve either images from sub-
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resolution, optical, senor systems, or to a lesser degree, active radar sensors such as 
RADARSAT. These systems have proven to be satisfactory for many ecobiological 
ecohydrological, medical entomological, immature habitat, forecasting, heursitically optimizable, 
explanative, forecasting vulnerability, model applications, such as seasonal, eco-epidemiological, 
ecogeographical, risk mapping, georeferenced, explanatorial, riceland and forest, canopied 
LULCs into broad classes and, in some biomes, for estimating above ground canopied, ricland 
biomass, imature habitats. Another remote system, the canopy volume method (CVM) could 
employ the ability of a waveform-recording sensor (SLICER) to directly measure the 3- D 
explanatorial, georeferenceable, optimally quantized distribution of a forested canopy structure 
of a cluster of prolific, geo-spectrotemporally geosampled, seasonal,Ae. egypti habitats. Using 
Lidar data, Lefsky and colleagues (1999b), were able to treat geoclassifiable, forest canopy 
LULC as a matrix of voxels (i.e., 3-D pixels), each of which was orthogonally defined as 
containing canopy or not, either in the brightly or dimly sunlit portion of the canopy. This 
information was then employed to describe the quantitative and qualitative differences in 
partially canopied, seasonal LULC, discontinuous, empirically, explanatively decomposed, 
optimally regressed geospectral, uncoalesced endmembers where primate habitats are  known to 
occur.  Commonly, the YFV is transmitted by mosquitoes from monkeys to humans when 
humans are visiting or working in the jungle (www.cdc.gov).  The forest YFV lives in mosquito 
species (Aedes africanus, Haemagogus sp, and others) that breed in tree holes 
(http://www.who.int/csr/resources/publications/yellowfev). Further, since sylvatic vectors are 
present at high density, such as in the savanna LULC zone of Africa, humans may serve as the 
principal host in epidemic transmission (www.who.int/csr/resources/publications/yellowfev).  
    

 It may be remotely  pertinent to acquire and geospectrally/geospatially differentiate, 
seasonal, riceland, YFV-related, agroecosystem and forest canopied, iteratively interpolative, 
geoclassfiiable, endemic, transmission-oriented, time series, LULC, explanatorial,  diagnostic, 
clinical, field and remote  geospecified ecogeographic, ecohydrologic, larval habitat data. To 
data these processes have been imaged only using coarse resolution. Landsat Multi-Spectral 
Scanner (MSS) data and TM data was employed by Prince and Yang 2000 to monitor 
geocalssfiied, deforestation LULC changes in savanna vegetation between 1972 and 1989 in the 
South Luangwa National Park region, Eastern Zambia. Each pixel in an MSS scene represented a 
68 m x 82 m ground area, while each pixel in a TM scene represented a 30m x 30m ground area 
(except in the case of the far-infrared band 6 which used a larger 120m x 120m pixel). Land-
cover types in the region were mapped in ArcGIS and major changes in LULC from 1972 to 
1989 were detected from the satellite data, change vulnearbility, risk maps. Forest canopy LULC 
cover was estimated for woodland vegetation from the MSS data  employing a linear relationship 
between woody LULC cover and red reflectance captured from a neighboring riceland 
environment. The changing forest canopy cover LULC estimated from MSS data agreed with 
those measured from geo-spatiotemporal expanding riceland, geoclassifiable LULC (r=0.94). 
Woody, LULC cover canopy, changed significantly in the region from 1972 to 1989 and 
revealed strong spatial LULC patterns of deforestation in Colophospermum mopane woodland 
on alluvial soils and vegetation regrowth of valley miombo vegetation and geoclassified, rice 
woodland LULCs. This information on the geospatial patterns of canopy LULC cover change 
from 1972 to 1989 suggested certain criteria that any causative process must satisfy, and it 
provided a baseline to manage the natural resources in the region. Thus, the forest canopy and 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

243 
Copyright © acascipub.com, all rights reserved.  

riceland LULC cover estimated in ArcGIS from MSS and other high resolution sensor data  
provides important explanatorial,  LULC reflectance, emissivity transmittance wavelength data 
for robustly constructing, biophysical and climatic process, eco-epidemiological, forecasting, 
geo-spectrotemporally optimizable, proxy biosignature, deforestation, risk models for estimating 
the  seasonal, impact of rice vegetation LULC structure on forest canopy vegetation and climate 
processes. 
 

High spatial resolution 3-band airborne images (G, R and NIR) have also been used to 
map savannah vegetation LULCs for qualitatively remotely quantitating the up scaling of 
transpiration measurements made over the tree-bush-shrub of Serowe area in Botswana. These 
images were acquired with digital TETRACAM camera mounted on a small aircraft to collect 
data in 30, 60 and 100 cm geospatial pixel resolutions. The airborne imaging results were then 
compared with 1m, pan-sharpened, multi-spectral, IKONO images. Two object-oriented, 
ecogeographic, ecohydrologic, endmember classification techniques corresponding to 
eCognition and Feature Analyst software packages were used in data processing. eCognition is a 
computer object based classification method for geo-spectrotemporally geospatially extracting 
information from images using a hierarchy of image objects (i.e., groups of homogenous pixels) 
as opposed to traditional pixel processing methods (see Jensen 2005). In the particular 
application of forecast, eco-epidemiological, geoclassified, optimizable LULC, risk mapping 
individual savannah tree species, the eCognition showed to be more accurate and reliable than 
Feature Analyst. The geo-spectrotemproal characteristics of the TETRACAM images were 
similar to IKONOS satellite images, while the geospatial characteristics were much better in 
TETRACAM images than in IKONOS images. This was optimally reflected in the substantial 
accuracy calculations obtained by quantiating the difference between the airborne and satellite 
data of the same resolution both quantitatively and qualitatively (i.e., seasonal, endmember 
LULC, geoclassifiable, orthogonally, explicatively decomposed  eigenvector maps). The overall 
study demonstrated that the higher the geospatial resolution, the higher the number of tree 
species properly identified with regard to the species type and sparsely canopied topographic 
pattern, hence the higher the accuracy of the  remotely sensed, LULC-related, explanatorial 
empirical, ecogeographic, regressable,  observational, georferenceable predictors. The authors 
surmised that the more fully formed individual tree crowns were the better the remote distinction 
among their geospectral explanatorial, unmixed proxy biosignatures, especially where tree 
species shed and regained their leaves with season, thus affecting the stable green color 
associated with their endmember reflectance (Kimani 2007). Since explanatorial,  remotely 
sensed,  expositively geopredictive, time series  co-factors can lead to  better ecohydrologic,  
LULC savannah, orthogonally geoclassification then the chances of overestimating and/or 
underestimating seasonal,  remotely geo-spectrotemporally  geosampled,  explanatorial, 
ecogeographic and other  uncoalesced, geoclassifiable LULC, data feature attributes on  
regressively qualitatively, quantizable, irrigated, YFV-related,  riceland agroecosystem, 
immature habitats, for example,  may be minimal. 
  
  Interestingly, in Africa, an intermediate (savannah) cycle exists that involves YFV 
transmission from mosquitoes to humans living or working in jungle geo-spectrotemporally 
geoclassfied, LULC bordered, seasonal areas. In this cycle, the YFV can be transmitted from 
monkey to human or from human to human via mosquitoes. Meanwhile the urban LULC cycle 
involves transmission of the virus between humans and urban mosquitoes, primarily Ae. aegypti. 
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The virus is usually brought to the urban LULC setting by a viremic human who is infected in 
the jungle or savannah (www.infectionlandscapes.org/2011/07/yellow-fever.htm). Thus, geo-
spectrotemporal, geospatial,  non-quantitation and/or  non-decomposition, of  seasonally 
explanative, LULC  reflectance, emissivity, ecogeographic, ecohydrologic, sub-meter, 
resolution, wavelength transmittance     may hamper robustly forecasting surveillance, 
orthogonally, gridded,  LULC-related  changes associated with seasonal, YFV-related, endemic, 
transmission-oriented, explanatorial geopredictive, diagnostic, clinical, field or remote, geo-
spectrotemporally geosampled, regressed, geospatialized, paramterizable covariate, estimator, 
coefficient outputs in a vulnerability, forecasting, eco-epidemiological,   risk map when 
implementing IVM.   
 

Since, seasonal, explanatorial, forecasting geoclassifiable, geo-spectrotemporal, endemic 
transmission LULC patterns of YFV would involve remotely explanatively defining multiple 
ecogeographic and ecohydrologic, polgonized boundaries of disease transmission zones, (e.g., 
riceland agroecosystem and forest canopy)an ArcGIS cyberenvironment  may be important to 
accurately remotely capture all these data in real time for implementing an IVM.  For instance, 
seasonal, explanatorial, georefernceable, YFV-related, geoclassified, endemic transmission zones 
(e.g., hyperendemic forested canopied LULC zones) may be optimally highlighted in an ArcGIS  
cyberenvironment constructed from seasonal, eco-epidemiological, time series dependent, 
ecohydrologic, forecasting, vulnerability, endemic, risk maps where the virus is continuously 
present and geosampled on an enzootic basis. The model may include probabilistically regressed 
multivariate, endmember, sub-mixel, unmixed, proxy, biosignature-related, geopredictive, 
explanatorial, uncoalesced variables ecogeographically representing partially canopied, forested, 
LULC zones areas where the YFV circulates between mosquitoes and monkeys or chimpanzees. 
An intermediate or emergence geo-spectrotemporal  LULC change  zone may however be 
needed to generate an accurate, geo-spatiotemporal,   explanatorial, YFV,  real-time,  
geopredictive,uncertainty-oriented, probablistic,  eco-epidemiological, risk model in an ArcGIS 
cyberenvironment where for example, a partially canopied, agro-village complex, ecosystem, 
LULC, riceland area next to or outside of  a geoclassified, forest- canopied LULC  may be  eco-
epidemiologically, geoclassified as an endemic transmission zone. This remote area may include 
georefernceable geolocations of domestic human activity such as farmland, and herding LULC 
areas. By remotely capturing all time series dependent, geo-spectrotemporally geosampled, 
seasonal, LULC zones in an interventional,YFV-related,  riceland agro-ecosystem,  eco-
epidemiological, study site and their boundaries, an updated seasonal, endemic, transmission-
oriented, geopredictive, eco-epidemiological, risk model may accurately ecogeographically 
predict, seasonal, YFV increases in a  ArcGIS-related cyberenvironment.  

 
By generating robust, remotely-sensed,  explanatorial, geopredictive, temporal, 

forecasting, vulnerability, seasonal, eco-epidemiological, ecohydrologic,  risk maps the potential 
for human-to-human transmission in agro-village and forest canopy, geoclassfiable LULC zones 
as ecogeographically orthogonally defined in an ArcGIS cyberenvironment may be efficiently  
gridded and mapped especially when YFV -infected mosquitoes from the endemic zones lay 
their eggs in fields or savannahs outside the  dense canopy, forested, LULC area. These 
environmental, ArcGIS-derived, optimized, time series dependent, explanatorial, geopredictive, 
eco-epidemiological, vulnerability  maps may forecast the LULC areas at risk based on seasonal 
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geolocations of Aedes mosquito and wild monkey populations, for example. These risk maps 
may reveal seasonal, explanatorial, geoclassfiable, elucidative, LULC sites (e.g., dicontunous 
canopy gaps in geoclassiable forest LULC) with specific, overlaid, georeferenceable, breeding 
areas (e.g. dump sites) and seasonal, meteorological, sub-meter resolution, proxy, uncoalesced, 
geo-spectrotemporal,  elucidative, parameterizable covariate, estimator, coefficient values such 
as evaporation demand for determining length of time for standing water presence to allow 
mosquitoes to complete their life cycle. Since the humans working or living in the fields on 
savannah LULC can become infected when they are bitten by the infected mosquitoes, early 
alerts may be then provided to at-risk agro-village communities using time series,  iteratively 
interpolative,  eco-epidemiological, risk maps constructed in an ArcGIS cyberenvironment. In 
some instances full scale evacuation may be mandatory. A high, risk, geoclassified, LULC area 
is an area where there is potential for an epidemic to because a human infected with YFV has 
been bitten by the sylvatic, Ae aegypti mosquito (www.cdc.gov). Since explanatorial, time series 
dependent, geo-spectrotemporally unmixed, geo-spatialized, geoclassifiable, biophysical, YFV, 
ecogeographic, geoclassified, LULC attributes are geo-characteristically remotely  distributed on 
different explanatorial, geolocations during varying seasonal sample frames, qualitatively 
regressively quantitating meteorological, geo-morphological, (elevation, slope coefficients),  
and/or vegation-related parameterizable covariate, estimator, coefficient values employing 
satellite remote sensing in ArcGIS, Different  LULCs change classes for intensive 
ecogeographic, ecohydrologic, remote sampling. Sattelite sensed data from weather radar are an 
important source of information in the analysis of the weather situations (Jensen 2005). 
  These data usually have a higher geospatial temporal resolution than conventional 
observations. They can provide LULC information on the conditions on the earth’s surface and 
the atmosphere which may be important data for constructing robust models for cartographically 
delineating seasonal, soil moisture changes, for instance. On Anguilla,West Indies, two distinct 
populations have been identified; a domestic immature  Ae, egypti, population with in large 
domestic undergroundwater storage cisterns and old asphalt drums, and a rock hole population. 
The latter habitat was first cited by Belkin and Heinetnann (1976) from a collectionmade  during 
August 1966. The rock holes containing immature occuredat distances up to more than 1 km 
from the nearest human habitation (Parker et al. 1983).  Ae. aegypti is closely associated with 
humans and human habitation. The female is primarily an indoor day-biter that feeds almost 
exclusively on humans and exploits artificial containers as sites to deposit her eggs (Focks and 
Alexander 2006, Halstead 2008.) Yellow fever mosquito aquatic, larval habitats include old tires, 
flower pots, aluminum cans, bird baths, rain gutters, tree holes, and many other items that can 
hold even small amounts of water Christophers SR..1960)  Many Aedes mosquitoes will lay their 
eggs in damp soil; the eggs will hatch when flood waters cover (www.cdc.gov). 

       Fortunately, remote sensing techniques allow eco-epidemiological research teams to gain 
knowledge of meteorological, geomorphological and vegetation-related,  geo-
spectrotemporalized objects without being in direct contact with them (Hay 2000). Clouds, 
precipitation, atmospheric gases like water vapor and the earth and ocean surfaces are 
meteorological objects. All elevational and  vegetation LULC objects absorb, scatter and emit 
electromagnetic radiation which can be utilized in passive and active remote sensing techniques 
in ArcGIS for risk, eco-epidemiological forecast mapping, YFV-related LULC-oriented, 
seasonal, prolific, georeferenceable, larval habitats. The geographic distribution of Ae. aegypti is 
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considered to, in part, be limited by cold temperatures: the low-latitude areas equatorward of the 
average 10°C winter isotherms in the northern and southern hemispheres approximate the 
climatic boundary for establishment of the mosquito (Richardson et al. 2011,Yang et al. 2009). 
Eggs of Ae. aegypti can be transported over long distances in artificial containers through human 
activities, including to areas outside the established range, but the innate climate tolerance 
precludes establishment in colder areas at middle and high latitudes and at high elevations at 
lower latitudes. The highest previously published elevation records for Ae. aegypti in the 
Americas are 1,630 m for México (Ibanez-Bernal and  S. Nuevo 1987)and 2,200 m for 
Colombia. (Suarez MF, Nelson MJ.  1981). Moreover, the work by Herrera-Basto et al. (1992)( 

reported a dengue outbreak in the Méxican city of Taxco, located at 1,700 m, but the collected 
mosquitoes were only reported as Aedes species. Although these  mosquitoes likely included Ae. 
aegypti, they also may have included specimens of another container-inhabiting mosquito Ae. 
epactius, which occurs at high elevation in México (Heinemann SJ and Belkin JN 1977).  An 
important question is whether ongoing climate warming potentially could lead to the elevation 
ceiling for sylvatic, Ae. aegypti moving up to an extent where currently unaffected high-
elevation cities are threatened by mosquito vector proliferation and establishment of local dengue 
virus transmission cycles. Although the mosquito has been studied intensely in dengue-endemic 
areas at the core of its geographic range, virtually nothing is known of its natural history at the 
cool margins of its range. 

         There may be a dearth of field information deriveable from  ngeo-spectrotemrpoally 
uncoalesced  remotely identifiable explanative specific climatic, elevation and vegation-related  
conditions under which Ae. aegypti is capable of establishment at the cool margins of its range. 
This dearth may (1) enhance  the development of robust  forecasting eco-epidemiological models 
for quantiating  the distribution and abundance of the mosquito at the cool margins of its range 
and (2) assess the potential for climate  seasonal shifts that may  lead to LULC changes in the 
geographic distribution of the mosquito, which could place additional human populations at risk 
for exposure to the arbovirus vector. The latter includes not only high-elevation urban areas but  
also high-latitude pasture fields. 

      Studies of remotely derived, climate parameters,slope coefficients  and optiamlly  
quantiziable vegetation-related,  geoclassifiable, LULC regression covariates and associations  
with  and Ae. aegypti  may be  complicated by the dependence of the mosquito on humans, 
especially its preference for human blood and its use of artificial containers as larval 
development sites. Socioeconomic conditions and human behavior (e.g., water storage practices 
or use of air conditioning or mosquito screening to prevent intrusion of mosquitoes into homes) 
may confound basic LULC associations between climate parameters and mosquito abundance at 
an agro-ecosystem ricland eco-epidemiological, study site. It may be  therefore, especially 
improtnat to study geoclassifiable LULC associations between climate, vegetation ,elevation  
and  geoerferenceable, geosampled, Ae. aegypti along transects that include high variability in 
socioeconomic conditions, such as transects extending from a  forested sparsely canopied 
centroid to a riceland agrovillage complex centroid agro-village, for example. To minimize the 
potential confounding effects of varying conditions, a research effort  may be  focused on an 
elevation and climate gradient within an eco-epidemiological study site, where the targeted 
communities may include neighborhoods of comparable LULC status.  
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 Fortunately, sub-meter resolution, remote sensing satellites provide continuous 
measurements of the earth and its environment, and offer a synoptic monitoring capability. As 
such, a remote ArcGIS cyberenvironment may provide continuous real-time sub-meter 
resolution, satellite measurements of geo-spatiotemporal, geo-spectrotemporal, geosampled, 
YFV–related, explanatorial, georeferencable, orthogonalized, LULC explicative, time series, 
gridded,  uncoalesced, data feature attributes and other time series, eco-epidemiological, 
observational, transitioning illuminative, optimizable predictors (e.g., seasonal  shifting ricleand 
agroecosystem, geos-pectrotemporal, geo-classified  LULC bordering a forest canopied, sub-
mter resolution,  optimally parameterizable, LULC covariate, estimator) for determination of 
optimal geo-spatiotemporal intervention time frames for implementing  IVM strategies.  These 
explicity robustifiable, explanative, time series, ground measurements may have distinct 
advantages over other remote cyberenvironmental,  geospatial,  surveillance tools  in ArcGIS 
since they can be collected repeatedly and automatically.  Generally, once an area has been 
imaged and then, ecogeographically, geoclassified,  explicative, quantizable, regressive 
geospatial associations between observational, sub-meter resolution, LULC, geopredictive  
ecohydrologic, explanatorial, time series dependent, risk-related, explanatorial, georeferenceable 
variables (e.g., vector, pathogen, and reservoir host  occurrence, abundance and distribution), and 
multiple orthogonally operationizable, probabilistically regressive, remotely extracted 
geosampled, paramterizable covariate coefficient values can be accurately quantitated using the 
LULC analysis capabilities of ArcGIS. Thus, sub-meter resolution, remote sensing data can be 
an important tool  for developing and understanding  seasonal, climatic and geomorphological,  
terrain-related,  explanative, riceland agroecosystem, orthogonally decomposeable, time series, 
explanatorial, LULC processes for quantitating riceland agro-ecosystem, LULC intrusion into  
forest canopied LULCs while regressively and cartographically delineating endemic YFV-
related, disease transmission potential for effectively implementing IVM.The study may reveal  
that the endemic transmission potential of  YFV is very sensitive to climate changes on the 
periphery of geoclassifiable, georeferenceable,  riceland agroecosystem, geoclassfiiable, sub-
meter resolution, optimally delineated, explicative, multitemporal  LULCs and forest canopied 
LULC encroaching  endemic areas in ArcGIS. The health impact may then be optimally 
determined to be most pronounced in populations living in the less economically developed 
riceland  temperate areas in which YFV endemicity is low or absent.  

An experimenter may require knowledge of advanced, invasive, geospatial, rater-based 
analytical tools in a ArcGIS cyberenvironment for accurately eco-epidemiologically, forecast, 
risk mapping georefernceable, seasonal-geosampled, YFV-related, meterological, 
ecogeographic, ecohydrologic, explanatorial, parameterizable covariate estimator  coefficient 
values  on geo-spectrally orthogonally decomposed,  riceland agroecosystem and forest canopied 
LULCs. For example, ArcGIS® Spatial Analyst, an optional extension to ArcGIS Desktop (e.g., 
ArcInfo®, ArcEditor™, and ArcView®) can provide powerful tools for optimally conducting 
geomorphological, terrain-related,  meteorologically, comprehensive, seasonal, vector, YFV-
related, endemic, transmission-oriented, raster-based, explanatorily biophysical,elevational,  
geospatial, eco-epidemiological, forecast, risk analysis. Within ArcGIS Spatial Analyst, 
experimenters can employ a wide range of seasonally, georeferncable, vector data formats for 
combining and qualitatively regressively quantitating, empirically geo-spectrotemporally  
geosampled, explanatorial, disgnostic, clinical, field and remote datasets with weather data while 
interpreting new data, and performing complex raster operations such as 3-D terrain trend 
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analysis, surface networking  analysis, statistical analysis, and others. For instance, Jacob et al. 
(2013) employed ArcGIS Spatial Analyst for constructing an integrated environment within 
ArcGIS Desktop for performing a raster analysis on an empirical, time series-related, 
georeferenced, eco-epidemiological, explanatorial, geo-spectrotemporally geosampled, agro-
village tributary, riverine, larval habitat, ecohydrological, georefernced empirical dataset of field 
and remote operationizable, probabilistically  regressable, data   feature attributes of a black fly 
vector of onchocerciasis Similium damnosum s.l.. Onchocerciasis known as river blindness and 
Robles disease, is a parasitic disease caused by infection by Onchocerca volvulus, a nematode 
(roundworm) which  is second in the world only to trachoma as an infectious cause of blindness 
(www.who.gov).  

In Jacob et al. (2013) a geospectral, geo-spatiotemporal, endmember,sub-mixel iteratively 
interpolative, frcationalized endmember, biosignature from QuickBird sub-meter satellite data 
(e.g., 0.61m pixel spatial resolution) was qualitatively extracted.The sub-meter, geospatial, 
resolution data was obtained from Digital Globe Inc., (Longmont, CO, USA). The satellite image 
and data of the eco-epidemiologcal, georeferenced, riverine, vector, arthropod, immature habitat, 
capture point were acquired on July 15, 2010, roughly at the mid-point of the rainy season. The 
data contained 25 km2 polygons of the geoclassifiable, LULC at the eco-epidmeiological,study 
site. QuickBird products provide four discrete non-overlapping spectral bands in the 0.45 to 
0.72µm range covering the visible and near NIR electromagnetic spectrum (EMS) with an 11-bit 
collected information depth (www.digitalglobe.com).  

 
The QuickBird sensor has coverage of 16.5-19 km in the across-track direction. In 

addition, the along-track and across-track capabilities provide a good stereo-geometry and a high 
revisit frequency of 1-3.5 days (www.digitalglobe.com). Basic Imagery products are geo-
radiometrically corrected and sensor corrected (Jensen 2005). The QuickBird sensor correction 
blends all mixels from all detectors into the synthetic array to form a single, high quality, sub-
meter, geospatial, resolution image. In Jacob et al. (2013) the QuickBird image data were 
delivered as pan-sharpened composite products in IR colors. The clearest cloud-free images 
available of the contiguous sub-areas of the eco-epidemiological, riverine, study site along the 
river and tributaries were used to identify georeferencable, LULC and other explanatorial, 
ecogeographic, ecohydrologic, geospatial features associated with prolific, partial shade 
canopied, S. damnosum s.l. habitats.  

The model developed to predict a georefernceable, capture point, trailing vegetation, S. 
damnosum s.l., riverine, agro-village, turbid water, larval habitats based on the endmember 
biosignature was designated the black rock-rapid (BRR) model. An optimal habitat representive  
0.61m  pixel was initially extracted employing object-based classifiers in ENVI. The mixel data 
included fast flowing water passing over a substrate of Precambrian rock. To develop the BRR 
model, individual pixel (0.61 m2 per pixel) endmember, geospectral, ecogeographic, 
ecohydrologic, explanatorial, decomposed, reflectance estimates in the QuickBird images were 
imdividually extracted from a georeferenced, field-validated, prolific, eco-epidemiological, S. 
damnosum s.l. capture point, immature habitat. This procedure allowed for the creation of a 
robust, proxy biosignature based on of a unit of an actual confirmed seasonal habitat. The model 
used three scene components: sunlit canopy (C), sunlit background (G) and shadow (T) 
generated from the QuickBird image, to determine the sub-pixel endmember, derivative spectra 
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associated with the known habitats. The C, G and T explanative, time series geo-
spectrotemporal, geosaptial, component classes were estimated using the ENVI software package 
(Exelis Visual Information Solutions, Boulder, CO) which employed the object-based 
classification algorithm for separating the prolific, shade,canopied, non-homogenous, larval, 
habitat-related, endmember continuous, quantizable,  regresssive, date feature attributes. 
Explanatorial, non-parametric, heuristically optimizable, sub-mixel explanative, georferenceable 
estimators from the derivative spectra and the geometric-optical model were then used to 
construct the Boolean model that subsequently rendered a geospectral, endmember, reference, 
proxy biosignature in an ArcGIS geodatabase. The waveband composition data of the QuickBird 
signature was 34% red, 11% blue and 55% green. In QuickBird composites fully canopied, 
vegetation LULC  is portrayed in red as  the blue band is not used and the remaining bands are 
shifted (i.e., visible green to the blue color gun, red to the green gun, and the NIR band to the red 
gun)(www.digitalglobe.com).These unique identifiers of the agro-village complex, trailing 
vegetation, tubid water, discontinuously canopied, riverine habitat, geospectral biosignatures 
were then  employed to forecast prolific, georefernced, larval habitats along unsurveyed rivers in 
both Togo and Uganda.  

To assess the BRR model's ability to forecast the, prolific, georefernced, riverine, 
tributary, agro-village, complex, larval habitat, densly shade, canopied sites that was temporarily 
active under varying flow or flooding conditions, a second model was developed. The strategic 
approach taken was to overlay a Digital Elevation Model (DEM) with sub-meter  resolution 
signals characteristic of Precambrian rock plus white water, or Precambrian rock alone. The 
DEM is a simple tool to geolocate differences in elevation and other catchment variables that 
would show areas where such fast flowing water could occur during different riverine 
meandering flow conditions (Jensen 2005). Crosskey (1960) revealed that explanatorial, 
orthogonally decomposeable, shade canopied, hyperproductive, S. damnosum s.l., larval habitats 
can be affected by non-temporally and temporally dependent, explicative, ecohydrological, 
seasonal attributes (e.g., Precambrian rocks, floating vegetation, turbid waters).  In order to 
accomplish the iteration in ArcGIS, Jacob et al. (2013), employed  PCI Geomatics software (PCI 
Geomatics, Toronto, Canada), which supported an automatic overlay of any interpolated wet and 
dry Precambrian rock, proxy  biosignature along the river course. This endmember analysis 
revealed the geolocations of both active habitats (i.e. those with water flowing over Precambrian 
rock) as well as sites that might become active under increased flow or flooding conditions. 
Typical uses of ArcGIS Spatial Analyst for seasonal, vector, entomological-related, explanative, 
endemic, transmission-oriented, eco-epidemiological, risk-based, explanatorial, data analyses 
include DEM generation, larval habitat, population density, 3-D mapping, surface runoff 
modeling, cluster modeling, vegetation LULC, targeted mapping and  eco-epidemiological study 
site geolocational probability  exploratory  risk,   analysis (see Jacob et al. 2013b, Jacob et al. 
2012,Jacob et al. 2011c). 

Of the 30 sites along the Sarakawa River in Northern Togo forecasted to be prolific, 
larval habitats by the BRR model, all (100%) were found to contain S. damnosum s.l. larvae. In 
contrast, none of the 52 sites not predicted by the BRR model, but deemed to be potential habitat 
by the medical entomologist accompanying the verification team contained larvae. Together, 
these data suggested that the BRR model exhibited a sensitivity and specificity approaching 
100% for the prediction of S. damnosum s.l. riverine larval sites in Togo. 
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To test the generality of the BRR model, it was applied to predict, S. damnosum s.l., 
riverine, larval habitat, capture point, sites in Northern Uganda. A total of 25 potential S. 
damnosum s.l. larval habitat sites were predicted. Of the 25 sites predicted to be suitable habitats 
by the BRR model, 23 (92%; 95% CI 81–100%) were found to contain S. damnosum s.l. larvae. 
In contrast, just 2/10 (20%; 95% CI 0–45%) sites examined which were not optimally forecasted 
to represent S. damnosum s.l. aquatic habitats by the model were found to contain larvae. The 
BRR model thus exhibited a sensitivity of 80% and a specificity of 92% when applied in 
Uganda, a performance that was statistically significant (p<0.0001; Fisher's Exact test). The two 
sites that were not predicted by the model were found to contain larvae consisted of low hanging, 
streamside, geoclassfied, geo-spectrotemporally geosampled, georeferenceable, LULC, 
vegetation immersed in fast flowing water. The mean number of larvae found at the sites 
predicted by the BRR model (21.91) was significantly greater that the mean number of larvae at 
the sites consisting of immersed , trailing vegetation (4.0; p<0.001, Mann Whitney U test). Based 
on literature thus, ArcGIS Spatial Analyst software’s strong integration with the ArcGIS Desktop 
geoprocessing environment may allow research experimenters to create and  model YFV-related 
IVM employing orthogonally decomposeable, geo-spatiotemporal, georeferenced, field-
geosampled, explanatory count data as a  response count variables   and sub-meter, geospatially 
uncoalesced, satellite imagery and remotely-sensed geo-statistical,  eco-epidemiological, 
forecasting, risk-related, field and remote independent  estimators in a count variable (i.e., 
Poisson) probability framework.  

 
Poisson models are commonly employed in vector arthropod, eco-epidemiological risk 

analyses. In such count variable regression equations, the dependent variable is usually 
prevalence data or habitat productivity. Possionized variables tend to render more realistic 
outcomes (e.g., non-inflated pseudo R2 values) than a binary logistic paradigm. The log 
transformations in a dichotomous, non-linear, regression framework imposes that values above 
zero to be categorized as only 1. Hencforth all values above zero would be coded homogenously.  
Explanatorial quantizable multivariate differences in exogenous  or endogenous, categorical or 
contimnuous, observational, YFV-related, explanative  predictors  could not be differentiated in 
liner regression space. Possion variables employ actual count variables as regressors but  with 
the imposition that the mean in the model is equal to the variancxe. Unfortunately may vector 
arthropod-related models commonly violate this assumption, thereby rendering overdispersed,  
eco-epidemiological, georferenceable forecasts. Thus negative binomial regression models with 
a gamma distributed mean is employed to compensate for the over-Possion variation in these 
models, since in these paradigms the standard deviation is equal to the mean. Thus, extreme 
observations( e.g., geospatial outliers) may be accounted for. Outliers in geo-spectrotemrpoal, 
geospatial, vector arthropod-related medical entomological, forecasting, regression models  can 
genereate heteroskedascitic or multicollinear variables which will then subsequently render 
misspecifications ( e.g., covariates that are not associated with hyperproductive, seasonal 
riceland agro-ecosystem,   Ae. egypti, seasonal georeferenceable,  capture points)  

 
Alternatively, an experimenter may choose to perform a non-linear estimation procedure. 

Many algorithms currently exist in ArcGIS that can quanatite clusteriung tendencies in geo-
spectrotemporal, geosampled, empirical datset of georeferenceable Ae. egypti aquatic larval 
habitats in a ricleand agro-ecosystem environment. These non-linear models include 
autocorrelation using Moran’s i,( see Moran 1950, Griffth 2003)  autoregressive geospatially 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

251 
Copyright © acascipub.com, all rights reserved.  

weighted matrices ( see Cliff and Ord 1972, Anselin 1995,) , Bayesain generalizable hierarchical 
paradigms (Gilks 1996)), stochastic/deterministic variograms and other iterative explicative 
geospatial interpolators (see  Cressie 1993). Users of ArcGIS Spatial Analyst include those who 
need to build complex site geo-locational, analytical, eco-epidemiologial, time series dependent, 
ecogeographic, ecohydrologic, vector, arthropod-related, risk models as well as those users who 
are interested in conducting terrain and visibility modeling or who want to perform density 
mapping, overlay, distance analysis, or interpolation (Jensen 2005).  

Because of complexities and limitations in remotely estimating, georeferenceable 
geopredictive, explanative, LULC variables through time series dependent, remote sensing data, 
proxy, time series, explanative, graphical indicator, uncoalesced biosignature variables such as 
decomposed proxy vegetation indices [e.g., Normalized Difference Vegetation Index (NDVI)] 
that measure the abundance, spatial extent, and dynamics of vegetation-related   were created 
(e.g., see Tucker 1991, Huete 1994). The biophysical temporally dependent and/or non-
independent, explanatorial, graphical indicator may be employed as a surrogate indicator of 
climate variability in seasonal, medical entomological-related, eco-epidemiological studies 
(Jacob et al. 2006, Hay 2000). A widely used remote, proxy, observational,time series, 
explanatorial, ecogeographic, predictor  variable in vector mosquito is the Normalized 
Difference Vegetation Index (NDVI), (Jacob et al. 2010b, Brown et al. 2008, Cooke et al. 2006, 
Kunkel et al. 2005, Ward et al. 2004, Backenson et al. 2002, Brownsteinco 2002, Linthicum 
1987).The NDVI, which exploits the strong contrast in the reflectance of vegetation in the red 
and NIR wavelengths, is a commonly employed index to study vegetation dynamics (Jensen 
2005). Importantly, healthy vegetation absorbs blue- and red-light energy to fuel photosynthesis 
and creates chlorophyll. Photosynthetically regressively  quantitated plant specific chlorophyll 
associated with a seasonal, georefernced, vector, entomological-related, aquatic, larval habitats 
on an explanatorial geo-classfied LULC in an ArcGIS cyberenvironment can determine an 
optimal geolocational site which will reflect more NIR energy than an unhealthy plant. Thus, 
analyzing forested, ecohydrologic, endmember –related, riceland, LULC  spectrums associated 
to a diffuse wavelength sub-meter resolution, bi-directional,  seasonal, YFV-related, 
explanatorial, regression-related,  forecasting, risk model employing absorption and reflection 
indices extracted from visible and NIR transmittance  emissivities may provide frequency 
information about levels of sparse or dense  canopy forest health, deforestation levels and its 
relation to immature, mosquito productivity. 

Since partial, discontinuous canopy, vegetation, LULC dynamics are influenced by 
variations in climate, strong  quantitative correlations between vegetation indices, meterological 
variables and seasonal, YVR-related, orthogonally explanatively, decomposeable, explanatorial, 
ecogeographic, ecohydrologic, parameterizable,  covariate estimator coefficients may be 
optimally revealed in a dynamic, seasonal, ArcGIS-generated, NDVI-related, forecasting, eco-
epidemiological, geo-spatiotemporal, partially canopied, risk-related, forecasting vulnerability  
map. For instance, Brown et al. (2008) employed time series dependent, remotely-sensed, 
vegetation indices to discriminate among multiple West Nile Virus (WNV) mosquito, aquatic 
larval, immature habitats within a densely populated urban environment in New Haven, 
Connecticut USA. ASTER-derived vegetation indices were identified for 16 sites where adult 
WNV mosquitoes were trapped. A canonical correlation analyses was then employed to 
determine if a significant relationship existed between NDVI, disease/water stress index and 
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distance to water and four local WNV competent vectors (Culex pipiens, Culex restuans, Culex 
salinarius, and Aedes vexans). Their model determined that a significant relationship existed 
between explanatorial, diagnostic, clinically geo-spectrotemporally geosampled, geopredictive, 
covariate, parameterizable, explicative estimator coefficients and prolific geosampled mosquito 
habitats (0.93, P=0.03). The final, eco-epidemiological, decomposeable, time series, dependent 
model  forecasts explained 86% of the variance in the environmental and WNV mosquito 
measures.  

      Although Brown was able to show geospatial seasonal segregation between  presumed 
enzootic vectors  Cx. pipiens and Cx. restuans and the presumed, bridge vectors, Cx. salinarius 
and Ae. vexans, employing relatively coarse  ASTER spatial resolution [e.g., 30 x 30m in the 
short wave infrared (SWIR)], data, a sub-meter resolution  [e.g. QuickBird visible and NIR at 
0.61m pixel resolution] may have geo-visualized the  individual capture point, georferenceable,  
endemic, transmission-oriented, WNV, geo-spectrotemporally geosampled, decomposeable, 
iteratively interpolative, geosampled,  mosquito data more accurately.  In  Jacob et al. 
(2013)seasonal explanatorial, geopredictive, LULC, characteristics were qualitatively, remotely  
quantitated  employing QuickBird  visible and NIR satellite data products in an ArcGIS 
cyberenvironment for geospatially, geopredicting, malaria case distribution Uganda. Initially, 
case, as counts, were used as a response variable in a Poisson probability model framework for 
quantifying datasets of explicative, district-level covariates (i.e., meteorological data, LULC 
densities and distribution of health centers, etc.) geo-spectrotemporally geosampled from 2006 to 
2010 in Uganda. Results from both a Poisson and a negative binomial (i.e., a Poisson random 
variable with a gamma distrusted mean) revealed that the paramterized covariates rendered from 
the model were significant, but furnished virtually no predictive power. Inclusion of indicator 
variables denoting the time sequence and the district location spatial structure was then 
articulated with Thiessen polygons which also failed to reveal meaningful covariates. Thereafter, 
an Autoregressive Integrated Moving Average (ARIMA) model was constructed which revealed 
a conspicuous but not very prominent, first-order temporal, autoregressive structure in the 
individual district-level time-series dependent data. A random effects term was then specified 
using monthly time-series dependent data. This specification included a district-specific intercept 
term that was a random deviation from the overall intercept term which was based on a draw 
from a normal frequency distribution. The random effects specification revealed a non-constant 
mean across the districts. This random intercept represented the combined effect of all omitted 
covariates that caused districts to be more prone to the malaria prevalence than other districts. 
Additionally, inclusion of a random intercept assumed random heterogeneity in the districts’ 
propensity or, underlying risk of malaria prevalence which persisted throughout the entire 
duration of the time sequence under study. This random effects term displayed no spatial 
autocorrelation, and failed to closely conform to a bell-shaped curve. In statistics, a random 
effect(s) model, also called a variance components model, is a kind of hierarchical linear model 
(Hosmer and Lemeshew 2002). Multilevel models (also hierarchical linear models, nested 
models, mixed models, random coefficient, random-effects models, random parameter models, 
or split-plot designs) are statistical models of parameters that vary at more than one level 
(Cressie 1993). The model’s variance, however, implied a substantial variability in the 
prevalence of malaria across districts. The estimated model contained considerable 
overdispersion (i.e., excess Poisson variability): quasi-likelihood scale = 76.565. The following 
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equation was then employed to forecast the expected value of the prevalence of malaria at the 
district-level: prevalence = exp[-3.1876 + (random effect)i] .  

 
QuickBird imagery products may be combined with other elucidative, forecasting, 

geopredictive, eco-epidemiological, risk, model information ( e.g., seasonal, autoregressively, 
probabilistically quantitated, geo-spectrotemporally geo-spatialized, sparse or dense partially 
canopied, rice –agriculture, geo-classifiable LULC predictors along a forest line), for advanced 
photogrammetric processing and exploitation of georefernced, explicative, YFV-related, 
geopredictive,  seasonal LULC transitions and proxy, remotely-sensed, explanatorial, partially 
canopied,biophysical-related field-geosampled, geo-spatiotemporal attributes (e.g., NDVI 
parameters). These remotely synthesized explanatorily optimally paramterized, covariate, 
estimators and their respected sub-meter, resolution, reflectance, emissiviy, transmittance 
coefficient, ecohydrologic, indicator , regressable values, could be included in a parsimoniously 
orthogonally constructed  time series dependent, explanative, endemic, transmission-oriented, 
eco-epidemiological, forecasting, vulnerability model framework along with other multivariate, 
QuickBird-derived, explicatively diagnostic,  time series, clinical, field and remote-specified, 
eco-geographic, partially canopied,  georeferenceable, data feature attributes, (e.g., demographic 
population estimators) for  accurately forecasting seasonal, YFV-related, field-verifiable case 
distribution.  
 

  QuickBird gridded imagery products have been applied to image to identify 
explanatorial, seasonal, georefernced, entomological,-related, partially canopied, ecogeographic, 
ecohydrologic, geo-spectrotemporal, geospatial, larval habitat data. For instance, Jacob et al. 
(2008) employed gridded multitemporal, QuickBird visible NIR waveband frequency data to 
optimally identify seasonal, malaria-related, aquatic, larval, aquatic habitats of Anopheles 
gambiae s.l. in Gulu, Uganda. Habitats of Culex quinquefacistus, a major mosquito vector of 
WNV and filarsis were also optimally identified. Endemic transmission-oriented, explanatorial, 
time series dependent, vulnerability, ecobiological, explanatorily iteratively quantitatively 
iteratively interpolatable, field-operationizable, sparse or dense, partially canopied, forecasting, 
vulnerability, eco-epidemiological, risk maps for the Gulu study site were created from 
QuickBird visible and NIR band data employing differentially corrected ground positioning 
system (DGPS) coordinates in ArcGIS 9.3® (ESRI, 380 New York Street, Redlands, CA 92373-
8100, USA). A 150 m × 150m orthogonal, spatial filter, residual algorithmic, digitized, grid 
matrix was overlaid onto the  sub-resolution image of the Gulu study site in ArcGIS with the 
purpose of providing a technique for quantitatively probabilistically estimating explanatorial, 
decomposeable, geospatial, LULC change employing   georefernceable, eco-epidemiological, 
quantitative, elucidative, time series, geo-spectrotemporal regressors for illuminatively 
representing  multiple, empirical, geo-spatiotemporally, geosampled, prolific, mosquito, aquatic, 
larval habitat, parmeterizable, explicative, covariate, estimator, time series, dependent 
coefficients. 

 
  The eco-epidemiological, study area was stratified based on the level of drainage and 

planning present within each digitized gridded, QuickBird, cell. A grid cell was classified as 
well-drained if functional (e.g. clear of debris or vegetation at the time of observation) 
engineered drainage systems were present and no standing water was visible, or if the grid cell 
was eco-geographically geolocated on a slope and no standing water was visible. A 
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georeferenceable, grid cell was geoclassified as poorly drained if it was geolocated in a 
depression or valley and had either no drainage systems, or the drainage systems were blocked 
with debris or vegetation. A unique identifier was then assigned to each grid cell.  

    
  Thereafter, a DEM of the eco-epidemiological, study area was downloaded seamlessly 

from United States Geological Survey (USGS, March 17th, 2007). The use of the DEM for 
determining seasonal explanatorial, ecogeographic, orthogonalized, LULC parameters for 
establishing a robust, endemic, transmission-oriented, eco-epidemiological, ecogeographic, 
ecohydrologic, geopredictive, risk model and has been proven by different studies on the ecology 
of malaria vectors including An. gambiae s.l along with the impact of canopied landscape on 
their populations and malaria transmission (Jacob et al. 2005, Jacob et al. 2007). The DEM was 
constructed based on a contour map of 1:50,000. The range of the elevation in the DEM had a 
minimum value of 996 m with a maximum value of 1,132 m. The slope of the georeferenced, An. 
gambiae s.l., aquatic, larval habitats was then found to be 0.171%. The slope of the Cx. 
quinquefacistus was 0.006%. There was a significant positive correlation for prolific, Cx 
quinquefacistus, aquatic, larval habitat, count and slope (0.24) whilest for An. gambiae, aquatic, 
larval  habitat,  immature count and slope there was a negative correlation (-0.23) for a local 
model based on the parameterizable explicative  covariate, estimator Distance to stream.  

 
The purpose of DEM construction for probabilistically regressively qualitatively 

quantitating seasonal, georeferenceable,  ArcGIS-derived, sylvatic, YFV-related, eco-
epidemiological, forecastable, risk-related, ecogeographic, ecohydrologic, mapping variables 
would be then to extract 3-D, topographic geomorphological, reflectance, emissity wavelength, 
transmittance of  explanatorial, bidirectional, optimally georeferenceable, explanatively 
parameterizable, covariate estimator, regression coefficient values  that are associated with time 
series, LULC formations, such as elevation, flow accumulation, flow direction and stream order 
that may be then  geo-spectrotemporally geospatially associated with georeferenceable, endemic 
(ie., hyperendenic, mesoendemic), transmission-oriented, objects (e.g., georeferenced, prolific, 
shade-canopied,  larval habitat, based on field-geosampled, time series, count data). Jacob et al. 
(2008) employed a wetness index or topographic index to represent soil surface moisture content 
at the Gulu, eco-epidemiological, study site. It was calculated in ArcGIS as ln(A/Tan B) where A 
was the upslope contributing area and TanB was the local slope.  Parameters A and Tan B were 
then remotely qualitatively derived using a multiple flow-direction algorithm in ArcGIS to 
geostatistically and cartographically quantitate the explanatorial, geomorphological time series 
dependent, ecogeographic, ecohydrologic, geoclassified, YFV-related, geoclassifiable,  LULC, 
regressed,agro-village riceland,  covariate coefficients.  

 
The Stream Raster Grid was then generated in ArcGIS. The advantage of using flow 

distance-to-stream rather than simple distance-to-stream is that flow distance takes flow direction 
and landscape profile into consideration (www.esri.com). Euclidian distance-to-nearest 
ecohydrological explicative, georeferenceable, georefernceable  bodies were  thereafter 
calculated  by Distance from a grid cell to a stream grid cell which was defined geo-statistically 
employing  a Stream Raster Grid. Flow distance-to-stream may affect availability of the aquatic 
habitat and is commonly calculated as the distance from a grid cell moving downstream to a 
stream grid cell defined by the Stream Raster grid (Jacob et al. 2008). The Terrain Analysis using 
DEM (TauDEM) in an ArcGIS cyberenvironment was then employed to retrieve the 
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explanatorial, georeferenceable, terrain-realted, iteratively quantitatively interpolatable, 
exegetically  geomorphological, eco-epidemiological, endemic, transmission-oriented, 
regression-related, geo-spectrotemporally dependent, bi-directional, ecogeographic, 
ecohydrologic, sub-meter resolution, geoclassified, LULC, emissity transmittance, wavelength, 
parameterized  covariate, radiance estimators. A 3-D model of the eco-epidemiological study 
area was then constructed based on the DEM using ArcScene extension of ArcGIS. The 3-D GIS 
platform has been advancing rapidly due to recent development of internet high-speed networks, 
knowledge-based databases, sensor network technology, information technology (IT), and 
availability of high-resolution space- and air-borne images, Web-based platforms, such as 
Google Earth, Virtual Earth and Sensor Map(www.esri.com).  
 

Importantly, a web-based, joint, multivariate georferenceable, geodatabase within an 
ArcGIS cyberenvironment server can ensure timely deliverables employing multitemporal, 
QuickBird wavelength, reflectance, emissity transmittance, geo-spectrotemporally  geosampled, 
ecogeographic, ecohydrologic, explanative, time series, LULC data within a PDA (Jacob and 
Novak 2014). This platform could lend itself to a larger public health capability for 
implementing a YFV-related IVM  parsimoniously  as it would have  the ability to scale-in, time 
series dependent, eco-epidemiological, real-time, geo-spatiotemporally geosampled, 
probabilistically regresseable, explanatively orthogonally decomposable, sub-meter 
resolution,thereby, endmember data providing an easily accessible tool linking data from 
handheld to desktop to web. This database could extend current, seasonal, field, geosampling 
temporal, YFV-related protocols by providing the ability to transfer bio-geographical time series 
information from either a centralized repository web-hosted, database or directly between 
research experimenters. Data-based explanative, geo-spectrotemporal, geolocational intelligence 
aggregated and analyzed within an ArcGIS cyberenvironment server can provide effective 
dissemination of time series, YFV-related information which may lead to implementing an IVM. 
For instance, in Jacob et al. (2009), employed an uncoalesced dataset of  iteratively interpolative, 
QuickBird visible and NIR, wavelength reflectance, emissity transmittance polygons to identify 
hyperproductive, georeferenceable, malaria-related, discontinuous, shade, sparsely canopied, 
prolific, georeferenceable, aquatic larval habitats of Anopheles arabensis in a riceland, agro-
ecosystem village-complex, interventional, eco-epidemiological, study site complex in the Mwea 
Rice Scheme, Kenya. The system utilized sub-meter resolution, QuickBird raster imagery in the 
visible and NIR data spectrums with a PDA, (i.e., a Trimble Recon X 400MHz Intel PXA255 
Xscale CPU®). A polygon layer outlining each georeferenced, An. arabiensis, aquatic, larval 
habitat was then created by digitizing the QuickBird imagery in GeoGrid®.  

 
A GEO Grid Implementation for 3D-GIS was recently implemented in National Applied 

Research Laboratories (NARL), in Taiwan. The GEO Grid framework was based on grid 
technology, remote sensed data, and geographic information. The approach was initiated by 
synergy of NARL’s core competence on environment monitoring and disaster reduction 
techniques. The constructed Geogrid included high-resolution satellite image processing, virtual 
reality, geovisualization and disaster mitigation technology along with the advanced 
cyberinfrastructure environments established within NARL. The framework was constituted by 
three layers, (i.e. application module, service interface, and computing/data/sensor grids). A 
prototype platform entitled 3D-GIS Taiwan was then constructed employing 2m resolution 
FORMOSAT-2 data and a 5m, geospatial, geo-spectrotemporal DEM. These explicative, 
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geomorphological, ecohydrologic, bidirectional, reflectance, emissity transmittance, sub-meter 
resolution, uncoalesced, wavelength, endmember, data variables were displayed in 3D stereo 
visualization and in web pages for the island of Taiwan. The approach emphasized the synergy 
of multi-discipline with cross-field cooperation for geosciences’ application which presently has 
become a benchmark for implementation of Global Earth Observation System of Systems 
(GEOSS). 
 

In Jacob et al. (2008), the authors overlaid an orthogonalized, stratified, algorithmic, 2km 
grid over the QuickBird visible and NIR data of a eco-epidemiological study site in a geo-
spectrotemporally geoclassified, riceland agroecosystem,  orthogonalized, georeferenced,  LULC  
village complex. Each explanatorial cell within the gridded 0.61m matrix contained an riceland, 
endemic, explanatorial, LULC cycle (e.g., flooding, post harvesting etc), georeferenced, geo-
spectrotemporal, geosampled, uncoalesced, data, feature, ecogeographic, attribute value, as well 
as  multiple An. arabiensis s.s., immature habitat explicatively, georeferenceable, geolocational 
coordinates which was joined relationally to other  satellite geodatabases in ArcGIS. The 
geospatial geolocation of each georeferenced cell was implicitly contained within the ordering of 
the algorithmic sequencial probabilistic, estimation matrix. The georeferenced, aquatic, larval 
habitats were then geo-spectrotemporally regressively characterized in relation to the 
explanorial, time series dependent, georeferenceable, ecobiological explanative attributes 
geosampled of a neighboring georeferenced, prolific habitat at the riceland agro-ecosystem, eco-
epidemiological, study site in ArcGIS. Each georeferenced, seasonal, explanatorial, An. 
arabiensis s.s., aquatic habitat/polygon was assigned a unique identifier. Field attribute tables 
were then linked to the polygons. The polygons were used to define the sampling frame, which 
extended to include a 1 km buffer from the external boundary of the interventional, agro-village, 
ecosystem complex, eco-epidemiological, study site. 
 

Thereafter, a time series explanatorial, ecogeographic, geopredictive, LULC, endemic, 
transmission-oriented, classification was performed employing seasonal, rice cycle transitions 
and time series,  disgnostic, clinical, field and remote, geo-spectrotemporally geosampled, An. 
arabiensis s.s.,larval habitat, regressed data variables in ArcGIS. Overall accuracy and class-
specific user and producer accuracies were calculated for each of the resultant land cover bi-
directional, reflectance, emissity transmittance, explanative, covariate classes. The producer 
accuracy is a measure of the omission error and indicates the percentage of pixels of a given land 
cover type that are correctly classified (Jensen 2005). Conversely, the user accuracy is a measure 
of the commission errors and indicates the probability that a pixel classified into a given class 
actually represents that class on the ground.  These validation techniques in ArcGIS were 
calculated by dividing the number of pixels of the ith class correctly classified by the total 
number of mixels classified as the ith class.  For each eco-epidemiological, riceland, agro-
village,study site, metaheuristically optimizable, LULC risk mapping region, stratified sampling 
formulas were applied to estimate the probabilistic error matrix cell proportions and 
consequently, the estimates of overall and class-specific user's and producer's accuracy as well. 
There are two primary components of error in thematic maps such as land cover maps; position 
error and thematic error (www.esri.com).         

 
Next, the overall accuracy of the eco-epidemiologically, empirically, qualitatively, 

ecogeographically, regressively quantitated, riceland agroecosystem, sub-meter resolution, 
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geoclassifiable LULC, irradiance ecogeographic, ecohydrologic,  emissity transmittance, 
orthogonally quantitatively, decomposed wavelength, biosignature, frequency, data, 
orthogonalized, feature attributes was calculated by dividing the number of pixels correctly 
geoclassified (i.e. the sum of the diagonal axis of the matrix) by the total number of mixels 
included in the evaluation process. The authors noted that the multitemporal, multivariate, geo-
spectrotemporal, QuickBird visible and NIR image datasets containing the extracted, digitized, 
georeferenceable, larval habitat boundaries, with unique identifiers displayed amongst the 
geosampled, georeferenced habitats within a 1 km buffer of the eco-epidemiological study site 
had the highest forecasted immature counts. Thereafter, an object-oriented classification in ENVI 
technology separated the geo-spatiotemporally/geo-spectrotemporally geosampled, prolific, 
georefernced habitats by larval/pupal productivity in n-dimensional, feature attribute, 
endmember geospace. ENVI combines advanced geo-spectral image processing and proven 
geospatial image analysis technology with a modern, user-friendly interface for generating  
optimal remote sensing models (http://www.exelisvis.com).Once all the multivariate, 
multitemporal, explicatively remotely diagnostic, quantitative, explanatorial, clinical,  field and 
remote-geosampled geopredictive,  endemic, transmission-oriented, ecogeographic, 
ecohydrologic,  predictor variables  were extracted, a time series regression analyses was 
performed on the mixel data which  revealed significantly higher An. arabiensis larval/pupal 
counts in the tillering LULC stage of rice development. 
 

For the probabilistic, YFV-related, eco-epidemiological, geopredictive, explanatorial, 
ecogeographic, ecohydrologic, metaheuristically optimizable, explicative, risk model 
construction, the producer's accuracy related the probability that a QuickBird-derived, ArcGIS, 
time series dependent,  LULC class was correctly mapped and measured employing the errors of 
omission (1 - producer's accuracy). In contrast, the user's accuracy indicated the probability that 
a geo-spectrotemporally geosampled, endemic, transmission-oriented, explanatorial, eco-
epidemiological, LULC mapping variable actually matched the field geosampled, information 
from the quantitated georeferenced, bidirectional, reflectance, emissity transmittance, 
explicatively interpretative, decomposed, wavelength, time series, weighted,  parameterizable, 
covariate, estimator dataset by measuring the error of commission (1- user’s accuracy). Accuracy 
results were then computed by weighting the endmember proportions of each geo-
spatiotemporal, seasonal, endemic, transmission-oriented, georeferenced, YFV-related, 
geoclassified LULC at the Gulu eco-epidemiological study site, against total LULC geoclassified 
area used in the seasonal geosampling frame. Thereafter, the overall and producer's accuracy was 
optimally estimated using post-stratified formulas. Post-stratified estimators uses the known 
pixel totals for each LULC class for treating the sample as a stratified random sample of mixels 
in that class (Jensen 2005). The overall accuracy of the LULC classification in the QuickBird 
image was then determined employing a Kappa statistic. Cohen's kappa coefficient is a statistical 
measure of inter-rater agreement or inter-annotator agreement for qualitative categorical items 
(see Jensen 2005).  
 

. 
Thus, based on Jacob et. al. (2012) and other recent contributions to literature (Heuvelink 

and Griffith 2010, Jacob et al. 2013), here we assumed that compilation of accurate, seasonal, 
eco-epidemiological, ecogeographic, diagnostic,  time series, geospectrotemporal. YFV-related, 
explicative, clinical, and QuickBird endemic, transmission-oriented, operationizable, field 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

258 
Copyright © acascipub.com, all rights reserved.  

georeferenced, reflectance, emissity transmittance, endmember, orthogonally explanatively  
decomposed, wavelenght data may allow probabilistically quantitating random effects term 
estimates in an ArcGIS-related, time series dependent, explanatorial, LULC-oriented, 
geopredictive, regression-related, eco-epidemiological, risk model for precisely  forecasting case 
distribution. Conventional space-time geostatistics in ArcGIS may need to be extended with 
methods for estimating and quantifying georeferenceable,  seasonal, explanatorial, YFV-related, 
geo-spectrotemporal, variation for quantitatively and iteratively,optimally  interpolating  geo-
spectrotemporally uncoalesced, parameterizable, seasonal geosampled, eco-epidemiological, 
covariates for optimally quantitating stochastic/deterministic  simulating time series dependent, 
endemic, transmission-oriented, diagnostically explanative, clinical, field and remote LULC, 
parameterizable,  covariate, signature estimator, coefficient values. 

 
Fortunately, current developments in quantitative geography in ArcGIS have given rise to 

many spatial indices using Local Indicators of Spatial Association (LISA), such as local Moran’s 
I (Ii) and local Geary’s C (Ci) (Anselin, 1995; Sokal et al., 1998), as well as Local Spatial 
Autocorrelation (LSA) statistics and Getis-Ord statistics, Gi and Gi* (Getis and Ord, 1992) for 
precisely regressively qualitatively quantitating, seasonal explanatorial, geopredictive, 
georeferencable, YFV-related,  diagnostic, clinical, field and remote-specified, uncoalesced, 
endmember, endemic, transmission-oriented, sub-meter resolution, uncoalesced,  reflectance, 
emissity transmittance, wavelength-oriented, orthogonally  parameterizable, covariate estimator 
coefficients. These geostatistics may be optimally employed to summarize probabilistic, 
uncertainty-oriented, latent autocorrelation  in seasonal geo-spectrotemporally geosampled, 
ecogeographic, ecohydrologic, endemic, YFV-related, transmission-oriented, mosquito datasets, 
for example,  for  adjusting and displaying hyperproductive, LULC zones in ArcGIS, field 
operational, YFV-related, illuminative, time series dependent, vulnerability-oriented, 
probabilistic, geospatial, forecasting, eco-epidemiological, risk maps. Temporal and latent 
autocorrelation violates standard statistical techniques when stochastically/deterministically, 
iteratively interpolated, vulnerability modeling georeferenced medical entomological, endemic, 
transmission-oriented, time series, explicatively dependent, geopredictive, eco-epidemiological, 
geospatialized variables by altering asymptotically normalized residual variance and probability 
estimates (see Jacob et al. 2006, Jacob et al. 2007, Jacob et al., 2009). The variance standardized 
or asymptotically standardized residual matrix built employing a dataset of metaheuristically  
optimizble, georeferenceable,diagnostic, sylvatic, YFV-related, clinical, field or remote 
categorical or continuous, paramterizable covariate may also be qualitatively quantaited in 
PROC CALIS. 
 

Residual-based experiments represent an important area of research in vector, medical 
entomological-related, time series-dependent, eco-epidemiological, forecasting, optimizable, 
risk-related, model analyses for diagnostic checking any non-normality in proposed reflectance, 
emissivity, transmittance wavelength, uncoalesced frequency, sub-meter resolution datasets of 
empirically regressable, geopredictive, fractionalized, endmember, orthogonally, explicatively 
decomposed, paradigm ecogeographic, ecohydrologic, time series dependent, heuristically 
parameterizable covariate, estimator, coefficient values. Such latent specification tests are 
covered in many econometrics and statistics textbooks and remain of interest in ongoing medical 
entomological research such as for qualitatively, quantitating geo-spectrotemporally geosampled, 
empirically probabilistically regresseable, YFV-related, time series-dependent, LULC-related, 
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explanatorial,orthogonally  parameterizable, covariate, estimator, coefficient estimated values. 
Similarly, residual-based, explanatorial, probablistic, regression-related, orthogonally 
parameterizable, forecastble estimators (often referred to as two stage estimators) may be applied 
for generating robust, estimator hierarchical significance ( e.g., 95% credibility for rejecting the 
null hypothesis that the geosampled geo-spectrotemporal, geospatial, Ae egypti data are 
positively aggregated (i.e, autoccorelated) along forest canopy and rice agriculture geoclassfied 
LULC polygons) . 

 
Usually, the asymptotic distribution of residual-based, probabilistic, medical 

entomological-related, time series dependent, geo-predictive, explanatorial, non-normal, 
explicatively residualizable, eco-epidemiological, diagnostic georeferenceable forecasts is 
derived on a case-by case basis employing a particular model specification and/or some stringent 
assumptions about the statistic and/or the first-stage parameter estimators employed in the 
regression. The key assumption for deriving the limiting distribution of a latent explanatorial 
erroneous regression-related, geo-spectrotemporally  geosampled, empirically, qualitatively 
quantitated, LULC-related, explanatorial, parameterizable, hierarchical, covariate estimator 
radiance, sub-meter resolution, emissity transmittance, wavelength endmember may be  based on 
the unquantitated geospectrally orthogonally decomposed data smoothness conditions (e.g., 
differentiability). In such circumstances, optimally determining whether the limiting distribution 
of a regressively qualitatively quantitated, time series-related, YFV-related, optimally rendered 
linearly/geospatially regressed,  explanatory probabilty statistic  may be affected by the 
geosampled, diagnostic, time series, probabilistic clinical,  field and/or remote specified, 
regressor or not, may be based on whether or not  the empiricalized, YFV-related, 
operationizable, dependent, endemic, transmission-oriented, eco-epidemiological, forecasting, 
uncertainty-related, risk model dataset has a non-zero derivative with respect to the estimator 
(see for instance, Pierce, 1982, and Randles, 1982).  Conversely an experimenter may rely on an 
invariance condition in a regression-based model framework for trivially satisfying any 
uncorrelated unquantitated, residually forecasted derivatives. Especially in cases where 
smoothness conditions do not hold or are non-trivial to establish (as, for instance, is the case for 
many rank-based YFV-derived, linear models), an overhead approach offers a useful and 
unifying alternative. Our alternative and novel approach for deriving the asymptotic distribution 
of the residual-based, time series forecasted, explanatorial, geopredictive statistics, or, more 
generally, the limiting distribution of statistics that involve estimated nuisance parameters was 
based on  probabilistically regressively quantitative, iteratively interpolative, geo-spatiotemporal 
autocorrelation, uncertainty-related, YFV-related, diagnostic, clinical, field or remote 
geosampled  coefficient estimates.  

Here, we limit ourselves to considering strictly increasing, continuous singular, 
seasonally geo-spectrotemporally geosampled, explanatorial diagnostic, clinical, field or remote, 
empirically regressed, YFV-related, ecogeographic, ecohydrologic, elucidative, time series, 
explicative regressor functions. There exists quite a few of these model types described in the 
literature for other disciplines. The best known are: Minkowski’s fragefunktion  and Riesz and 
Sz.-Nágy’s function. Minkowski’s function was proved to be singular in 1932 by Denjoy, who 
had previously in 1915 established the existence of nonconstant singular functions with a 
complicated construction. Riesz and Sz.-Nágy presented their function in the–now classic–
textbook Functional Analysis of 1952  [6, pp. 48–49]. This function, also known as de Rahm’s 
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function or Lebesgue’s function, had already been previously described and studied by other 
authors: (e.g., Billingsley  [11, pp. 35–37] abd  Hewitt and Stromberg  [13, pp. 278–282]. 

Interestingly, in previous, explanatorial time series dependent,  entomological-related, 
endemic, transmission-oriented, eco-epidemiological, vulnerability analyses, ordinary Least 
Square(OLS) and autocorrelation coefficients were optimally employed for parametrically 
estimating unknown  time series dependent, geo-spectrotemporal, geosampeled, geo-spatialized, 
covariate, estimator coefficients  in autoregression eco-epidemiological,  probabilistic models 
constructed from  explanatorial, empirical datasets of metaheursitically elucidative, 
georeferenceable, probabilistic, clinical, field and remote specified, uncoalesced, iteratively 
interpolative, reflectance coarse and low resolution, fractionalized,  endmember, emissivity 
transmittance, wavelength, frequency estimators. To optimize explicative, distance-based, latent 
autocorrelation, error coefficients amongst clustering georeferenceable, aquatic, larval habitats 
and other  explanatorial, ecohydrologic, predictor variables of An. arabiensis. Jacob et al. (2008) 
applied OLS and  the Gi(d) statistic  in ArcGIS and found a significant cluster in a rice-village 
complex (Z score > 3.70, p < 0.05) with the clustering of habitats highest at a distance of 400m 
from the agro-rice village complex LULC. Commonly, non-binary weights are allowed in Gi(d) 
and G*i(d) statistics, and the correlations between nearby values of the statistics are derived and 
verified by simulation (Getis and Ord, 1992).When the endemic, transmission-oriented, eco-
epidemiological, time series dependent, forecasting,  vulnerability  analysis was conducted in the 
neighboring riceland  agro-ecosystem village complex  two significant clusters were noted (Z 
score > 3.70, p < 0.05)—but only up to a maximum distance of 400m for a northern 
operationizable, georeferenceable LULC cluster and 150 m for a southern LULC cluster. 
 

LISA may delineate geostatistically significant explicative, YFV geo-spectrotemporal, 
geospatialized, georeferenceable geolocations of non-stationary or eco-epidemiological, YFV-
related, seasonal “hotspots” in geo-spatiotemporally-related, satellite mapped, endemic, 
transmission-oriented, ecohydrologic, ecogeographic, risk patterns of seasonal, explanatorial, 
geopredictive variables on specific LULC where global spatial autocorrelation is absent. 
Unfortunately, in the presence of global spatial autocorrelation, the distributional properties of 
LISA statistics are less certain (see Tiefelsdorf and Boots, 1997). In such circumstances, 
significance testing is problematic. Nevertheless, LISA (Ii, and Ci) are proportional to I and C, 
which may be remotely regressively qualitatively quantiated for determining the eco-
epidemiological,  time series dependent, relative contribution of specific, georeferenced, 
empirical,  sylvatic, YFV-related, LULC-oriented, explanatorial, endemic, transmission-oriented, 
geopredictive, variables based on regressively quantized,  global autocorrelation, elucidative 
components, a property not shared by LISA (see Jacob et al., 2005). Consequently, LISA can be 
optimally employed for invasive, seasonal, time series, probabilistically  related, YFV-oriented, 
endemic, eco-epidemiolgical, sub-meter resolution, vulnerability analysis of georeferenceable, 
explanatorial, geoclassifiable LULC-dependent, eco-epidemiological, clinical, field or remote 
geo-spectrotemporal endemic patterns generated from geosampled, clinical,  field and remote-
specified, geopredictive, empirically geospatially regressed variables exhibiting latent 
autocorrelation. Other autocorrelation statistics that may be optimally employed to regressively 
quantitate spatial interdependencies in seasonal, entomological-related, georeferenced datasets of 
explanatorial, empirical, geopredictive, endemic,  transmission-oriented, time series dependent, 
observational, YFV-related, geo-spectrotemporally geosampled, eco-geographic  variables for 
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conducting a risk-based time series dependent,  data analyses include: Geary’s c (global 
differences); the cross product statistic [GAMMA]; Ripley’s K (cumulative pairs over distance); 
the geospatial autoregressive parameters [rho] and [lambda]; Getis and Ord’s [G.sub.i] and 
[G*.sub.i] (local clustering); Anselin’s[l.sub.i] and [C.sub.i]; and Matheron’s 1/[LAMDA] 
(inverse of the semivariogram;i.e., the correlogram). 

 
Thereafter, spatial statistics were used to address the issue of observational, bias amongst 

time series  dependent,  empirical ecobiological datasets of  diagnostic, clinical, field and 
remote-geospecified multitemporal, multivariate,  seasonal, YVR-related, georeferenced, LULC 
co-factors and other endemic, transmission-oriented, orthogonally parameterizable, covariate  
estimator, decomposed, sub-meter resolution, geo-spectrotemporally wavelength, endmember 
coefficient, uncoalesced values at the eco-epidemiological study site. Specifically we employed 
an eigenfunction decomposition algorithm for qualitatively quantitating latent autocorrelation 
error coefficients in a geopredictive, explicative, YFV-related, explanatorial, LULC, risk-related, 
eco-epidemiological, probabilistic, regression-based model framework.  Conventional ANOVA 
may be inappropriate to simultaneously deal with independent variables of both categorical (e.g., 
LULC type) and continuous remotely sensed, explanatorial, canopied geopredictors (e.g., NDVI 
coverage) for accurately  geospatially  targeting, seasonal, YFV-related ,endemic transmission 
zones (Jacob et al. 2007, Jacob et al. 2006, Jacob et al 2005b) . 
 

Interaction terms were also constructed with the georeferenced, explanatorial, empirical, 
time series dependent, YFV-related, geo-classified, endemic, LULC, transmission-oriented, geo-
spectrotemporal geospatial, data feature attribute, sub-meter resolution, wavelength reflectance, 
emissity, transmittance variables and orthogonalized, spatial filter,synthetic eigenvectors for  
quantitating varying regression coefficients for detecting residual autocorrelation coefficients in 
the ArcGIS-related, geopredictive, eco-epidemiological, ecohydrologic, ecogeographic, risk 
model.  In the context of geospatial regression analysis, several methods can be employed to 
control for the statistical effects of dependencies among remotely geo-spectrotemporally 
geosampled, medical entomological-related, empirical  datasets of  georeferencable observations 
employing a parametric (e.g., maximum likelihood or Bayesian) framework. However, more 
recent spatial filtering approaches focus on non-parametrically removing geospatial 
autocorrelation for accurate, parameterizable covariate,  estimator hierarchical, statistical 
significance,  biosignature-related estimation of orthogonally decomposed, geopredictive, 
entomological-related, endemic, transmission-oriented, endmember, covariate, risk-related,  time 
series dependent, probabilistic, parameterizable, covariate estimator datasets (Jacob et al. 2013b, 
Jacob et al. 2012b, Griffith 2005). 

  
One advantage of the non-parametric eigenvector filtering procedures for aiding in 

ecogeographically forecasting  robustifiable, explanatorial, time series dependent, endemic, 
transmission-oriented, YFV case distribution data using LULC-related, sub-meter resolution, 
partially canopied, reflectance, emissity transmittance, wavelength, covariate, parameter 
estimator coefficients and other seasonal-geosampled data is that they do not require restrictive 
and unjustified distributional assumptions such as in non-regressive, parametric, estimation 
procedures. These procedures normally require explicitly geo-specifying the distributional 
characteristics of the underlying, endemic, transmission-oriented, optimally forecasting, eco-
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epidemiological, risk model (e.g., time series-related, explanatorial, meteorological-based, 
geoclassified, YFR-related, LULC, geopredictive, uncertainty-oriented, residual map) in the 
spatial probablistic domain. Commonly, the non-parametric, spatial filtering, eco-
epidemiological approach uses a specific subset of eigenvectors from a transformed spatial link 
matrix to capture dependencies among the disturbances of a spatial regression model; however, 
we assumed that the optimal subset for filtering a seasonal, endemic, transmission-oriented, 
explanatorial, YFV-related, time series dependent, explicatively geopredictive, eco-
epidemiological, vulnerability model may be an objective function that minimizes spatial 
autocorrelation rather than maximizes model fit.  

As such, we employed the eigenvector filtering approach promoted by Griffith (2003) 
and Getis and Griffith (2002) by focusing on specification of a mean response to regressively 
force geospatially dependent, time series-related, probabilistic, geopredictive, endemic, 
transmission-oriented, endmember, YFV-related, decomposed, biosignature sub-meter 
resolution, wavelenght, endmember, covariate coefficient values of an auto-model to zero. Our 
assumption was that a geo-spatiotemporal, eco-epidemiological,  auto-model generated from  a 
dataset of empirically explanatorily  regressed, sub-meter, operationized, optimizable, clinical, 
field and remote-geosampled time series-related, multivariate, endemic, transmission-oriented, 
YFV-related,  geopredictive, seasonal covariate, parameter estimator, coefficient values and their   
probability density mass/functions could contain a linear combination of the dependent variables 
value at a nearby LULC geolocation (e.g., agro-village complex). In probability theory, a 
probability density function (PDF), or density of a continuous random variable, is a function that 
describes the relative likelihood for this random variable to take on a given value(Cressie 1993). 
The probability of a seasonal, sylvatic,  YFV-related, orthogonally decomposed, LULC, 
endmember wavelength, random variable falling within a particular range of covariate, 
parameterizable estimator, coefficient  values was  given by the integral of the variable’s density 
over  a range—that is, it was given by the area under the density function but above the 
horizontal axis and between the lowest and greatest values of the  LULC geopredictive, range in 
ArcGIS. 

In probability theory and statistics, a probability mass function (pmf) is a function that 
gives the probability that a discrete random variable is exactly equal to some value (see Hosmer 
and Lemeshew 2000). The pmf is often the primary means of defining a discrete probability 
distribution, and as such functions exist for either scalar or multivariate, multitemporal, seasonal, 
explanatorial, geopredictive, vector, arthropod-related, endemic, transmission-oriented, 
probabilistically regressable, time series, ecohydrologic, ecogeographic random variables whose 
domain is discrete ( see Jacob et al. 2005b). In medical entomological, geopredictive, 
explanatorial, eco-epidemiological, endmember, decomposed, biosignature-oriented, 
wavelenght, risk models, a pmf is a function that gives the probability that a discrete random 
variable is exactly equal to some value. Probability density function is most commonly 
associated with absolutely continuous univariate distributions (Cressie 1993).  

A random entomological time series variable X has density fX, where fX is a non-negative 

Lebesgue-integrable function, if:  (Hosmer and Lemeshew 2002). Hence, 
if FX is the cumulative distribution function of  a regressed georeferenced, explanatorial, time 
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series dependent, sylvatic, YFV-related, geospatial, data feature attribute, reflectance, emissity, 

transmittance variables[i.e.,X],then: and (if fX is continuous at x) 

Intuitively, in a time series dependent, sub-meter resolution, wavelength, 
orthogonally  decomposed, emissivity transmittance, YFV-related eco-epidemiological 
forecasting, risk model, fX(x) dx  would be the probability of X falling within the infinitesimal 
interval [x, x + dx]. 

Importantly, when there is a natural order among the hypotheses x in a geo-
spatiotemporally, geosampled, entomological-related, forecasting, eco-epidemiological, remotely 
geosampled, ecohydrologic, ecogeographic, risk model, it may be convenient to assign 
numerical, endemic, transmission-oriented, georeferenced, explanatorial, time series dependent, 
endemic, YFV-related, transmission-oriented, geospatial, data feature attribute, reflectance, 
emissity, transmittance sub-meter resolution, wavelength, covariate coefficient values to n-tuples 
in case of a discrete, multivariate,multitemporal, random variable for geo-spatiotemporally 
quantifying other explanatorial, clinical, field or remote geosampled values not in the image of 
X.For instance, Jacob et al. (2013) built a robust, regression model where  fX  was defined for  an 
empirical-geosampled dataset of explanatorial, S. damnosum s.l., riverine, larval habitat, 
hyperendemic, transmission-oriented, ecohydrologic, ecogeographic probablistically time series,  
regressed data values where fX(x) was 0 for all x X(S). Since the QuickBird decomposed image 
of X (i.e., georefernced, eco- epidemiological, capture point at the riverine study site) was 
countable, the pmf fX(x) was zero for all but a few geo-spectrotemporally geosampled, prolific, 
shade canopied, georeferenced, riverine larval habitat values of x. The discontinuity of the larval 
habitat pmfs was then calculated and the value was then determined to be related to the fact that 
the cumulative distribution function (CDF) of a discrete random variable (e.g., larval habitat 
distance measurement from the  georeferenced capture point) was also discontinuous in the 
empirical, geosampled, georeferenced,  covariate, parameter estimator  dataset. In probability 
theory and statistics, the CDF, or just distribution function describes the probability that a real-
valued random variable X with a given probability distribution will be found at a value less than 
or equal to x (see Hosmer and Lemeshew 2002). Explanatorial, YFV-related, time series 
dependent, geospectrotemporal regressors were differentiable in our ArcGIS-related, 
geopredictive, endemic, transmission-oriented, risk model where the derivative was zero, just as 
the PMF   was zero at all the geosampled, explanatorial, YFV-related, seasonal, LULC points. 

         Unfortunately, the standard methods for time series regression analyses of clustered, 
seasonal, vector, entomological-related, georeferencable, operationizable, multivariate, 
multitemporal, LULC-related, georeferencable, data models relating observational bioecological-
geosampled, ecogeographic, explanatorial, clinical, remote and field, covariate, parameter 
estimator, orthogonalized coefficients to prolific, endemic, transmission risk zones do not 
include qualitative quantitation of residualizable, geospatial, intra-cluster, probability-oriented, 
error correlation effects. Generally, this correlation comes from two sources: (1) the design of the 
random effects and their assumed covariance from the multiple levels within the regression 
model; and, (2) the correlation structure of the probablistic residuals. Unfortunately, 
inconspicuous errors in georefernced, residual, intra-cluster, probabilistic, regressed correlation 
estimates can overstate precision in explanatorily, forecasted, seasonal-geosampled, 
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entomological-related, larval, habitat, endemic, transmission-oriented, data feature attributes 
regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc.). For instance, in 
Jacob et al. (2012b), the geolocations of multiple, multivariate, multitemproal,prolific, shade 
canopied,  riverine-based, S. damnosum s.l., larval, ecosystem habitats geosampled from 2 pre-
established eco-epidemiological sites in Togo were identified and recorded from July 2009 to 
June 2010. Initially, the data was aggregated into PROC GEN MOD. An agglomerative, 
hierarchical, residual, explanatorial, cluster-based, endemic, transmission-oriented, risk-based, 
eco-epidemiological, hierarchical analysis was then performed in ArcGIS. The geosampled, 
clustered, time series-related, geopredictive, endemic, transmission-oriented, empirically 
regressed,probabilistic,  data, feature attributes was then analyzed for statistical correlations 
using Monthly Biting Rates (MBR) which is a rate to calculate the bites an individual could 
potentially receive by Onchocerca-infected simuliids. MBR = number of black flies caught 
multiplicated by the number of days in month divided through the number of catching days per 
month while the Annual Biting Rate (ABR) is the sum of the 12 MBRs (see Crooskey 1960).  

Euclidean distance, parametric,geo-spectrotemporal measurements and geomorphological 
terrain-related statistics were then generated in ArcGIS. A digital overlay was performed also in 
ArcGIS employing the georeferenced ground coordinates of high and low Similium density 
clusters stratified by ABR. This data was then overlain onto multi-temporal, multivariate, sub-
meter, pixel resolution satellite data (i.e., QuickBird 0.61m visible and NIR wavebands). 
Orthogonalized, spatial filter, synthetic eigenvectors were then generated in ArcGIS. Univariate 
and non-linear regression-based models (i.e., Logistic, Poisson and negative binomial) were 
constructed in PROC REG to determine probability distributions and to identify statistically 
significant georeferencable linear, covariate, parameterizable estimator coefficients values from 
the geosampled emprically regressed decomposed endmember, ecohydrologic, ecogeographic 
wavelenght emissivity transmittance datasets. An LULC was performed using the sub-meter 
resolution data.  

Thereafter, Durbin-Watson test statistics were employed to test the null hypothesis that 
the geo-spectrotemporal, regression-based, endemic, transmission-oriented, geospatialized, 
explanatorial endmember, decomposed, biosignature-oriented, sub-meter resolution, wavelength 
residuals were not autocorrelated against the alternative that the residuals followed an 
autoregressive process in AUTOREG. The endemic, transmission-oriented, geopredictive, 
residually forecasted, explanatorial, clinical, field and remote-specified derivatives revealed both 
time series-dependent geospatially structured and unstructured error effects in the high and low 
ABR-stratified, georeferenced, geospatial clusters. The analyses also revealed that the parameter 
estimators, Levels of turbidity and Presence of Precambrian rocks were statistically significant 
for the seasonal high-ABR-stratified clusters, while the Euclideanized estimators Distance 
between habitats and Floating vegetation were important for the low-ABR-stratified cluster.   

Importantly, Jacob et al. (2012, Jacob et al. 2010, Jacob et al. 2009) proved that varying 
and constant, decomposed, endmember wavelenght, time series dependent,  endemic, 
transmission-oriented, regression models that have  ArcGIS-generated geospatialized, 
explanatorial regressors derived from QuickBird satellite imagery can be parsimoniously derived 
employing  a robust, intra-cluster, eco-epidemiological, residual, diagnostic test, and an 
eigendecomposition spatial filter algorithm in SAS (i.e. (AUTOREG) for accurate estimation of 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

265 
Copyright © acascipub.com, all rights reserved.  

latent autocorrelation uncertainty-oriented affects and other predictive, non-normal probabilities 
(i.e., unquantiated, heteroskedastic residuals in an empirical dataset of georeferenced, vector, 
arthropod-related, geo-spectral, endmember, decomposed, biosignature,  parameter estimators). 
The asymptotic distribution of the resulting residually adjusted, intra-cluster geopredictive, 
erroroneous, autocorrelation coefficients may thus be established on seasonal, YFV-related, 
ArcGIS, eco-epidemiological,probablistic, ecohydrologic, ecogeographic regression-related, 
vulnearbility, risk maps using parasitological measurement indicators while estimates of the 
normalized asymptotic variance can lead to the construction of approximate confidence intervals 
for when geo-spatiotemporally remotely targeting productive endemic transmission zones based 
on specific explanatorial,  LULCs and field-geosampled, time series count data. 

We employed the misspecification interpretation of geospatial autocorrelation in 
AUTOREG, which assumed that the residual, geopredictive, explanatorial, error correlation in a 
dataset of seasonal-geosampled, empirically, orthogonally regressable, QuickBird-derived, 
explanatorial, sylvatic, YFV-related, LULC, time series dependent, covariate, wavelength, 
emissivity transmittance,frequency, ricland, African, forest-canopied, discontinuous,   Ae aegypti 
regressors  and other remotely sensed, endemic, transmission-oriented, endmember, 
decomposed, fractionalized, biosignature-related, parameterizable estimators were induced by 
missing exogenous variables. Our assumption was that these data may have been geospatially 
correlated. Autocorrelation is characterized by a correlation in a signal among nearby locations 
in geospace (Cressie 1993). The aim of our spatial filtering analyses was then to control for 
latent autocorrelation coefficients in  the empirical dataset of geo-spatiotemporal, geosampled, 
time series-dependent, georeferenced, explanatorial, clinical, field and remote specified, YFV-
related, geopredictive, endemic, transmission-oriented, ecogeographic, operationalizable,  
ecohydrologic variables with a set of proxy variables, rather than to identify a global 
autocorrelation parameter for regressively quantizing a geospatially dependent process. Spatial 
autocorrelation is more complex than one-dimensional autocorrelation because spatial 
correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-directional (Griffith 
2003). We then employed Global statistics for summarizing the  standard error and other 
uncertainty parameters estimates from the regressed dataset of YFV-related, clinical, field and 
remote specified, explanatorial georeferenced, data feature attributes for geospatially assessing 
the  autoregressive error at a single geosampled LULC site at the Gulu  eco-epidemiological, 
study site. 

 
Importantly, among our assumptions was that uncertainty-oriented latent, autocorrelation 

coefficients and other  non-normalized, probability, error propagation may be qualitatively 
quantitated in the latent, probabilistic residualized,orthogonalized, derivative of  eigenfunction 
decomposition algorithms.We assumed employing spatial filter orthogonal eigenvectors in an 
empirical dataset of time series-related, regressable, explanatorial, clinical,  field and remote-
sampled, endemic, transmission-oriented, geo-spatialized reflectance, wavelength, emissivity 
transmittance, covariate, parameterizable estimator, decomposed coefficient values  would 
generate robust residual autovariance terms and mean squared geopredictive error estimates for 
accurately forecasting YFV-related, case distributions at the Gulu eco-epidemiological, study site 
parsimoniously.  Conversely we assumed that violations of normality would compromise 
the estimation of coefficients and the calculation of confidence intervals in an explanatorial, 
geopredictive, time series dependent, regression-based, endemic, transmission-oriented, eco-
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epidemiological, YFV-related, emissivity fractionalized, endmember, orthogonally  decomposed, 
biosignature-oriented, ecohydrologic, ecogeographic, sub-meter, wavelength,  probablistically 
regressed, eco-epidemiological, risk model. Sometimes, for instance, the error distribution for 
instance may be "skewed" by the presence of a few large outliers in the empirical, georeferenced, 
estimator dataset (see Hosmer and Lemeshew 2002).  Since seasonal empirically-oriented, 
vector, entomological-related,  time series dependent, explanatorial, clinical, field and remote 
regressor, parameter estimation is based on the minimization of squared error (see Jacob et. al., 
2005b), we assumed, a few extreme, seasonal, YFV-related,  probablistically explanatorial, 
LULC observations may exert a disproportionate influence on the time series, dependent, eco-
epidemiological, regressed, uncertainty-related, coefficient vlues. Calculation of confidence 
intervals and various significance tests for coefficients are all based on the assumptions of 
normally distributed errors (Fortheringham 2000). If the error distribution is significantly non-
normal, confidence intervals in a seasonal, YFV-related, endemic, transmission-oriented, 
explanatorial, clinical, field and remote geospecified, eco-epidemiological, operationizable, 
geopredictive, forecasting, risk model may be too wide or too narrow. The optimal test for non-
normally distributed time series-dependent, entomological-related, 
stochastically/deterministically, explanatorial iteratively interpolatable endmember, decomposed, 
biosignature,time series errors is a non-normal probability plot of the residuals in ArcGIS (see 
Jacob et al. 2013). We assumed that this error quantiziation would be optimally realized as a plot 
of the fractiles of the error distribution versus the fractiles of a seasonal, normalized distribution 
in an ArcGIS cyberenvironment  for optimally rendering the same mean and variance for the 
regressed,  sylvatic, YFV-related predictors.  If the seasonal, geosampled, YFV-related, 
explanatorial, clinical, field and/or remote geospectrotemporal, ecogeographical, specified,  
endemic, transmission oriented, risk-dependent, eco-epidemiological, LULC decomposed, 
emissivity endmember, sub-meter resolution, decomposed, wavelength, transmittance,  
distribution pattern  is normal in a regressed, empirical geosampled dataset of endemic, 
transmission-oriented, YFV-related, capture points, for instance,  the plot would fall close to the 
diagonal line. A bow-shaped pattern of deviations from the diagonal would then indicate that the 
residuals have excessive skewness (i.e., they are not symmetrically distributed, with too many 
large errors in the same direction). An S-shaped pattern of deviations may indicate that the 
residuals have excessive kurtosis—(i.e., there are either two many or two few large YFV-related, 
regression time series errors in both directions).  

In probability theory and statistics, kurtosis is any measure of the "peakedness" of the 
probability distribution of a real-valued random variable(see Hosmer and Lemeshew 2002). In a 
similar way to the concept of skewness, kurtosis is a descriptor of the shape of a probability 
distribution and, just as for skewness, there are different ways of remotely quantifying 
uncertainty for attaining a  robust, theoretical geo-spatiotemporal, time series dependent, eco-
epidemiological, normalized,  explanatorial, clinical, field or remote  geosampled, 
ecohydrologic, ecogeographic, YFV-related, probablistic, prevalance distribution, for example,  
from a sample of a population. There are various interpretations of kurtosis, and of how 
particular measures should be interpreted; these are primarily peakedness (width of peak), tail 
weight, and lack of shoulders (distribution primarily peak and tails, not in between) 
(Fotheringham 2002). 
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One common measure of kurtosis in entomologically dependent, empirically geo-
spatiotemporally geosampled, datasets of georeferenced explanatorial, clincial, field or remote 
predictor variables  is based on a scaled version of the fourth moment of the data or population, 
but  Jacob et al. (2013) has argued that this non-normality  really measures heavy tails, and not 
peakedness.  In these datasets, higher kurtosis means more of the variance is the result of 
infrequent extreme deviations, as opposed to frequent modestly sized deviations. Jacob et al. 
(2012) employed an adjusted version of Pearson's kurtosis, the excess kurtosis, to provide a 
comparison of the shape of a given distribution to that of the normal distribution in a malaria–
related, An. arabienis s.s., geopredictive, eco-epidemiological, linearized, explanatorial, 
forecasting, endmember, decomposed, biosignature-oriented, ecohydrologic, ecogeographic, risk 

model. The fourth standardized moment was defined as  where μ4was  the fourth 
moment about the mean and σ was  the standard deviation. The fourth standardized moment was 

bounded below by the squared skewness plus 1: where μ3 was the third moment 
about the mean in the malarial risk model. Kurtosis in the model was then defined as the fourth 
cumulant divided by the square of the second cumulant which in Jacob et al. (2012) was  equal to 
the fourth moment around the mean divided by the square of the variance of the probability 

distribution minus 3(i.e.,  ). The "minus 3" at the end of this formula made the 
kurtosis of the probablistically  regressed,  normalized,  immature An. arabiensis s.s., habitat 
distribution equal to zero The fourth standardized moment must be at least 1, so the excess 
kurtosis must be −2 or more(Hosmer and Lemeshew 2002). This lower bound in the  eco-
epidemiological, time series dependent, geopredictive, explanatorial, immature, risk model was 
then realized by the Bernoulli distribution with p = ½. In probability theory and statistics, the 
Bernoulli distribution, is the probability distribution of a random variable which takes value 1 
with success probability and value 0 with failure probability  (Hosmer and 
Lemeshew 2002). 

 Interestingly violations of normality in an empirically geo-spectrotemporally 
geosampled probabilistically regressed dataset of  seasonal vector entomological–related, 
endemic, transmission-oriented,  explanatorial, clinical, field and remote specified, 
georeferencable, optimizable dataset of time series, reflectance emissivity transmittance, 
endmember, decomposed, georeferenceable, biosignature-oriented, covariate paramterizable 
estimators coefficients often arises either because (a) the distributions of the dependent and/or 
independent variables are themselves significantly non-normal, and/or (b) the linearity 
assumption is violated(see Jacob et al. 2005). In such cases, a non-linear transformation of the 
explanatorial,  endemic, transmission-oriented, geopredictive, explanatorial, ecohydrologic, 
ecogeographic clinical,  field  or remote specified variables might cure both problems. In some 
cases, the problem with the residual distribution is mainly due to one or two very large errors. 
Thus, time-series dependent,explanatorial, YFV-related, probabilistic, LULC, endemic 
,transmission-oriented,geopredictive, empirically regressable reflectance, emissivity 
transmittance, covariate, parameter estimator coefficients should be scrutinized closely to 
determine if they are they genuine (i.e., not the result of data entry errors) and, if the rendered 
forecasts  have explanability  of the response (i.e., dependent) variable (e.g.,  similar events 
likely to occur again in the future for qualitatively remotely quantitating  how influential  the 
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regressed predictors  are in the model-fitting results.If the geosampled, time series dependent,  
explanatorial, clinical, field and remote, sylvatic,  YFV-related, geospecified, endemic, 
transmission oriented, risk-related,  geopredictive, eco-epidemiologically regressed, endmember, 
decomposed, fractionalized, biosignature variables are merely errors or, if they can be explained 
as unique events not likely to be repeated, then an ecologist, medical entomologist,  or other 
experimenter may have cause to remove them from an ArcGIS cyberenvironment. In some cases, 
however, it may be that the extreme values in the geosampled, time series-dependent, YFV-
related, explanatorial  regressors that  provide  useful information for non-violation of 
assumptions ( e.g., homoskedascity)  about the  linearized explanatorial,  clinical,  field and 
remote-specified,  geosampled, endemic, transmission-oriented, diagnostic  values  based  on of 
some of the residual ecohydrologic, ecogeographic LULC-related, covariate, parameter estimator 
coefficient values  and/or provide the a realistic guide to the magnitudes of forecast errors.  

Importantly, one of our assumptions was that a latently autocorrelated time series 
dependent, explanatorial, clinical, field or remote geosampled endemic, transmission-oriented 
eco-epidemiological, LULC, time series, risk model geopredictor could adjust erroneous YFV 
estimators geospatially. By so doing, we also assumed that we would be able to construct a 
robust, forecasting, case distribution model. However, we realized that our calculations may be 
dependent on assumptions of normality and homogeneity in the YFV-related, eco-
epidemiologically regressable, explanatorial, clinical, field and remote geosampled geo-
spatiotemporally-dependent, non-optimized endmember, orthogonally decomposed, biosignature 
derivatives. If however the assumtions of normality are not violated (e.g., sufficient residual 
quantization of multicolinearity and other non-normal probabilities) in our seasonal 
geopredictive, YFV-related, ArcGIS-derived, LULC-based, eco-epidemiological, forecasting, 
risk model, we assumed then that the inferences drawn could be sound (e.g., stepwise regressors 
significance levels would not be invalidated . 

Violations of homoscedasticity make it difficult to gauge the true standard deviation of 
regression forecast errors, usually resulting in confidence intervals that are too wide or too 
narrow in regressed reflectance emissivity transmittance  variables (Jacob et al. 2009d, Griffith 
2005). In particular, if the variance of the errors is increasing over time, confidence intervals 
derived from a geospatially regressively quantized, empirical geosampled datasets of  
operationalizable,  YFV-related,clinical,  field and remote-specified, endemic, transmission-
oriented, endmember, decomposed, biosignature, reflectance, emissivity transmittance, covariate 
parameter estimator coefficients  for out-of-sample predictions would  tend to be unrealistically 
narrow. Heteroscedasticity  in geo-spectrotemporally dependent, ecohydrologic, YFV-related, 
ecogeographically forecasted data may also have the effect of giving too much weight to small 
subsets of geosampled, multivariate, multitemporal, clinical,  field and remote, residually, 
forecasted derivatives namely the subset where the error variance is largest when estimating  the 
coefficients of statistical importance. Therefore, examining  non-normal diagnostic eco-
epidemiological plots of residuals versus time and residuals versus predicted value in an ArcGIS, 
reflectance, emissivity transmittance, seasonal, forecasting, geo-spectrotemporal LULC-related, 
eco-epidemioloigcal, probablistic risk model may, for instance, reveal evidence of derivatives 
that are getting larger (i.e., more spread-out) either as a function of time or as a function of the 
ecogeographically  regressed value (e.g., as LULC tends to urbanize the boundaries between 
agro-village complex LULC and canopied LULC forest  tends to increase). 
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Plot residuals versus some of regressed dependent, explanatorial, endemically independent, sub-
mter wavelength, transmittance , frequency orthogonally decom poseable LULC variables in 
ArcGIS cyberenvironments can elucidate, transmission-oriented pathways (Jacob et al. 2014). 

In time series-related, entomological-related, ecohydrologic, ecogeographic, endemic, 
transmission-oriented, forecasting, reflectance, emissivity transmittance, biosignature-oriented,  
non-normal,  eco-epidemiological,  risk models, heteroscedasticity often arises due to the effects 
of inflation and/or real compound growth, commonly magnified by a multiplicative seasonal 
pattern(See Griffith 2005, Jacob et al. 2009, Jacob et al. (2012). Some combination of logging 
and/or deflating in an ArcGIS cyberenvironment  may stabilize the variance in this case. 
Seasonal regressed YFV-related, data may show periods of increased or decreased volatility over 
time-this is normal and is often modeled with so-called ARCH (auto-regressive conditional 
heteroscedasticity) models in which the error variance is fitted by an autoregressive model. 
Heteroscedasticity may also be a byproduct of a significant violation of the linearity and/or 
independence assumptions in a geo-spatiotemporal, regression-based, ecohydrologic, 
ecogeographic, YFV-related, endemic, transmission-oriented, explanatorial, clinical,  field  or 
remote, specified, eco-epidemiological,  forecasting, reflectance, emissivity, transmittance-
oriented, probabilistic,  risk model  in which case it may be fixed as a byproduct of fixing those 
problems. 

Interestingly, typical seasonal, probabilsitically forecastable, ArcGIS-related, 
explanatorial, geopredictive, entomological-related, eco-epidemiological, reflectance, sub-meter 
resolution, emissivity transmittance, wavelenght, biosignature-related, risk modeling approaches 
have employed logistic/Poisson regression and/or discriminant analysis techniques to investigate 
geospatial associations between multivariate, mutlitemporal, environmental, data feature 
attributes. In so doing, residually forecasted, regression–related, ecohydrologic, ecogeographic, 
endmember, decomposed, ecogeographic, proxy biosignature, predctor variables could include 
seasonal, LULC, explanatory, endmember, covariate, parameter estimator, coefficient values and 
NDVI patterns for determining vector presence or absence for seasonal risk mapping vectors and 
vector-borne diseases (see Jacob et al. 2005b, Griffith 2005). For instance, in Jacob et al. (2005b) 
Poisson and logistic regression models were constructed in SAS (i.e., PROC REG)  employing 
the counts of immature Anopheles gambiae s.l.  mosquitoes for the aquatic larval habitat 
empirical datasets of Malindi, Kisumu,Kenya and for a combined data set of both cities. 

 
 In all models, explanatorial, time series dependent, predictor variables were added in a 

stepwise manner, beginning with the one that explained the most variation. For the Poisson 
regression this included shade for both Malindi and the combined dataset for the Kisumu and 
Malindi, and domestic animals for Kisumu. The final model explained 52% of the variation in 
Malindi, 36% in Kisumu, and 41% in the combined data sets of  the eco-epidemiological Malindi 
and Kisumu study sites. In the logistic regression models, habitat size for Malindi, domestic 
animals for Kisumu, and shade for the combined data set of Kisumu and Malindi were 
significant. The final model explained 34% of the variation in Malindi, 5% in Kisumu and 21% 
for the combined data sets of Kisumu and Malindi. The R2 of the final model for Kisumu was 
0.35 (P < 0.001); for the validation set, it was 0.14 (P = 0.052). The R2 of the final model for 
Malindi was 0.52 (P < 0.001); for the validation set, it was 0.44 (P < 0.001). The probability 
Poisson regression models with the actual counts estimated the frequencies and their variation 
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for all multivariable models in Kisumu and Malindi, with greater explanatory power than the 
parameter estimates from the logistic regression. Thus, Poisson  methods was capable of 
ecogeographically forecasting a posteriori probability of the presence of the dependent variable 
(e.g., either the vector or the disease) from a set of independent variables (e.g., seasonal climate 
and LULC data) which was then exported into ArcGIS to  generate  accurate geopredictive, 
explanatorial  An. gambiae s.l., larval, habitat, vulnerability, ecohydrologic, ,time series,  risk 
maps  from sample datasets (i.e., training datasets) based on the observed similarity of 
environmental conditions to LULC sites.  

 
Thus, by ecogeographically portraying a relationship in linear and non-linear regression 

space between two geo-spatiotemporally-geosampled explantorial, YFV-related  clinical, field or 
remote, time series specified, georeferenced  variables, a correlation coefficient may be rendered 
that  quantitates numerically non-normalized regressors. These deviations may be 
cartographically delineated in an ArcGIS geodatabase employing a residually, diagnostic, error, 
plot estimator (e.g., an orthogonal eigenfunction decomposition algorithm). In so doing, 
mechanical data input error (e.g., spatially pseudoreplicated variables), non-zero, autocovariate, 
probabilistic, heteroskedastic parameters may be determined in a time series dependent, 
empirically regressed, uncertainty-oriented, eco-epidemiological  dataset of  YFV –related, 
explanatorial, diagnostic  clinical, field and remote, geo-spectrotemporally geosampled, 
ecohydrologic, ecogeographic, covariate, parameter estimator  coefficients. Thus, in an 
empirical, operational dataset of endemic, transmission-oriented, ARIMA time series dependent, 
geopredictive, YFV-related, ArcGIS constructed, heuristically optimized, risk model, time series 
dependnent parameter estimators, for instance, the residual explanatorial forecasts could be 
robustly  tabulated employing an average of numerical specifications between the geo-
spatiotemporally geosampled parameterizable  estimators for parsimoniously defining all 
seasonal LULC change-oriented, probabilistic geolocations. But since these time-series, 
explanatorial, geopredictive variables  would be unobservable, the assumption invoked would be 
exchangeability whereby, the set of LULC time series estimators could be permuted without 
affecting results in any seasonal simulated, dataset of georefernced, ArcGIS-related, YFV-
related, eco-epidemiological, forecasting, risk-related, model, residualized, probablistic 
derivatives. We assumed that the order in which a time series mechanism generates the covariate 
parameter estimater coefficient values measurement indicator values across an interpolated geo-
spatiotemporal, autoregressive, endemic, sylvatic, YFV-related, regression-based, eco-
epidemiological, vulnearbiltiy risk map would thus be irrelevant. As such, areas with statistically 
higher YFV-related, endemic, transmission rates, (e.g., positive autocorrelation clusters) based 
on geosampled temporally dependent, ecohydrologic, ecogeographic, parasitological indicators 
(e.g., LULC variables, prevalence rates) in ArcGIS could then be mathematically qualitatively 
quantitated for precisely remotely targeting implementation of an IVM using a geospatial, 
eigenfunction, decomposition   algorithm. In so doing, latent autocorrelation coefficients in an 
empirically regressed, eco-epidemiological dataset of district-level, seasonal-geosampled, 
explanatorial, clinical, field and remote –specified, geopredictive,  YFV-related,  explanatorial, 
time series, Ae.aegyppti, ovispoition,seasonal, hyperproductive,  LULC predictor variables may 
be also sufficiently quantitated  for geospatially adjusting any  ArcGIS, endemic, transmission-
related, optimal, vulnerability  risk mapping data feature data attributes in ecogeographical 
space. 
 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

271 
Copyright © acascipub.com, all rights reserved.  

Importantly, the choice of techniques  in software programming languages  for 
constructing time series-related, explanatorial, geopredictive,  autoregressive, entomological-
related, eco-epidemiological, YFV risk models  should be able to accommodate both categorical 
(e.g., disease presence or absence) as well as continuous data (e.g., monthly rainfall data). C++ is 
one of the most popular programming languages currently and is implemented on a wide variety 
of hardware and operating system platforms which  can accommodate continuous and 
categorical, explanatorial, ecohydrologic, ecogeographic time series, covariate, parameter 
estimator, time series dependent, probabilsitc, sub-meter resolution, wavelenght-oriented, 
orthogonally decomposed, fractionalized, biosignature-related, emissivity, endmember 
coefficients. As an efficient performance driven programming language it is employed in 
systems software, application software, device drivers, embedded software, high-performance 
server and client applications (Stroustrup, 2010). Several groups provide both free and 
proprietary C++ compiler software, including the GNU Project, LLVM, Microsoft and Intel. 
C++ has greatly influenced many other popular programming languages, most notably Java. 
   
       Currently, C++ provides more than 35 operators, covering basic arithmetic, bit 
manipulation, indirection, comparisons, logical operations and others. Almost all operators can 
be overloaded for user-defined types, with a few notable exceptions such as member access as 
well as the conditional operator. The rich set of overloadable operators is central to employing 
user created types in C++ as well and as easily as built in types so that the user employing them 
cannot tell the difference (Stroustrup, 2010). The overloadable operators may be also an essential 
part of many advanced C++ programming techniques, for geopredictive, explanatorial, 
forecast,eco-epidemiological,  risk modeling time series dependent, YFV-related, LULC,and 
meteorologically-oriented,  endemic, transmission-oriented, endmember decomposed, sub-meter 
resolution, wavelenght-oriented, emissivity transmittance-related,  georeferenced, data feature, 
endmember attributes.  

 
Sampling from a geospatialized, time series-related, explanatorial, YFR-related, endemic, 

transmission-oriented,operatiuonizable, diagnostic, explicative, clincial, field or remote 
geosampled, time series dependent, geo-spatiotemporal, regression model employing, eco-
epidemiological-based categorical and continuous, geopredictive, variables   may be efficiently 
conducted in C++. Forexample, , calibrating seasonal YFV-related, ecohydrologic, 
ecogeographic, geoclassfied LULC change-related,geo-spatiotemporal endmember variables 
from forest canopy to agro-village complex against instrumental climate records in C++ 
employing correlation and response functions may generate a robust, time series dependent, 
explanatorial, geopredictive, forecasting,  eco-epidemiological, risk model employing 
bootstrapped confidence intervals to estimate the significance of both correlation and response 
function, sub-meter resolution, orthogonally decomposeable,  wavelength, frequency 
transmittance, covariate coefficients. Input and output file selection, as well as analytical options 
may then be chosen from a user-friendly GUI. In the eco-epidemiological, C++ model the results 
for any time series-related, explanatorial, geopredictive, YFV-related, endemic, transmission-
oriented, elucidatively geo-spectrotemporally geosampled, clinical, field and remote, 
explanatorial, optimally specified, probabilistic, risk-related, forecasting, Ae aegypti model 
estimators may be saved in ASCII format which may then be plotted on screen using color-coded 
symbols. In addition, the C++ program may statistically calibrate climate signals while 
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simultaneously incorporating multivariate,multitemporal, LULC-related, geo-spatiotemporal 
changes and yellow fever prevalence rates for parsimonious forecast, risk modeling of an 
empirical-geosampled dataset of operationizable, seasonal, YFV-related, explanatorial, 
operationizable, clinical,  field and remote specified wavelength, transmittance emissivity, 
covariate parameter estimator coefficients for remotely forecasting case distribution. In so doing, 
a C++ seasonal geopredictive, YFV-related, eco-epidemiological, geopredictive, risk model may 
also allow present eco-dynamical representation of quantifiable, statistical relationships between 
continuous climatological and categorical LULC-related, explanatorial parameter estimator 
wavelength-oriented, risk-related, emissivity, transmittance coefficients for case distribution by 
means of moving intervals for implementing IVM.  

 
Thus, different explanatorial, time series dependent, ArcGIS-related, time series LULC 

types and other remotely-geosampled, QuickBird synthesized meteorological observational 
demographical statistics, prevalence rates and known information on seasonal, YFV-related, 
mosquito  species abundance, and occurrence were integrated in C++ for  forecasting case 
distribution data on varying ArcGIS classified LULCs in Gulu, Uganda. The model took inputs 
from a table file provided the information of yearly population and yellow fever cases from 1990 
to 2012.These information were employed to determine average population growth and number 
of yellow fever case occurrences to 2020. Our assumption was that combining ArcGIS 
information in C++ could robustly display all forms of ecogeographically referenced, QuickBird-
derived, explanatorial, LULC information associated to yellow fever at the Gulu eco-
epidemiological, study site. Since yellow fever reflects different disease ecologies we assumed 
that a unique landscape eco-epidemiological, explanatorial, geopredictive, ArcGIS-related, 
forecasting, time series dependent, risk model   could elucidate endemic, transmission pathways 
in C++. We also assumed that specific seasonal, geopredictive, explanatorial, LULC-related, 
YFV-related, transmission dynamics for the Gulu eco-epidemiological study site may be 
elucidated for parsimoniously implementing IVM. Forexample, sylvatic  YF may occur in 
monkeys that are infected by wild mosquitoes in Gulu, thus, identifying dense, forest canopy, 
LULC areas in ArcGIS geodatabase using NDVI and other remotely sensed geoparameters 
where wild monkeys aggregate as a hyperendemic disease transmission zone.  

 
Therefore, we generated multiple datasets of seasonal, georefernced, YFV-related, 

explanatorial LULC and NDVI time series dependent (i.e., 1990 to 2012), ecohydrologic, 
ecogeographic covariate, parameter estimators, coefficients and then employed 
linearized/nonlinearized regression residuals for constructing a robust, geopredictive, eco-
epidemiological, YFV-model. These model forecasted derivatives along with a series of 
meteorological explanatorial time series dependent variables, population density statistics, 
human, agricultural and census reported data were then entered into C++. We then created one 
hypothetical formula for geopredicting YFV case distribution at the Gulu eco-epidemiological 
study site. We created one covariance for the forecasting model. This formula took into 
consideration all the explanatorial, geo-spatiotemporal, YFV-related, forecastable variables. Our 
assumption was that a single covariance could facilitate the modification of multiple, 
explanatorial, YFV-related, geopredictive eco-epidemiological, empirically regressed, time 
series, geosampled variables without disturbing the model parameter estimation process. Also, 
we assumed that the weightage on the covariance could be employed to define the efficacy of 
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covariance on the overall regression-based, YFV–related, geopredictive formula. Our assumption 
was that C++ methods coupled with multiple,linear and non-linear, regression coefficients along 
with, QuickBird remotely sensed data (e.g., LULC and NDVI geoparameters) and time series 
dependent, explanatorial, seasonal, meteorological variables could robustly forecast, seasonal, 
YVF-related, case distributions at the Gulu  eco-epidemiological study site. As such, our 
objectives  in this research were to; 1) Construct multiple robust stepwise linear and non-linear 
regression models employing seasonal-geosampled, georeferencable, empirically-dependent, 
observational,  Ae aegypti geopredictive variables 2) Create a robust classification scheme to 
determine the trend, nature, rate, geolocation and magnitude of ecohydrologic, ecogeographic, 
geoclassified, LULC change 3) Remotely synthesize NDVI-related time series  dependent, 
explanatorial, covariate parameter estimators  and multiple geomorphological, terrain-
related,DEM-derived predictors; and, 4) Generate a robust C++ model using the probabilistic, 
regression-based  observational time series regressors   and the remote geosampled clinical and 
field-related data along with  geo-spatiotemporal meteorological and demographic estimators  for  
forecasting  yellow fever case distribution  in Gulu, Uganda. 
 
Methods: 
2.1 Study site: Uganda lies between the eastern and western sections of Africa’s Great Rift 
Valley. The country shares borders with Sudan to the north, Kenya to the east, Lake Victoria to 
the southeast, Tanzania and Rwanda to the south and the Democratic Republic of Congo (DRC) 
to the west. Whilst the landscape is generally quite flat, most of the country is over 1,000m 
(3,280ft) in altitude. 

Mountainous regions include the Rwenzori Mountains that run along the border with the 
DRC, the Virunga Mountains on the border with Rwanda and the DRC, and Kigezi in the 
southwest of the country. An extinct volcano, Mount Elgon, straddles the border with Kenya. 

The capital city, Kampala, lies on the shores of Lake Victoria, the largest lake in Africa 
and second-largest freshwater inland body of water in the world. Jinja, located on the lake, is 
considered to be the start point of the River Nile, which traverses much of the country. 

The varied scenery includes tropical forest, a semi-desert area in the northeast, the arid 
plains of the Karamoja, the lush, heavily populated Buganda, the rolling savannah of Acholi, 
Bunyoro, Tororo and Ankole, tea plantations and the fertile cotton area of Teso. 

Gulu District is a district in Northern Uganda. The district is named after its chief municipal, 
administrative and commercial center, the town of Gulu. The District is bordered by Lamwo 
District to the north, Pader District to the east, Oyam District to the south, Nwoya District to the 
southwest and Amuru District to the west. The district headquarters at Gulu are located 
approximately 340 kilometers (210 mi), by road, north of Uganda's capital city, Kampala. The 
coordinates of the district are: 02 45N, 32 00E. 

As of May 2011, Gulu District is one of the seven districts that constitute the Acholi sub-
region, the historical homeland of the Acholi ethnic group. Gulu District now consists of two 
counties: Achwa and Omoro. Kilak County has been converted to Amuru District, and Nwoya 
County is now Nwoya District. In the past, Kilak and Nwoya were counties in Gulu District. The 
economic activity of 90 per cent of the population in the district is subsistence agriculture. The 
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district of Gulu, as constituted in May 2011, had a population of about 298,500. The present  
population of the district is unknown due to extensive urban growth 

Figure 1: Base map of the Gulu study site in northern Uganda 

 

2.2 Remote sensing data: Raster image data from the DigitalGlobe QuickBird satellite service 
were acquired 15 July 2013, within the study site area, covering 64 km2. The QuickBird imagery 
was classified using the Iterative Self-Organizing Data Analysis Technique (ISODATA) 
unsupervised routine in ERDAS Imagine v.8.7™ (ERDAS, Inc., Atlanta, Georgia). Unsupervised 
classifications are commonly used for the identification of sub-meter resolution-derived, 
explanatorial, seasonal, ecohydrologic, ecogeographic, LULC classes associated with prolific 
vector insect habitats based on geo-spatiotemporal-field-geosampled count data (Wood 1991a, 
Wood and Washino 1994). 

2.3 Land cover mapping: Base maps were generated from the QuickBird visible and NIR data 
and differentially corrected Global Positioning Systems (DGPS) calibrated ground coordinates of 
a riceland village complex at the Gulu study site with all agro-forest canopy boundaries 
encompassed. The differentially-based ground coordinates were acquired from a CSI max 
receiver which has a positional accuracy of +/- .178 (http://www.omnistar.com). Using a local 
DGPS broadcaster can compensate for ionospheric and ephemeris effects which can improve 
horizontal accuracy significantly and can bring altitude error down in a geopredictive, vector, 
insect, habitat, endemic, transmission-oriented, forecasting, risk model (Jacob et al. 2007).  

 
Each georeferenced, seasonal, ecohydrologic, ecogeographic, YFV –related, 
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explanatorial, operationizable, data feature attribute was entered into the VCMS™ relational 
database software product (Clarke Mosquito Control Products, Roselle, IL). VCMS commonly 
include connectivity with hand held computers and field data collection devices including DGPS 
receivers, PalmOS and Windows PocketPC handhelds which have been used for malaria, Eastern 
Equine Encephalitis Virus(EEEV), filarsis and WNV mosquito habitat monitoring (see Jacob et 
al. 2009, Jacob et al. 2008).   
 
2.4 Grid-based algorithm: A digitized grid-based algorithm was then constructed in ArcGIS 
employing a mathematical algorithm in order to fit the continuous and bounded sampled surfaces 
at the Gulu study site from an ecological dataset of clinical, field and remote geosampled, 
empirical, georefernced, ecohydrologic, ecogeographic, time series, data feature attributes. 
Multiple data layers were then created using different coded values for various QuickBird 
imaged field attributes which were related to the same grid cell. Programs that manipulate grids 
access the spatial data by setting a rectangular window defined in map coordinates 
(www.esri.com).  
  
Figure 2. Gridded QuickBird  map of the Gulu study site  
 

 

 
Each habitat grid cell /polygon was assigned a unique identifier. Field attribute tables 

were then linked to the polygons in ArcGIS. The georeferenced YFV –related polygons were 
used to define the sampling frame, which extended to include the external boundaries of the 
agro-village /forest canopied, georeferenced, boundary site. This allowed for multiple 
interactions enabling retrieval and transformation of the geosampled forest canopy and agro-
village complex, explanatorial, LULC, data, feature attributes to be spatially separated efficiently 
in ArcGIS regardless of dimensionality of the geolocations within the study site.  
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2.5 Environmental parameters: Multiple, georeferenced, observational, informative predictors 
were also examined extensively using ArcGIS spatial analytical tools. The criteria involved the 
centrographic measures of spatial mean and distance between the time series dependent, 
geosampled, forest-canopy and agro-village boundaries and the georeferenced distance from the 
site to the nearest human habitation village complex at the eco-epidemiological study site. The 
data was also comprised of individual, geo-spatiotemporal-geosampled, empirical observations 
of the georeferenced eco-epidemiological, study site together with a battery of categorical 
explanatorial, field and remote specified attribute measures which were then expanded into 
multiple indicator geopredictive covariate parameter estimator  coefficient estimates.  

A LULC was performed using the QuickBird visible and NIR data in ArcGIS. Multiple 
LULC classes were employed including: agro-rice, forest canopy etc.  The explanatorial LULC 
distances were then measured as Euclidean distances in the projection units of the raster and 
were computed within the digitized grid cell matrix. The Euclidean distance output raster 
contained the measured distances. The extracted Euclidean distance functions provided 
information according to Euclidean or, straight-line, distance between the georeferenced, forest 
canopy, LULC and rice-village complex LULC boundaries to the human habitation rice village 
complex units. All the geometric distances were quantitated in multidimensional space within the 
ArcGIS cyberenvironment server.  

The Euclidean distances were computed as: distance (x,y) = { i (xi - yi)2 }½ in ArcGIS. 
Every cell in the Euclidean allocation output raster was assigned varying and constant, 
geopredictive, LULC values of the source to which it was closest (e.g., forest canopied LULC 
bordering an agro-village complex LULC). The Euclidean distance between ecological dataset of 
the clinical,  field and remote geosampled, empirical, georefernced, YFV-related, data feature, 
attributes points p and q was the length of the line segment connecting them (Description: 
\overline{\mathbf{p}\mathbf{q}}). If p = (p1, p2,..., pn) and q = (q1, q2,..., qn) for any  two 
geosampled, YFV-related, seasonal, endemic, transmission-oriented,  georefernced points in 
Euclidean n-space, then the Cartesian coordinates the distance from p to q, or from q to p was 
given by: Description: \mathrm{d}(\mathbf{p},\mathbf{q}) = 
\mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \cdots + (q_n-
p_n)^2} = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. The position of a point in a Euclidean n-space is a 
Euclidean vector( Griffith 2003). So, p and q were Euclidean vectors, starting from the origin of 
the space in the empirical geosampled, explanatorial, seasonal, YFV-related data and their tips 
indicated two georefernced, LULC, YFR-related points. By so doing, the Euclidean norm, or 
Euclidean length, or magnitude of a vector measured the length of the vector using  Description: 
\|\mathbf{p}\| = \sqrt{p_1^2+p_2^2+\cdots +p_n^2} = \sqrt{\mathbf{p}\cdot\mathbf{p}}where 
the last equation involved the dot product in the LULC model. A vector can be described as a 
directed line segment from the origin of the Euclidean space (vector tail), to a point in that space 
(vector tip)[Cressie 1993). If we consider that its length is actually the distance from its tail to its 
tip, it becomes clear that the Euclidean norm of a vector is just a special case of Euclidean 
distance (i.e., the Euclidean distance between its tail and its tip). The distance between points p 
and q  is a direction (e.g. from p to q), so it  may  be represented by another vector, given by 
Description: \mathbf{q} - \mathbf{p} = (q_1-p_1, q_2-p_2, \cdots, q_n-p_n) we assumed.  
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In a three-dimensional space (n=3),  was an arrow from p to q, which  we regarded as the 
position of q relative to p (i.e., a displacement vector if p and q represent two positions of the 
same point at two successive instants of time) in the explanatorial, clinical,  field and remote 
geosampled, empirical, georefernced, YFV-related, eco-epidemiological, ecohydrologic, 
ecogeographic,  forecasting, risk model.The Euclidean distance between p and q in the YFV-
related risk model was just the Euclidean length of this distance (or displacement) vector: 
Description: Description: \|\mathbf{q} - \mathbf{p}\| = \sqrt{(\mathbf{q}-
\mathbf{p})\cdot(\mathbf{q}-\mathbf{p})}.which is equivalent to equation 1, and also to: 
Description: Description: \|\mathbf{q} - \mathbf{p}\| = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 
- 2\mathbf{p}\cdot\mathbf{q}}.  

 
The Euclidean distances were computed as: distance (x,y) = { i (xi - yi)2 }½ in ArcGIS. 

Every cell in the Euclidean allocation output raster was assigned varying and constant 
geopredictive, explanatorial,  LULC values of the source to which it was closest (e.g., forest, 
canopied, LULC bordering an agro-village complex LULC). The nearest source was determined 
by the Euclidean Distance function in ArcGIS. This function assigned ecogeographical space 
between the geoclassified LULCs. . The Euclidean Allocation function identified the nearest 
human habitation center closest to each grid cell. The Euclidean direction output raster contained 
the azimuth direction from each grid cell centroid to the nearest  center.The distance between the 
geosampled and human habitation areas were categorized into specific georefernced ArcGIS 
Euclidean-distance, based measurement classes (e.g., 1: 0–5 km, 2: 5–10 km, and so on). For 
each ArcGIS mapping region, stratified sampling formulas were applied to estimate spectral, 
error proportions in the ecohydrologic, ecogeographic,  LULC, vulnerability, eco-
epidemiological, forecastimg. risk maps as in Stehman and Czaplewski (2000). 

The estimates of overall and class-specific user's and producer's accuracy were 
calculated. The use of stratified formulas is important for validating field-sampling methods 
(Story and Congalton 1986) and has been used extensively for validating QuickBird-derived 
malaria, (Jacob et al. 2009), WNV  (Jacob et al. 2010), and Eastern Equine Encephalitis Virus 
(EEEV) (Jacob et al. 2011), LULC-oriented risk maps.  The kappa coefficient measures the 
agreement between classification and truth values. A kappa value of 1 represents perfect 
agreement, while a value of 0 represents no agreement. The kappa coefficient is computed as 
follows: 

 

Where : 

 i is the class number 

 N is the total number of classified values compared to truth values 
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 mi,i is the number of values belonging to the truth class i that have also been classified as 
class i (i.e., values found along the diagonal of the confusion matrix) 

 Ci is the total number of predicted values belonging to class i 

 Gi is the total number of truth values belonging to class i 

In the example confusion matrix, the kappa coefficient is 0.99083 

Figure 3. Land use land  over map of the Gulu study site  
 

 

 
 

 
Accuracy results were thereafter computed by weighting the cell proportions by the 

proportion of each QuickBird classified LULC zone. Specifically, the overall accuracy (  ) and 
producer's accuracy (  ) were estimated using post-stratified formulas. We employed the post-
stratified, geopredictive, time series dependent, clinical, field and remote-specified, 
georeferenced, explanatorial, covariate , parameter estimators as the known QuickBird pixel 
totals for each land-cover class (Ni+). The estimators were treated as a stratified random sample 
of ni+ mixels from the Ni+ mixels in that class, whereas user's accuracy of ( ) was based on the 
random sampling formulas:  
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The producer's accuracy was then calculated to determine the probability that a reference 
geosampled, time series dependent, geopredictive, endemic, transmission-oriented, QuickBird-
geoclassified, LULC correctly mapped and measured the errors of omission (1 - producer's 
accuracy). In contrast, the user's accuracy indicated the probability that a sample from the 
QuickBird, YFV-related, landscape ecohydrologic, ecogeographic vulnerability map actually 
matched the time series georeferenced data and measured the error of commission (1- use's 
accuracy). Kappa statistics were then calculated using SAS PROC FREQ. 

 Kappa statistics (κ) are appropriate for testing whether agreement exceeds chance levels 
for binary and nominal ratings for remotely-sensed models (Jensen 2005). The equation for κ 

was: where Pr(a) was the relative observed agreement among the uncertainty 
based statistics and Pr(e) was the hypothetical probability of chance agreement between the 
empirically geosampled, clinical, field and remote, time series dependent, geopredictive, 
endemic, transmission-oriented, georeferenced, YFV-related, observational data feature 
attributes. If the explanatorial, geopredictive, residually, forecasted derivatives were in complete 
agreement then κ = 1 and there was no agreement among the classified YFV-related LULC data 
attributes other than what would be expected by chance, then κ ≤ 0. 

2.7 Vegetation Indices: The different modules in Spatial Analyst® extension of ArcGIS 10.2 and 
spatial modeller tools from ERDAS Imagine 9.1® were then used to perform VI calculations. 
NDVI was calculated using radiance, topographic, surface reflectance (p), or apparent 
reflectance (measured at the top of the atmosphere) values in the QuickBird red (0.63 to 0.69 
μm) and NIR (0.76 to 0.90 μm) geospectral bands. The ratio of reflected radiance from the 
QuickBird red and NIR bands were then used to normalize illumination and topographic 
variation and to form the NDVI, which was used as an indicator of the amount and vigor of 
vegetation in the Gulu eco-epidemiological study site.  

 Initially, a sensitivity analysis was conducted prior to generating the time series-related, 
geopredictive, endemic, transmission-oriented, YFV-related, NDVI, observational parameters by 
analyzing the atmospheric and soil-perturbed responses as a continuous function of plant Leaf 
Area Index (LAI). LAI is a dimensionless quantity that characterizes plant canopies which  
defined as the one-sided green leaf area per unit ground surface area (e.g., LAI = leaf area / 
ground area, m2 / m2) in broadleaf canopies (Watson,1947). LAI is determined directly by taking 
a statistically significant sample of foliage from a plant canopy, measuring the leaf area per 
sample plot and dividing it by the plot land surface (Jensen 2005). Since canopy geometry relates 
directly to LAI, the indicator plays an essential role in theoretical production ecology (see Hay 
2000).  

Leaf Area Index was employed to generate photosynthetically active,geopredictive, 
endemic, transmission-oriented, explanatorily georeferenced, YFV-related, clinical, field and 
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remote-specified covariate, paramter estimator,  coefficient estimates for determining vegetation-
related regressors on specific classified  LULC (e.g., rice plants on agro-village complex LULC) 
at the Gulu eco-epidemiological study site. We noted that there existed an inverse exponential 
relation between LAI and light interception which was established employing , 
where Pmax designated the maximum primary production and c designated a crop specific growth 
coefficient (e.g., evapotranspiration).  

Interestingly, physiological processes such as photosynthesis, transpiration, and 
evapotranspiration are related to LAI (Hay 1997). Randomly selected grid cell and geospectral, 
explanatorial, ecohydrologic, ecogeographic, time series-dependent, geopredictive, endemic, 
transmission-oriented measurements were then assessed to determine plant LAI in ArcMap®. 
Understanding the relation between geospectral response and LAI and gridded LULC data has 
allowed for the quantitation  of canopy photosynthesis and evapotranspiration-related variables  
in a synoptic and repeatable fashion for identifying seasonally, productive, malaria, WNV and 
EEEV-related, mosquito, larval habitats based on geo- spatiotemporal, explanatorial, clinical, 
field and remote multivariate, geosampled count data (Jacob et al. 2010b, Jacob et al. 
2009d).Estimations of LAI production at each time series-related, geopredictive, georeferenced, 
endemic transmission-oriented, YFV-related, LULC were conducted by correlation analysis with 
spectral reflectance ratio and measured radiance values. The best fitting waveband ratio among 
calculated reflectance and VI’s were selected. Percent relative error and vegetation equivalent 
'noise' (VEN) were calculated for soil and atmospheric influences at the Gulu epidemiological 
study site, separately and combined using LAI. We noted that the NDVI had a relative error of 10 
percent and VEN of +/- 0.89 LAI.  

We then performed Raster modeling in ArcGIS 10.2® which included performing image 
differencing on the NDVI layers, geoclassifying the layers into different LULC classes and 
calculating a wetness index using the Raster Calculator. The difference of the QuickBird visible 
and NIR bands was divided by their sum, which formed the functionally equivalent NDVI over 
the terrestrial surfaces of the study site. Sub-mixel ,time series-related, geopredictive, endemic, 
transmission-oriented, YFV-related, NDVI, geospectral variability (e.g. standard deviation of the 
QuickBird gridded agro-village and forest canopy LULC boundary radiance estimates) was then 
differentiated from other georefernced, land cover, explanatorial, observational, data, feature 
attributes. NDVI was computed directly without any bias or assumptions regarding plant 
physiognomy, explanatorial, YFV-related, land cover class, soil type, or climatic conditions, 
within a range from -1.0 to 1.0. The QuickBird visible and NIR reflectance, (p),we employed 
was as in Jacob et al (2010b)where multiple, time series dependent, Eastern Equine Encephalitis  
Virus (EEEV)-related, geopredictive, explanatorial, time series, dependent, endemic, 
transmission-oriented, covariate, paramter estimator coefficient values were robustly 
geospectrally quantized by the expression: 
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Figure 5 Normalized Differnce Vegetation Index for the Gulu study site 

 

To assess the accuracy of the explanatorial, ecohydrologic, ecogeographic,  QuickBird-
derived, YFV-related, seasonal, NDVI, thematic maps, a simple random sampling method was 
chosen to ensure geosampled time series selection. To provide a statistically efficient assessment 
of accuracy, a conservative geosampled size equation was also employed to calculate the sample 
sizes using a time series-dependent, geopredictive, explanatorial, clinical, field and remote 
specified, endemic, transmission-oriented covariate ,parameter estimator, coefficient,  
probabilistic, uncertainty-oriented, gridded matrix. The dataset of the DGPS points of the 
georeferenced YFV-related LULCs and their respective boundaries at the eco-epidemiological 
study site were then generated for each QuickBird thematic, YFV-related ,geopredictive, eco-
epidemiological, vulnearbility seasonal, risk map. These maps were generated using the 
ISODATA algorithm to qualitatively regressively quantitate all the geospectrally-dependent,  
vegetation-oriented, NDVI and LULC temporally geosampled, geopredictive, endemic, 
transmission-oriented, covariate, parameter estimator, coefficient estimates associated to the 
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seasonal, georeferenced, YFV-related, empiricial, explanatorial, clinical, field and remote-
specified data, feature attributes. 

2.1.1. Conditional Expectation under Multivariate Normal (MVN) Distribution 

A p-dimensional random vector was partitioned as , which had a 

multivariate normal distribution with mean vector and variance-

covariance vector, , where and are two sub-vectors of 

dimensions q and p-q of respectively. We defined a transformation from to new 
geosampled YF discontinuous canopied and riceland Ae.aegypti, ovispoition, time series, 

explicative variables employing and . This was achieved by linear 

transformation,  As any linear combination of 

is also MVN ( Neter 1990) the linear transformation that that was   in the forecast, 
vulnerability, eco-epidemiological,,YFV model was jointly MVN distributed. Therefater we 

showed that and are independent by proving that they were uncorrelated by: 

 
Since, and are MVN variables and uncorrelated they are independent. Thus,  

 

Now, as the conditional distribution of given is, 
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Similarly, .  
 

We noted that the shape parameter in a Gamma distribution grews larger, when the 
distribution became more like a normal distribution (i.e. if X be a sampled riceland Ae. 
aegypti, oviposition, sub-meter resolution, geoclassified LULC) random variable following 
Gamma distribution with γ and λ as shape and scale parameters respectively and with 

probability density function (pdf) as  If the shape parameter γ 
is large as compared to λ then Gamma distribution tends to normal distribution i.e., 

(Neter 1990).In case of lognormal distribution, if arithmetic 
mean m is much larger than its arithmetic standard deviations, then the distribution tends to 
Normal (m, s2) ( Hosmer and Lemeshew 2002). A general rule of thumb for this 
approximation in a entomological vector arthropod forecastd vulnerability signature paradigm  
is m > 6s. ( see Jacob et al. 2013)We noted that X was a YFV explanatory LULC oviposition, 
eco-epidemioligical random variable following lognormal distribution with µ and σ as a 
capture point location and scale parameters respectively and with pdf as, 

The mean and standard deviation 

were defined as, and, . Then, , 

.  
 

Variable selection for the multiple regression models was carried out by a combination of 
automatic (i.e. stepwise) procedures and goodness-of-fit criteria in NLMIXED. We selected the 
explanatorial, time series-related, geopredictive, endemic, transmission-oriented, LULC, NDVI 
and other geosampled, ,  clinical, field and remotely eco-epidemiological covariate, parameter 
estimators that explained Ae. aegypti. prevalence in terms of vector, host, and parasite dynamics 
at the Gulu eco-epidemiological study site.  

In the time series-related, YFV-related, NL MIXED, risk model, we let  denote the 
number of covariate, time series dependent, parameter estimators employing   

,  and . The model specified 
different intercepts and slopes for each geosampled, geopredictive,explanatorial, clinical, field 
and remote specified, endemic, transmission-oriented, LULC data feature attribute. The 
procedure also estimated the random effects of the variables.  
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The corresponding NL MIXED statements were as follows:  
   proc nlmixed data= YFV parameters; 
      parms logsig 0 beta1 1 beta2 1 alpha1 1 alpha2 1; 
      if (group = 1) then beta = alpha1 + beta1*logtstd + e; 
      else beta = alpha2 + beta2*logtstd + e; 
      lambda = exp(beta); 
      model y ~ poisson(lambda); 
    random e ~ normal(0,exp(2*logsig)) subject=YFV parameters; 
      estimate 'alpha1-alpha2' alpha1-alpha2; 
      estimate 'beta1-beta2' beta1-beta2; 
   run; 

Probabilty Poisson regression with statistical significance was thereafter determined by a 
95% confidence level.  Table 1 show the regressors employed in the endemic, transmission-
oriented, YFV, model in NL MIXED. 

Table 1. Environmental predictor variables sampled at the epidemiological capture point 
 
 
 Variable Description Units 

GCP Ground Control Points Decimal-degrees  
LULC Land Cover meters  
DEM Catchment variable (terrain statistics e.g.,Formazin Turbidity Unit) 

Rainfall   millimeters 
POP Human Population Discrete Integer 

DISHAB Distance between 
LULC Meters 

DISCAP 

Distance between 
capture point and  
Epidemiological 

village 

Meters 

 

 
In the explanatorial, time series dependent, geopredictive, endemic, transmission-oriented 

,YFV-related, Poissonized, eco-epidemiological, NL MIXED, explanatorial, LULC , sub-meter 
resolution, risk model it was assumed that the dependent variable Y, had a Poisson distribution 
given the independent variables X1, X2, ...., Xm, P(Y=k| x1, x2, ..., xm) = e-  k / k!, k=0, 1, 2, 
......,. In the NL MIXED model the log of the mean  was assumed to be a linear function of the 
geosampled independent variables. That is, log() = intercept + b1*X1 +b2*X2 + ....+ b3*Xm, 
implied that  was the exponential function of the independent, geosampled, field and remote 
specified, YFV-related, explanatorial, geopredictive variables, where  = exp(intercept + b1*X1 
+b2*X2 + ....+ b3*Xm). The Poisson regression model was then rewritten in the following form: 
log() = log(N) + intercept + b1*X1 +b2*X2 + ....+ b3*Xm, where n was the total number of the 
time series dependnet, empiricially regressed, YFV-related, endemic, transmission-oriented, 
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georefernced, explanatorial, georeferncable, data, feature, attribute variables  at the Gulu eco-
epidemiological study site.  
 

Thereafter, the logarithm of the variable n was used as an offset, that is, a quantitative 
regression variable with a constant coefficient of 1 which represented each geosampled, 
independen, time series-related, predictive, endemic, transmission-oriented, YFV-related, 
explanatorial, clinic, field and remote specified, observational predictor. The log of the 
incidence, log ( / n), was then modeled as a linear function of the time series-dependent 
independent variables. Thereafter, a maximum likelihood method was employed to estimate the 
covariate, parameter estimator, probability  error rendered from the of regression model residuals 
in NL MIXED.  
  

The parameter λi(Xi) was both the mean and the variance of the Poisson distribution for a 
specific geosampled, explanatorial, geopredictive, endemic, transmission-oriented, YFV-related 
LULCi in NL MIXED The data was log-transformed before the explanatorial, time series 
dependent, eco-epidemiolgical, probabilistically regressive quantitative data analyses to 
normalize the distribution and minimize residual standard error. The regression analyses 
assumed independent counts (i.e., ni), taken at the georefernced, seasonally geosampled, LULC 
geolocations i=1, 2…n. The Poisson probability regression models assumed the response 
variable Y had a Poisson distribution and assumed the logarithm of its expected value  was 
modeled by a linear combination of the time series-related, empirically regressed, geopredictive, 
explanatorial, endemic, transmission-oriented,  YFV-related clinical, field and remote-specified, 
covariate, paramter estimator,  coefficient values. This expression was written more compactly 
then  as  where x was an n+1-dimensional vector consisting of n independent 
variables concatenated to 1 and, thus, θ was simply a linearly linked to b.  

 
Interestingly, in our time series-related, endemic, transmission-oriented, explanatorial, 

clinical, field and remote-specified, YFV-related, “Poissionzed”probabilistic, time series, eco-
epidemiological,  LULC risk model, θ was an input vector x and the geopredicted mean of the 
associated distribution rendered from the regressed covariate parameter estimator, coefficient 
estimates. This value was provided by  but, only if X ε Rn was a vector of the 
independent variables. Thereafter, the Poisson, time series-related, geopredictive, explanatorial,  
clinical, field and remote-specified,  geosampled, endemic, transmission-oriented, YFV-related, 
eco-epidemiological, forecasting, operationizable, risk model took the form  

 where a ε Rn and b ε R. Positing salient error estimators using Poisson-
derived regression estimates, the maximization of an auto-Gaussian log-likelihood function and a 
set of eigenvectors where lambda is the sub-space of Rn can identify and quantitate seasonal, 
entomological-related, observational, predictive, LULC covariate coefficients (Jacob et al. 
2011b). The Gaussian distribution is a continuous probability distribution that is often employed 
as a first approximation to describe real-valued randomized variables that tend to cluster around 
a single mean value (Hosmer and Lemeshew 2000).  

 
In our regression framework the  explanatorial, forecasting, geosampled, time series-

related, endemic, transmission-oriented, YFR-related, clinical, field and remote specified,  
covariate parameter estimator, empiricial coefficients were  delineated  by matrix Xi, which was 
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constructed  employing a 1×p vector of the geosampled measurement error indicator values. 
These values were based on resampled, LULC geolocations (i.e, i). The expected value of these 
data was given by: μi(Xi)=ni(Xi) exp(Xiβ) where, β was the vector of non-redundant parameter 
estimators and the Poissonized specified, time series dependent, geopredictive endemic, 
transmission-oriented, YFV-related predictors were then  rendered by λi(Xi)=μi(Xi)/ni(Xi) (2.2).  

 
Thereafter, the time series-dependent, geopredictive, endemic, transmission-oriented, 

YFV-related, Poisson probability regression LULC models were generalized by introducing an 
unobserved heterogeneous term for the geosampled observational, endmeic variables (i). Thus, 
the geo-spatiotemporal, geosampled, time series,predictive, YFV-related,LULC sub-meter 
resolution.  data was assumed to differ randomly in a manner that was not fully accounted for by 
the time series, regressively  quantized, explanatorial, clinical, field and remote specified 
covariate, paramter estimator  error, uncertainty-oriented,  coefficient estimates in NL MIXED. 
These distributions were then formulated as  where the unobserved 
heterogeneity term  was independent of the vector of regressors ; thus, the distribution 
of  conditional on  and  in the Poisson YFV-related eco-epidemiolgical, geopredictive, risk  

model was Poisson with a conditional variance of : .  
 
In our predictive, time series dependent, YFV-related,  Poisson regression model 

construction process, we let  be the probability density function (pdf) of .By so doing, the 

distribution , was no longer conditional on  in the  in the eco-epidemiological, 
forecasting, probabilsitic, risk model. Thereafter, the geo-spatiotemporal-geosampled, linearized, 
endemic, transmission-oriented, YFV-related model, explanatorial, clinical,  field and remote 
specified, endemic, transmission-oriented, residually, empirically, forecasted derivatives were 

obtained by integrating with respect to :  .We 
noticed that the explanatorial, geopredictive, autoregressive, YFV-related, probabilistic, model 
error parameter estimators contained a constant term. As such, it was necessary to assume that 

 in order to identify the mean of the distributions (see Jacob et al. 2009). We 

assumed that  followed a gamma ( ) distribution with and : 

 where  was the gamma function and  was a 
positive geosampled time series-related,YFV-related, parameter estimator. Thus, the density of 

 in the time series-dependent,probabilistic,  regression-based, eco-epidemiological, time series 
dependent, empirical,  risk model was Xi which was further regressively quantitated employing 
the 

equation: = = = = 

 (2.3) 

We employed NL MIXED to perform the endemic, transmission-oriented, time series, 
Poisson regression analysis of the seasonal, YFV-related, eco-epidemiological, data feature 
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attributes with a log link function. As such, the LULC model was classified as a seasonal, log-
linear, YFV-related, geopredictive, geopredictive, eco-epidemiological, risk model. The  log-
linear model is a mathematical model that takes the form of a function whose logarithm is a first-
degree polynomial function of the parameters of the model, which makes it possible to apply 
multivariate linear regression (see Hosmer and Lemeshew 2000). The specific applications of 
log-linear seasonal, entomological-related, geopredictive, endemic, transmission-oriented, linear, 
eco-epidemiolgical, risk  models are  robust when the output quantity lies in the range 0 to ∞, for 
geosampled explanatorial, time series dependent, covariate, parameter estimator, coefficient 
values of the independent variables X, or more immediately, the transformed quantities fi(X) in 
the range −∞ to +∞( see Jacob et al. 2013, Jacob et al. 2012). This may be contrasted to 
explanatorial, geopredictive, logistic, eco-epidemiological, forecasting, risk models, similar to 
the logistic function, for which the output quantity lies in the range 0 to 1. 

Interestingly, in Jacob et al. (2005b), pseudo R2 values from a time series dependent, 
backward, stepwise, Poisson –related, geopredictive, explanatorial, endemic, transmission-
oriented, risk model generated using multiple time series dependent, clinical, field and remote 
specified An. gambiae s.l. larval habitat explanatorial  covariate, paramter estimator, coeffiicnet 
values in GEN MOD revealed greater variation than pseudo R2 estimates from a logistic 
regression model. Multivariable risk analyses were performed with the GENMOD procedure of 
SAS 8.01 (SAS Institute, Cary, NC) using the geosampled field and remote specified datasets. 
Thereafter, Poisson and logistic regression models were generated with the counts of Anopheles 
mosquitoes for the aquatic larval habitat datasets. 

Interestingly, in Jacob et al. (2005b), the geosampled explanatorial datasets from the 
Kisumu eco-epidemiological study site did not contain many observational explanatorial, 
predictors with positive anopheline immature counts (i.e., zero-inflated data). The model for the 
Malindi study site was deemed general enough to make time series dependent, explanatorial 
geopredictions. Unfortunately, the authors were not able to validate the combined model. The 
model was over parameterized for the validation dataset (i.e., it had too many georeferenced 
predictors for the small sample size in the validation set). To test for collinearity, the authors 
employed the design matrix from a Poisson regression and ran it through a GEN MOD 
procedure, which indicated the absence of problematic correlation among the malarial 
observational predictors. Regression assumes that the predictor variables are noncollinear 
(Hosmer and Lemeshew 2000). 

We employed methods of moment to estimate, unknown, YFV-related, endemic, 
transmission-oriented, predictive, LULC, sub-meter resolution  parameter estimators,  geo-
spatiotemporally geosampled, at the Gulu eco-epidemiological study site  [i.e.,  ] 
specifically  for characterizing the distribution of the random variable . Two quantitate 
the first k moments of the true distribution (e.g., the geosampled, endemic, transmission –
oriented, LULC population moments) were then  expressed as functions of the s: 

and  By so 
doing, a sample of size  was drawn, resulting in the covariate parameter estimator clinical, field 

and remote-geosampled values . For , let  be the j-th sample 
moment, an estimate of  (Hosmer and Lemeshew 2000) The method of moment’s estimator for 
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 was then denoted by  which in turn was defined as the solution) to the 
equations: and  

The method of moments is fairly simple and yields consistent estimators (Griffith 2003). 
The estimating geopredictive, explanatorial, probabilsitic, YFV-related, endemic, transmission-
oriented, covariate, LULC parameter estimators of a known family of probability distributions 
was parsimoniously quantitated. This method was superseded by Fisher's method of maximum 
likelihood as   MLEs have higher probability of being close to unbiased estimated quantities in 
seasonal, clinical, field and remote specified,  entomological –related, endemic, transmission-
oriented, eco-epidemiological, probabilistic, risk model,  residually, forecasted derivatives  ( 
Jacob et al. 2005b, Griffith 2005).  As such, we employed a sample x1, x2, ..., xn of n independent 
and identically distributed (i.d.d.)geosampled,  empirical, YFV-related, explanatorial, time series 
dependent, clinic, field and remote specified observations, quantitated from a distribution with an 
unknown pdf f0(·).However,  since it has been surmised that the function f0 belongs to a certain 
family of distributions [i.e.,  f(·| θ), θ ∈ Θ ] where θ is a vector of parameters (i.e., the parametric 
model),  f0 = f(·| θ0) in the YFV risk model.The value θ0 is unknown and is referred to as the true 
value of the parameter (Fotheringham 2002). It was desirable for us to qualitatively regressively 
probablistically quantitate the geosampled, geosampled, explanatorial, clinical, field and/or 
remote specified endemic, transmission-oriented, YFV-related, covariate, parameter  estimator 
coefficient values (i.e., ) since we assumed this would enable determining  a true value θ0 in the 
latent forecasted derivatives. Both the observed variables xi and the parameter θ can be vectors in 
a seasonal, geopredictive, entomological-related, endemic, transmission-oriented, eco-
epidemiological, robust, forecasting,  risk model (Jacob et al. 2005b, Griffith 2005). 

We employed the method of maximum likelihood to specify the joint density function for 
all the seasonal, geosampled, georeferenced, endemic, transmission-oriented, YFV-related 
explanatorial,, clinical, field and remote specified observations. Probability density function is 
most commonly associated with absolutely entomological-related, continuous univariate 
distributions (Jacob et al. 2005b). A random variable X has density fX, where fX is a non-negative 

Lebesgue-integrable function, if: In mathematics, the integral of a non-
negative function can be regarded in the simplest case as the area between the graph of that 
function and the x-axis. Lebesgue integration is a mathematical construction that extends the 
integral to a larger class of functions; it also extends the domains on which these functions can 
be defined (Hosmer and Lemeshew 2000) Hence,we assumed  if FX would be  the cumulative 
distribution function of X in a time series dependent, YFV-related, LULC endemic, transmission 
oriented, geopredictive, eco-epidemiological, clinical, field or remote, geosampled, risk model 
when : . Further, if fX was continuous at x in the model then  

Intuitively, a ecologist, entomologist or orther experimenter would think of 
fX(x) dx as being the probability of X falling within the infinitesimal interval [x, x + dx] in the 
YFV model. For effectively qualitatively regressively quantitating an i.d.d. explanatorial, geo-
spatiotemporally-geosampled, clincial, field and/or remote specified time series ,YFV-related 
geosamples, the joint density function was determined  by employing 
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Thereafter, we  examined the endemic, transmission-oriented, geopredictive, YFV-
related, explanatorial, clinical, field and remote specified, observational, function from a 
different perspective by considering the  seasonal endmeic,  geosampled values x1, x2, ..., xn to be 
fixed "parameters" of this function, As such, θ was  the function's variable which was allowed to 
vary freely; this function was the endemic, YFV-related, transmission-oriented, eco-
epidemiological, probabilsitic, risk model likelihood estimate which was quantitated by 

 Note, that the vertical bar in did not 
mean "conditional" in the  risk model construction process.  Instead, the vertical denoted a 
separation between the two input arguments: and the vector-valued input  in the 
eco-epidemiological, geo-spatiotermpoal, empirically probabilistcally regressed, YFV-related, 
forecasting,  risk model. In practice it is often more convenient to work with the logarithm of the 

likelihood function, called the log-likelihood:  or the average log-

likelihood:  (see Griffith 2003).The hat over ℓ indicated that it was akin to some YFV-
related parameter estimator. Indeed, estimated the expected log-likelihood of any single, LULC 
-related, sub-meter resolution, observational predictor geosampled at the Gulu eco-
epidemiological study site. The method of maximum likelihood estimates θ0 in a robust, 
geopredictive, endemic, transmission-oriented, entomological-related, probabilstic, eco-
epidemiological, risk model by finding a value of θ that maximizes (Jacob et al. 2005b, 
Griffith 2005). For our geopredictive, clinical, field and remote specified, explanatorial, 
Ae.aegypti endemic, transmission-oriented, YFV-related, risk model estimation we defined a 

maximum-likelihood estimator (MLE) of θ0 ... . An MLE is an 
estimated value regardless of whether it maximizes the likelihood or the log-likelihood function, 
since log is a monotonically increasing function(Hosmer and Lemeshew 2000). 

In mathematics, a monotonic function or monotone function is a function between 
ordered sets that preserves the given order. This concept first arose in calculus, and was later 
generalized to the more abstract setting of order theory. Order theory is a branch of mathematics 
which investigates our intuitive notion of order using binary relations (Hosmer and Lemeshew 
2000). In calculus, a function defined on a subset of the real numbers with real values (e.g., an 
emprical  dataset of explanatorial, clincial, field or remote geosampled YFV-related probabilistic 
regressors) is called monotonic if it is either entirely non-increasing or non-decreasing. It is 
called monotonically increasing (also increasing or non-decreasing), if for all and such that 

one has , so preserves the order (Davey, and Priestley 2002). Likewise, a 
function is called monotonically decreasing (also decreasing, or non-increasing) if, whenever 

, then , so it reverses the order in an entomological-related, endemic, 
transmission-oriented, explanatorial,forecasting, LULC risk model (Jacob et al. 2014). If the 
order in the definition of monotonicity is replaced by the strict order , then one obtains a 
stronger requirement. A function with this property is called strictly increasing (order (Davey, 
and Priestley 2002). Again, by inverting the order symbol in an entomological-related, 
probabilistic, endemic, transmission-oriented, eco-epidemiological, risk model, a ecologist, 
entomologist or experimenter would find a corresponding concept strictly decreasing. Functions 
that are strictly increasing or decreasing are one-to-one (because for  not equal to , either 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

290 
Copyright © acascipub.com, all rights reserved.  

or )and so, by monotonicity, either or , thus  would  not be  
equal to  in the YFV  risk model specified explanatorial clinical, field and/or remote 
covariate, paramter estimator coefficients. When functions between discrete sets are considered 
in combinatory, it is not always obvious that "increasing" and "decreasing" are taken to include 
the possibility of repeating the same value at successive arguments, so a ecologist, entomologist 
or other experimenter would find the terms weakly increasing and weakly decreasing to stress 
this possibility. Jacob et al. (2014) employed the definability of combinatorial functions and their 
linear recurrence relationships within a polylogarithmic triangularizable matrix employing 
subjective bilipschitz functions and other isomorphism of metric spaces for forecasting seasonal 
endemic onchocerciasis transmission zones in Burkina Faso.  

 
Importantly, for regressing an empirical geosampled dataset of seasonal, explanatorial, 

vector, entomological-related, clinical, field and/or remote specified, geopredictive, endemic, 
transmission-oriented, forecasting risk modeling, covariate, parameter estimator coefficients, the 
terms "non-decreasing" and "non-increasing" should not be confused with the weaker negative 
qualifications (i.e.,  "not decreasing" and "not increasing"). For instance, the function of an 
explanatorial, YFV –related, probabilistic, time series dependent, endemic, transmission-
oriented, eco-epidemiological, forecasting, risk model may first fall, then rise, then fall again. 
The explanatorial, clinical, field and/or remote specified parameter estimators therefore may not 
decrease nor increase in their statistical significance which may be neither non-decreasing nor 
non-increasing. The term monotonic transformation can also possibly cause some confusion as it 
refers to a transformation by a strictly increasing function in a robust, entomological-related, 
explanatorial, time series dependent, eco-epidemiological, forecasting, uncertainty-oriented,  risk 
model framework. Notably, this is the case in some entomological risk model with respect to the 
ordinal properties of a utility function being preserved across a monotonic transform ( see Jacob 
et al. 2012). A function is said to be absolutely monotonic over an interval   in an 
entomological-related, endemic, trasnmission-oriented, probabilsitic, forecasting, eco-
epidemiological, risk, model if the derivatives of all orders of are nonnegative at all points 
(georefrenced time series dependnet, YFV-related clinical, field or remote geosampled 
explanators) on the interval (Jacob et al. 2014). By extension the vertical bar in  
would not be then conditional in an eco-epidemiological probabilistic  dataset of YFV-related, 
risk model, endemic, transmission-oriented, latently, ecogeographically  forecasted, 
discontinuous forest-canopied, African riceland , LULC covariate derivatives. 

Interestingly, in the exposition above, it may be assumed that the seasonal, 
entomological-related, explanatorial, clinical, field and/or remote specified, geopredictive, 
endemic, transmission-oriented, forecasting, risk-related YFV data are i.d.d. We assumed the 
method  could be applied to a broader setting, as long as it was possible to write the joint density 
function f(x1, ..., xn | θ) in the eco-epidemiological, risk model where  its parameter θ had a finite 
dimension that was not  dependent on the sample size n.  By so doing, we assumed  an allowance 
could be made for qualiatively regressively quantizing data heterogeneity in an explanatorial, 
YFV-related, geopredictive, eco-epidemiological, forecasting, risk model, so that the joint 
density was equal to f1(x1|θ) · f2(x2|θ) · ··· · fn(xn | θ). Put another way, we assumed that each 
geosampled YFV-related, geosampled clinical, field or remote specified  observation (xi ) came 
from a randomized probabilistic variable that had its own distribution function fi.  
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The NLMIXED procedure fit multiple explanatorial, geopredictive, YFV-related,   
mixed, risk models where the conditional mean function was a general nonlinear function. The 
class of generalized linear mixed models is a special case of the nonlinear mixed models; hence 
some of the models can be fit with NLMIXED and  the GLIMMIX procedure (www.sas.edu). 
Our NLMIXED procedure relied by default on approximating the marginal log likelihood 
through adaptive Gaussian quadrature. In the GLIMMIX procedure,  MLE by adaptive Gaussian 
quadrature was available with the METHOD=QUAD option in the PROC GLIMMIX statement. 
The default estimation methods differentiated between the NLMIXED estimated, YFV-related, 
time series dependent, endemic, transmission-oriented, explanatorial, clinical, field or remote 
geosampled, covariate parameter estimator coefficient regressive quantification  procedures as 
adaptive quadrature was available with the GLIMMIX procedure. If you choose 
METHOD=LAPLACE or METHOD=QUAD(QPOINTS=1) in the PROC GLIMMIX statement 
for a generalized linear mixed model, the GLIMMIX procedure performs  MLE-based on a 
Laplace approximation of the marginal log likelihood (www.sas.edu). In our time series 
dependent, explanatorial, geopredictive, YFV-related, endemic, transmission-oriented,  eco-
epidemiological, probabilsitic, regression-related, risk model this  approximation was equivalent 
to the QPOINTS=1 option in the NLMIXED procedure.  

 The time series dependent, geopredictive, explanatorial, YFV-related, regression model 
assumed independent Bernoulli outcomes  denoted by Yi as the dependent variable  taken at the 
geosampled explanatorial, LULC sites i = 1, 2, …, n,. The estimator measurement indicator 
values were thereafter  described by Xi, a 1-by-(K+1) vector of K geo-spatiotemporal, 
geosampled, YFV-related, endemic, transmission-oriented, explanatorial, clinical, field and 
remote specified,  covariate parameter estimator, coefficient values where a 1 for the intercept 
term represented a geosampled LULC site geolocation i. The probability of a 1 being realized for 
the binary outcome data was provided by: P (Yi = 1| Xi) = exp (Xiβ)/ [1 + exp (Xiβ)] (2.1) where 
β was the (K+1)-by-1 vector of non-redundant parameters and P (Yi = 0| Xi) = 1 - P (Yi = 1|Xi).  

 
We employed the simplest form of Equation (2.1)  for  qualitatively assessing and geo-

spatiotemporally quantizing  constant probability across the multiple, randomized, time series 
dependent, YFV-related, endemic, transmission-oriented, covariate, paramter estimator  
coefficient values  employing [i.e., P(Yi = 1| Xi) = P(Yi = 1| α ) geosampled = exp( α )/[1 + exp 
(α) ] . By so doing, the eco-epidemiological, probabilistic, risk model rendered a constant α using 
a bivariate regression notation. The statistical procedure was performed by denoting β0, where 
P(Yi = 1| α ) → 0 as α → −∞ , P(Yi = 1| α) → 0.5 as α → 0, and P (Yi = 1| α ) → 1 as α → ∞  in 
the multivariate, residually forecasted, time series dependent,  geopredictive, YFRLULC-
oriented, regression-related, forecasting, risk model uncertainty-oriented, matrix framework. 

The logistic function or logistic curve is a common special case of the more general 

sigmoid function, with equation: where e is Euler's number (Marsden 1985).  For 
qualitatively regressively quantitating seasonal-geosampled values of x in the range of the 
empirical geosampled dataset of explanatorial, clinical, field and remote specified, YFV-related,  
geopredictive, covariate, parameter estimator, coefficient values from −∞ to +∞, the S-curve had 
to be obtained. A sigmoid function is a mathematical function having an "S" shape (sigmoid 
curve) (Hosmer and Lemeshew 2000).  In our seasonal, probabilsitic, YFV-related, eco-
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epidemiological, linear model, the sigmoid function  was the logistic function which was defined 

by the formula  In general, a sigmoid function is real-valued and differentiable, 
having either a non-negative or non-positive first derivative which is bell shaped (Hosmer and 
Lemeshew 2000).  

Interestingly, in our seasonal, explanatorial, eco-epidemiological, clincial field and 
remote specified, YFV-related, geopredictive, linearized, forecasting, risk model there were  also 
a pair of horizontal asymptotes as . The differential equation 

, with the inclusion of a boundary condition provided a third degree 
of freedom, , which in turn provided a class of functions. We noted that the number e was an 
important mathematical constant in the geopredictive, YFV-related, eco-epidemiological, 
probabilistic, risk model which was the base of the natural logarithm in the model. It was 
approximately equal to 2.71828, and had the limit of (1 + 1/n)n as n approached infinity. 
Commonly, E can a be calculated as the sum of the infinite 

series (see Arflen1985). 

Importantly, mathematic constants can be defined in seasonal infectious disease-related, 
geopredictive, explanatorial, forecasting, risk models in multiple ways. For instance, e may be a 
unique real geosampled, seasonal, YFV-related, covariate, parameter estimator, coefficient 
value, for instance  such that the value of the derivative (i.e., slope of the tangent line) of the 
function f(x) = ex at the point x = 0 is equal to 1( see Jacob et al. 2012, 2009d). The function ex so 
defined would then be the exponential function in an endemic, transmission-oriented, 
probabilistic, regression-related, eco-epidemiological, explanatorial, clinical, field or remote 
geosampled, risk model  and its inverse would be  the natural logarithm, or logarithm to base e. 
The natural logarithm of a positive number k can then be defined in a robust, entomological,-
related, geopredictive, explanatorial, risk model constructed in ArcGIS,  directly as the area 
under the curve y = 1/x between x = 1 and x = k, in which case, e  would be the number whose 
natural logarithm is 1 ( see Jacob et al. 2012). Like the constant π, e is irrational: it is not a ratio 
of integers; and it is transcendental: it is not a root of any non-zero polynomial with rational 
coefficients (Hosmer and Lemeshew 2000). 

 Our geopredictive, time series dependent,YFV-related,explanatorial,endemic, 

transmission-oriented, regression model had the following  general form in 
which the fi(X) were quantities that were functions of the geosampled LULC and other 
explanatorial variables X,(i.e.,  a vector of YFV-related, covariate, parameter estimator 
coefficient  values), while c and the wi were the model parameters. We employed a log-linear 
plot or graph, which was a type of semi-log plot to determine all linear relationships between the 
YFV-related dependent variable and all the independent variables 

    A semi-log graph was then generated in MathLab employing the seasonal, geosampled, 
clincial, field and remote specified, YFV-related, explanatorial, predictor variables in order to 
define any probabilsitic, exponential relationships in the geosampled empirical dataset. One axis 
was plotted on a logarithmic scale. A logarithmic scale is a scale of measurement that displays 
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the value of a physical quantity using intervals corresponding to orders of magnitude, rather than 
a standard linear scale (Hosmer and Lemeshew 2000). Deviating from any units in a seasonal, 
geopredictive, entomological- related, time series dependent, eco-epidemiological,  
geopredictive, probabilsitic, risk model means, the logarithmic measure will change by an 
additive constant (see Jacob et al. 2005b).The base of the logarithm in the time series dependent, 
YFV-related, probabilistic, geopredictive, eco-epidemiological, clincial, field and remote-
geosampled, forecasting risk model had to be specified as the scale's value which we considered 
to be a dimensional quantity that was  expressed  in the model in indefinite-base logarithmic 
units. 

  Thereafter, a semilogx graph in ArcGIS plotted the seasonal, geosampled, georefernced, 
YFV related, endemic, transmission-oriented, empirical, explanatorial, covariate, parameter 
estimator, coefficients employing logarithmic scales for the x-axis. In seasonal, geopredictive, 
entomological-related data analyses, a semi-log graph or semi-log plot is a way of visualizing 
data that are related according to an exponential relationship (Jacob et al. 2013 ).A robust time 
series dependent, YFV-related semilogx(Y) was then created in ArcGIS  employing a plot and a 
base 10 logarithmic scale for the x-axis and a linear scale for the y-axis.  ArcGIS then  plotted the 
columns of Y versus their index since  Y contained the  geosampled, time series dependent, 
YFV-related, covariate parameter estimator coefficient  values. Semilogx(X1,Y1,...) plotted all 
Yn versus Xn pairs in the time series dependent, YFV-related, seasonal dataset. If only one of 
Xn or Yn is a matrix, semilog x plots the vector argument versus the rows or columns of the 
matrix, along the dimension of the matrix whose length matches the length of the vector 
(www.sas.edu). Further, if the matrix is square, its columns plot against the vector if their lengths 
match. 

Thereafter, semilogx(X1,Y1,LineSpec,...) plotted all lines defined by the Xn,Yn, 
LineSpec triples. LineSpec determined line style, marker symbol, and color of the plotted lines 
semilog x sets property values for all line series properties graphics objects created by semilogx.  
Importantly, h = semilogx(...) returned a vector of handles to  regressively quantitate the YFV-
related, time series dependent, geopredictive, line series graphics objects, one handle per line. A 
semi-log plot is useful for time series geopredictive, entomological-related,  seasonal models 
when one of the variables being plotted covers a large range of  geosampled covariate, parameter 
estimator, coefficient values and the other has only a restricted range – the advantage being that 
it can bring out features attributes  in the data that would not easily be seen if both variables have 
been plotted linearly ( see Jacob et al. 2005b).  

We noted that all the time series-related, YFV-related, geopredictive, explanatorial, 
endemic, transmission-oriented regression-related, time series  equations of the form 

formed straight lines  employing the geosampled LULC and other remotely, 
explanatorial,time series dependent,  covariate parameter estimator coefficient values. These 
coefficients   were when plotted semi-logarithmically, since taking logs of both sides rendered 

This was geo-visualized  in our ArcGIS time series graphs as a line in slope-
intercept form where   was the slope and was the vertical intercept. To facilitate use with 
logarithmic tables in ArcGIS for constructing robust, seasonal, vector arthropod-related, eco-
epidemiological, geopredictive, risk models, logs to base 10 or e, or sometimes base 
2:  may be employed (see Jacob et al. 2005b).The term log-lin was 
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used to describe a semi-log plot with a logarithmic scale on the y-axis, and a linear scale on the 
x-axis in our risk model. The log-lin type of a semi-log graph, defined by a logarithmic scale on 
the y-axis, and a linear scale on the x-axis ( Anselin 1995). Likewise, a lin-log graph employed a 
logarithmic scale on the x-axis, and a linear scale on the y-axis. Note, that our seasonal 
geosampled, ArcGIS-oriented, probabilistic, time series dependent, YFV-related graph was in 
the form of  output-input (y-x), the opposite order from (x, y). Thereafter, a regression  equation 
for a line with an ordinate axis logarithmically scaled  the seasonal, YFV-related, operational, 
ecoepidemiological, forecasting   risk model was subsequently  expressed 
as The equation of a line on a plot in the risk model  
where the abscissa axis was scaled logarithmically was then Interestingly, we 
noted that in our ArcGIS semi-log graph, the spacing of the scale on the y-axis in the time series 
dependent, geopredictive, YFV-related eco-epidemiological,  risk model was proportional to the 
logarithm of the number, not the geosampled, explanatorial, covariate, paramter estimator  
coefficient value itself. It was thus equivalent to converting the y values to their log, and plotting 
the geosampled, explanatorial, YFV-related data on lin-lin scales. A log-log graph uses the 
logarithmic scale for both axes, and hence is not a semi-log graph (Anselin 1995). 

The Poisson process  in our explanatorial,  probabilistic, YFV-related, LULC, geo-
spatiotemporal, geosampled,eco-epidemiological, geopredictive, risk analyses was provided by 
the limit of a binomial distribution based on the temporally geosampled, YFV-related, 
explanatorial, covariate, parameter estimator coefficient estimates using 

(1.2). We viewed the distribution as a function of the expected 
number of  seasonal, YFV-related, geopredictive, geoclassifed, LULC,count-related, time series 
dependent, regressable  variables  geosampled employing the sample size N for  rigriously 
quantifying the fixed p  in equation (2.1), which then was thereafter log- transformed into  the 

linear equation:  Based on the sample size N, the distribution 
approached  was then equivalent to 

= =  which 

was then calculated as =  We assumed that  Yi ∼ Poi(μi, θ) where we let the 
mean μi for the ith observation varied as a function of the LULC covariate paramter estimators 
for that observation. Because the mean μi > 0, it is natural to model 

 Generalizing, we can write this as the vector of mean 
parameters μ = g−1(Xβ), where g−1 is the exponential function, X is a design matrix of both 
continuous and categorical covariates, and β is a vector of parameters (regression coefficients). 
The ith row of X contains the covariates for the ith observation. Alternatively, we could write 
g(μ) = Xβ where g is the log function, and it is called the link function. This is a fairly general 
specification, and g can take on various forms, but here we only consider the log link. For 
negative binomial regression, we assume Yi ∼ NB(μi, κ), where we let the mean μi vary as a 
function of covariates. Because μi > 0, we again let g(μ) = Xβ where g is the log link function.  

A SAS-based procedure then fit a generalized linear model (GLM) to the explanatorily, geo-
spatiotemporal, geosampled, YFV-related, data by MLE of the parameter vector β. In statistics, 
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the GLM is a flexible generalization of ordinary linear regression that allows for response 
variables that have error distribution models other than a normal distribution (Hosmer and 
Lemeshew 2000). In  the explanatorial, seasonal, geopredictive, YFV-related,   GLM, each 
outcome of the dependent variable, Y, was assumed to be generated from a particular distribution 
in the exponential family which included the normal, binomial, Poisson and gamma 
distributions, among others. We noted that in  the YFV-related model  the mean, μ, of the 
distribution was dependent on the  geosampled independent variables, X, through: 

 where E(Y) was the expected value of Y; Xβ  was the linear geopredictor, β 
was a linear combination of unknown parameters; and, g was the link function. In this 
framework, the variance in the risk model was a function, V, of the mean: 

 

Interestingly, the regression analyses assumed independent time series counts (i.e. ni), 
taken at geosampled, explanatorial, geoclassified,  georferenceable,LULC geolocations i=1, 2… 
n at the Gulu, eco-epidemiological, study site. The time series dependent, YFV-related 
probabilistic geoclassifed, LULC, counts were described by a set of variables denoted by matrix 
Xi, where a 1×p vector of covariate  paramter estimator coefficient values for a geosampled, 
geoclassiifed , LULC geolocation i. The expected value of these data was then given by μi (Xi) 
=ni (Xi) exp (Xiβ), where β was the vector of non-redundant parameter estimators  in the time 
series dependnet, YFV-related, forecasting distribution model. 

 
The Poisson rates parameter was given by λi (Xi) =μi (Xi)/ni (Xi). The rates parameter λi 

(Xi) was both the mean and the variance of the Poisson distribution for each geosampled YFV-
related geolocation i. The dependent variable was total geosampled count. The Poisson 
regression model assumed that the geo-spatiotemporal geosampled data was equally dispersed-
that is, that the conditional variance equaled the condition mean. The procedure used MLE to 
find the regression coefficients. The data was then log-transformed before performing the eco-
epidemiological, probablistic, risk analyses to normalize the distribution and minimize standard 
error.  

There was considerable overdispersion in the YFV-related, eco-epidemiological, 
forecasting, geoclassifed, LULC, risk model; thus, we used a time series, negative binomial,l 
endemic, transmission-oriented, model framework to quantitate the explanatorial, clinical, field 
and remote specified, covariate, parameter estimators associated to the geosampled, 
georeferenced data. Overdispersion is often encountered when fitting very simple parametric 
models, such as those based on the Poisson distribution (Neter 1992). If overdispersion is a 
feature in a geo-spatiotemporal, entomological-related, aquatic, larval, habitat, distribution 
model, an alternative model with additional free parameters may provide a better fit (Jacob et al. 
2005b).  Thus, a time series, explanatorial, Poisson mixture model with a geopredictive, YFV-
related,  negative binomial distribution was employed where the mean of the Poisson distribution 
was itself a random variable drawn from the gamma distribution; thereby, introducing an 
additional free parameter in the distribution model. The family of negative binomial distributions 
is a two-parameter family which uses several parameterizations for treating overdispersed data 
(Cressie 1993). The Poisson distribution has one free parameter and does not allow for the 
variance to be adjusted independently of the mean (Haight 1967).   A common way to deal with 
overdispersion for counts is to use a GLM framework, where the most common approach would 
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be  a ‘‘quasi-likelihood,’’ with Poisson-like assumptions (i.e., quasi-Poisson) or a negative 
binomial model (see Hosmer and Lemeshew 2002).  

For a quasi-poisson regression, the variance is assumed to be a linear function of the 
mean; for negative binomial regression, a quadratic function. The quasi-Poisson model and 
negative binomial model can account for overdispersion, and both have two parameters. Both are 
commonly available in software packages such as SAS, S, S-plus, or R. A natural question for 
the ecologist, entomologist or other experimeneter  is which pakage should be employed for 
qualitatiuvely regressively quantitating, geosampled, georfrencable, explanatorial, interpolatable,  
YFV-related, probablistic, empirically regressaqble, clinical, field or remote covariate, paramter 
estiomator coefficients.  SAS may  show striking differences between quasi-Poisson regressions 
and negative binomial regressions for a particular  time serie dependent YFV-related 
probablsitically geosampled data set. Unfortunately, there is surprisingly little guidance in the 
statistical literature, especially for the regression case for YFV-related clinical, field or remote 
geosampled LULC variables. Gardner et al. (1995) found little practical difference, but preferred 
a negative binomial model when a distributional form is required. Terceiro (2003) compared 
models using a Kolmogorov-Smirnov goodness-of-fit measure, and found cases where each 
model fit better. Potts and Elith (2006) found that a zero-inflated model was better than either 
quasi-Poisson or negative binomial for modeling abundance of a rare plant species, but they 
point out that zero-inflation is a special type of overdispersion that may be most appropriate 
when occurrence is rare (a specific mechanism creating excessive zeros). 

For any given decomposable, empirically regressable,explanatorial, clinical, field or 
remote geosampled YFV-related georfrencable, geospatially interpolatable, geoclassifed, LULC, 
dataset, information theoretic approaches such as Akaike information criteria (AIC; Akaike 
1973) or Bayesian information criteria (BIC; Schwarz 1978) might be considered to choose 
between a quasi-Poisson model and a negative binomial. These approaches depend on a 
distributional form and a likelihood; however, quasi models are only characterized by their mean 
and variance, and do not necessarily have a distributional form. For this reason, Burnham and 
Anderson (2002:67) developed quasi-AIC (QAIC), but they only used it to compare within the 
quasi class of models (e.g., for subset selection of covariates), and not between quasi models and 
models with distributional forms. Nevertheless, Sileshi (2006) compared QAIC for quasi-Poisson 
to AIC for negative binomial, though the validity of this approach has not been demonstrated for 
YFV-related probablistic , endemic , transmission-oriented, data analyses.. In theory, any model 
selection method that depends on full distributional likelihoods, such as Bayes factors (Raftery 
1995) or minimum description length (Rissanen 1978), including the information theoretic 
approaches, would not help choose between a quasi-Poisson and negative binomial model. 

With the lack of a demonstrated information theoretic approach, an ecologist, 
entomologist or other experimenter could adopt predictive or goodness-of-fit criteria as used by 
Gardner et al. (1995), Terceiro (2003), and Potts and Elith (2006), to choose between a quasi-
Poisson and negative binomial model. However, a good understanding of the theoretical 
differences between them can form the basis for an a priori decision based on scientific purposes 
for generating  robust , geoclassified, YFV-related, probablistic clinical, field or remote-specified  
LULC predictors with minmal forecast uncertainties. Extra-binomial (i.e., extra Poisson) 
variation occurs when discrete data comes in the form of counts or proportion that display 
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greater variability than would be predicted when fitting a model which can be resolved using a 
negative binomial regression (Cressie 1993). 

As such, we constructed a robust negative binomial regression with a non-homogenous, 
gamma distributed mean in NL MIXED by making the by incorporating  in 
equation 1.2. This involved employing NLMIXED procedure to compute the conditional log-
likelihood functions of the  geosampled, YFV –related, clincial, field or remote geosampled data  
given the random effects of the explanatorial, endemic, transmission-oriented, clinical, field and 
remote specified, covariate parameter estimator coefficients. Note, however, that in addition to 
these basic equations, the NLMIXED procedure employed a number of checks for missing 
values and floating-point arithmetic. The NLMIXED procedure computed the conditional log-
likelihood functions by adding the LIST debugging option to the PROC NLMIXED 
statement. The following statements were used to quantitate the extra Poisson variation in our 
time series dependent, geopredictive, endemic, explanatorial, transmission-oriented, YFV-
related, regression-based,eco-epidemiological, risk model: 
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This parameterization of the gamma distribution differed from the parameterization  

employed in the GLIMMIX procedures. The following statements revealed that the equivalent 
reparameterization in the NLMIXED procedure fit the generalized time series, geopredictive, 
endemic, transmission-oriented, YFV-related, probablistic, regression-based, linear model for the 
gamma-distributed data in the parameterization of the GLIMMIX procedure employing   

   proc glimmix; 
      YFV model y = x / dist=gamma s; 
   run; 
   proc nlmixed; 
      parms b0=1 b1=0 scale=14; 
      linp = b0 + b1*x; 
      mu   = exp(linp); 
      b    = mu/scale; 
      YFV-model y ~ gamma(scale,b); 
   run; 

 
 

 

 =  
 

This form of the negative binomial distribution was one of the many parameterizations in which 
the mass function or log-likelihood function appeared in the residually forecasted probablistic 
derivatives. Another parameterization we employed in this research was as follows: 

 

 with  

The parameterization of the negative binomial distribution in the NLMIXED procedure 
differs from that in the GLIMMIX and GENMOD procedures (www.sas.edu). The following 
statements revealed the equivalent formulations for  MLE in the GLIMMIX and NLMIXED 
procedures in our negative binomial time series dependent, geopredictive, explanatorial, 
endemic, transmission-oriented, YFV-related, regression-based model:  

   proc glimmix; 
     model y = x / dist=negbin s; 
   run; 
   proc nlmixed; 
      parms b0=3, b1=1, k=0.8; 
      linp = b0 + b1*x; 
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      mu = exp(linp); 
      p  = 1/(1+mu*k); 
      model y ~ negbin(1/k,p); 
   run; 

 
We then employed  

 
  

 =  
 

 
The negative binomial, time series dependent, geopredictive, endemic transmission-

oriented, YFV-related, regression-based, probablistic,  risk–related distribution was then 

rewritten as . Thus, the negative binomial 
distribution was derived as a gamma mixture of the Poissonized, explanatorial, YFV-related, 
randomized clinical, field and remote geosampled ,time series dependent variables. The 
conditional mean in the models was then  and conditional variance 

was  . 
 
To estimate the time series dependent, geopredictive, YFV-related, cluster-based 

regression models, we specified DIST=NEGBIN(p=1) in the MODEL statement in PROC REG. 
The negative binomial model NEGBIN1, set  then had the variance 
function , which was linear in the mean. The log-likelihood function of the 
NEGBIN1 regression model was thereafter derived from the equation: 

= = . The gradient for the models was 

then  and . 
The seasonal, YFV-related, geopredictive, negative binomial regression model variance 

function , was referred to as the NEGBIN2 model. To estimate this model, we 
specified DIST=NEGBIN (p=2) in the MODEL statements. A test of the Poisson distribution 
was then performed by testing the hypothesis that . A Wald test of this hypothesis was 
also provided which then rendered the reported t statistic for the estimates in the regression 
models. The log-likelihood function of the models (NEGBIN2) was thereafter generated by the 

equation = = , where   was an 

integer and the gradient was  and 

.  
 
Jacob et al. (2010c) considered a general class of negative binomial models with mean  

and variance function  for treating overdispersion in a time series-dependent, 
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geopredictive West Nile Virus (WNV) mosquito-related, vector (i.e., Culex quinquefacistus) 
habitat regression, cluster-based, risk model in Birmingham, Alabama.  The NEGBIN2 model 
with , was the standard formulation of the negative binomial Cx. quinquefasciatus 
probabilistic, forecasting eco-epidemiological, risk   model. Although the formulation here we 
did  derive  the YFV-related geopredictive, time series dependent, risk model  employing  the 
same technique as in Jacob et al. (2010c)  there were  other independent values of p 

,  in the district-level explanatorial models which had the same density 
 except that  was replaced by . 
 

The statisticians George Box and David Cox developed a procedure to identify an 
appropriate exponent (Lambda = l) to use to transform data into a “normal shape.” The Lambda 
value indicates the power to which all data should be raised. In order to do this, the Box-Cox 
power transformation searches from Lambda = -5 to Lamba = +5 until the best value is found. 
Table 1 shows some common Box-Cox transformations, where Y’ is the transformation of the 
original data Y. Note that for Lambda = 0, the transformation is NOT Y0 (because this would be 1 
for every value) but instead the logarithm of Y.  

Table 1: Common Box-Cox Transformations 

l Y’ 
-2 Y-2 = 1/Y2 
-1 Y-1 = 1/Y1 

-0.5 Y-0.5 = 1/(Sqrt(Y)) 
0 log(Y) 

0.5 Y0.5 = Sqrt(Y) 
1 Y1 = Y 

2 Y2 

 Figure 2 shows non-normally distributed cycle time data. Using the Box-Cox power 
transformation in a statistical analysis software program provides an output that indicates the 
best Lambda values  
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Figure 2: Example of Non-normally YFV  Distributed  LULC Data at the Riceland Gulu 
study site 

 

Figure 3: Example Box-Cox Plot of YFV  Data at the Riceland Gulu study site 

 

The lower and upper confidence levels (CLs) show that the best results for normality were 
reached with Lambda values between -2.48 and -0.69. Although the best value is -1.54 (estimate 
in Figure 3), the process works better if this value is rounded to a whole number; this will make 
it easier to transform the data back and forth. The best whole-number values here are -1 and -2 
(the inverse function of Y and Y2, respectively). The histogram in Figure 4 shows the transformed 
data using Lambda = -1, now more normally distributed. 

 

 

 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

302 
Copyright © acascipub.com, all rights reserved.  

Figure 4: Data Transformed Using Lambda = -1 at the Riceland Gulu study site 

 
  
Shapiro–Wilk diagnostic test: The Shapiro–Wilk test was then employed to test the geo-
spatiotemporal, geosampled, cluster-based, explanatorial, probabilsitic, YFV-related, LULC-
oriented, georeferenced, geopredictive covariate coefficient estimates . In SAS/GIS, the 
primary test statistics for detecting the presence of non-normality is the Shapiro-Wilk 
(www.sas.com). Jacob et al. (2008b) used a Shapiro-Wilk test to check the normality assumption 
in a robust, geopredictive, autoregressive, malaria-related, mosquito, aquatic, larval habitat, 
distribution model of An. gambiae s.l. in multiple, explanatorial datasets of georeferenced, 
clinical, field and remote-geosampled, geopredictive, covariate, paramter estimator coefficients 
by constructing a W statistic. W represents the ratio of an optimal uncertainty error estimator of 
the residual variance based on the square of a linear combination of  the ordered statistic which 
in turn is based on the corrected sum of squares estimator of the variance( Hosmer and 
Lemeshew 2002). Several diagnostics for the assessment of model misspecifications due to 
dependence and spatial heterogeneity were then developed using as an application of the 
Lagrange Multiplier principle.  
      

In mathematical optimization, the method of Lagrange multipliers provides a strategy for 
finding the local maxima and minima of a function subject to equality constraints. For instance, 
Jacob et al. (2008)  constructed a geopredictive autoregressive An. gambiae s.l. aquatic larval 
habitat, probablistic , time series dependent, regression risk model were optimized employing 
maximize f(x,y) subject to g(x,y)=C. The authors then introduced a new observational variable 
(λ) into the model and studied the Lagrange function which was defined as 

. The malarial, geopredictive, eco-epidemiological, YFV-related, 
forecasting, risk model residual derivatives revealed that when   was a maximum of 

for any constrained problem in the model. Interestingly, we noticed that there existed  
such that  was a stationary point (geosampled, georeferenced, geoclassified, YFV-
related explanatorial LULC) for the Lagrange function in the model. Additionally, in the model 
the stationary points were those points that where the partial derivatives of  were zero, ( i.e. 

).  
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We constructed a Shapiro-Wilk test statistic [i.e., ]in ArcGIS. We noticed 
in our probablistic,  regression-based, time series-related, YFV-related geopredictive, eco-
epidemiological, risk model when X(1) was the ith order statistic, (i.e., the ith-smallest number in 
the sample dataset);   was the sample mean; and, the constants  were  

rendered by where  and m1…,Mn. Additionally, 
the residual expected uncertainty values from the order statistics of the i.i.d. random YFV 
regressors was obtained from the standard normal distribution when  was the covariance matrix 
of those order statistics. To perform the test, the W statistic was initially constructed by 
considering the regression of the ordered geosampled  empirically regressed, clinical, field  and 
remote values in ArcGIS based on the corresponding expected normalized ordered statistics, 
which was linearized for determining the distribution of anthropogenic populations on various 
time series dependent,  geoclassified LULCs. After W was calculated, the hypothesis of 
normality was rejected in the autoregressive, explanatorial, YFV-related, risk model residual 
error matrix since W was less than a quintile from any geosampled value in the model. 

      These data were then furthered analyzed via a Q-Qin ArcGIS®. A Q-Q plot is a plot of the 
quintiles of two distributions against each other, or a plot based on estimates of the quintiles; the 
pattern of points in the plot was then used to compare the two distributions (Anselin 1995). The 
main step in constructing our Q-Q plot was estimating the quintiles geospatially derived from the 
geosampled, georeferenced, YFV-related, time series,  ,geopredictive, covariate, parameter 
estimator coefficients. 

 Quantiles are values taken at regular intervals from the inverse of the CDF of a random 
variable (geosampled, YFV-related, LULC explanatorily, interpolatable, unmixed, biosignature 
endmembers). Dividing ordered data into essentially equal-sized entomological-related,time 
series-dependent, probabilistic, eco-epidemiologist subsets is the motivation for -quantiles; the 
quantiles would be the explanatorial, clinical, field or remote –specified covariate, paramter 
estimator coefficient values marking the boundaries between consecutive subsets. Put another 
way, a -quantile for a random geosampled, time series dependent,YFV –related, eco-
epidemiological, geopredictive variable is a value such that the probability that the random 
variable will be less than  at most and the probability that the random variable will be 
greater than is at most . By so doing, we assumed that  of the -
quantiles may be easily tabulated, one for each integer  satisfying  in the YFV-related 
dataset opf residually forecasted derivatives.  In some cases the value of a quantile may not be 
uniquely determined, as can be the case for the median of a uniform probability distribution on a 
set of even size(Hosmer and Lemeshew 2002). 

If one or both of the axes in a Q-Q plot is based on a theoretical distribution with a 
continuous CDF, all quintiles are uniquely defined and can be obtained by inverting the CDF in 
ArcGIS®(http://webhelp.esri.com/arcgisdesktop/). Interestingly if one or both of the axes in a Q-
Q plot is based on a theoretical distribution with a continuous CDF generated from 
probablistically regressing an empirical geosampled dataset of entomological-related, 
geopredictive, time series variables then all the quintiles will be  uniquely defined and can be 
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obtained by inverting the CDF (see Jacob et al. 2012). If a seasonal, YFV-related, probability 
distribution with a discontinuous, CDF, time series-related, LULC-oriented, and rainfall 
distributions are being compared, some of the quintiles may not be defined, so an explanatorily 
interpolated quintile may have to be plotted (see Fotheringham 2002). If the Q-Q plot is based on 
time-series data, there are multiple quintile estimators in use (Cressie 1993). Rules for forming 
Q-Q plots when determining quintiles must be estimated or interpolated are called plotting 
positions (Anselin 1995).  

          To construct the time series dependent, explanatorial, YFV-related, regression, Q-Q plot in 
ArcGIS, it was necessary to use an interpolated quintile estimate so that quintiles corresponded 
to the respected underlying probability distribution. Given the CDF functions F and G, with 
associated quintile functions F −1 and G−1 , the inverse function of the CDF in the model 
represented  the quintile function. The Q-Q plot then drew the qth quintile of F against the qth 
quintile of G for a range of the geosampled explanatorial, values of q. Thus, the Q-Q plot was a 
parametric curve which was then indexed over [0,1] with the geosampled, YFV-related, 
regression-based, covariate, parameter estimator,  coefficient  values in the real plane R2. Then 
we employed the formula k / n for k = 1, ..., n, as these were the quintiles that the geosampling 
distribution realized in the models.  

Unfortunately, the last of these, n / n, corresponded to the 100th percentile – the 
maximum value of the theoretical distribution, which was infinite in the time series, eco-
epidemiological, probablistic, YFV, forecasting, risk model. To fix this, we shifted the 
geosampled, georeferenced, explanatorial, geopredictive, covariate, paramter estimator 
coefficient estimates over, using (k − 0.5) / n, and spaced the geo-spatiotemporal geosampled 
LULC points evenly in uniform distribution, using k / (n + 1). By so doing, a probability plot was 
generated where the quartiles were the rankits, (i.e., the quintile of the expected value of the 
order statistic of a standard normal distribution). In ArcGIS-based statistics, rankits of a set of 
data are the expected values of the order statistics of a sample from the standard normal 
distribution which  are primarily used as a graphical technique for normality testing 
(http://webhelp.esri.com/arcgisdesktop/). The district-level Q-Q plots then compared the shapes 
of the distributions while providing a graphical view of how the properties such as georefernced 
LULC geolocation, scale, and skewness were similar or different in the two distributions. 

In terms of heuristics  for the quartiles of  the comparison district-level distributions, we 
employed  the formula k/(n + 1) as in Jacob et al. (2011c) .Although several different formulas 
have been employed or proposed as symmetrical plotting positions for seasonal, entomological-
related, explanatorial, geopredictive,  covariate,parameter estimator, coefficient values such 
formulas commonly have the form (k − a)/(n + 1 − 2a) for some value of a in the range from 0 to 
1/2, which commonly renders  a range between k/(n + 1) and (k − 1/2)/n. However, our time 
series-related, YFV-related, eco-epidemiological, forecasting, risk  model, probabilistic residuals 
could not generate an accurate depiction of the regressed  data as they were highly non-Gaussian. 
Although the georefernced points plotted in the ArcGIS-oriented, explanatorial,  Q-Q plot where 
non-decreasing when viewed from left to right as expected (see Anselin 1995), the non-normality 
inherent in the geosampled, YFV-related ,geopredictive, explanatorial, covariate, paramter 
estimator coefficients could not be cartographically defined nor displayed. If the two 
distributions being compared are identical, the Q-Q plot follows the 45° line y = x. 
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(www.esri.com). Further, if  geosampled distributions agree after linearly transforming the 
values in one  distribution, then the Q-Q plot follows some line, but not necessarily the line y = x 
( see Anselin 1995).   

In our explanatorial, geopredictive, eco-epidemiological, YFV- related, forecasting,  risk 
model, residual derivatives, the Q-Q plot was not flatter than the line y=x, and as such the 
distribution plotted on the horizontal axis was more dispersed than the distribution plotted on the 
vertical axis. Conversely, the generalized trend of the Q-Q plot was not steeper than the line y=x, 
and as such the distribution plotted on the horizontal axis. Generally Q-Q plots delineating time 
series dependent, georefernced, seasonal, entomological-related regression–based, geopredictive, 
eco-epidemiological, covariate, parameter estimator coefficient values are often arced or “S”, 
indicating that one of the rendered distributions is more skewed  than another, or that one 
distribution has heavier tails than another (see, Jacob et al. 2011c, Jacob et al. 2009d)  

A “heavy tail” random variable takes extreme values, both low and high in a classic case, 
more frequently than does a normal random variable (Hosmer and Lemeshew 2002). Heavy tails  
in a explanatorial, geopredictive, clinical, field or remote, geosampled YFV-related eco-
epidemiological forecasting, risk model imply high variance but a heavy tail distribution is not 
normal with high variance; beyond some point its extreme values are more common even than in 
a normal distribution with the same variance.(see Jacob et al. 2009).) Similarly a “light tail” 
random variable such as seen in a uniform, entomological-related, geo-spatiotemporal, 
distribution would  take extreme low and high geosampled values less frequently than would   a 
normal random variable. Light tails imply low variance but “light tail” extreme values are less 
common even than in a normal distribution with the same variance (Hosmer and Lemeshew 
2002). 

 
2.2 Autocorrelation model: Initially, a misspecification perspective was qualitatively 
regressively quantitated using a spatial autocorrelation estimation analysis and the seasonal 
YFV-related, probablistic indicators. The model was generated using the  (i.e. 
regression equation) assuming the geosampled data had autocorrelation disturbances. The model 
also assumed that this data could be decomposed into a white-noise component, ,Ɛ and a set of 

unspecified and/or misspecified sub-models that had the structure

*




 EXBy
. White noise in a 

seasonal, autoregressive, vector,  entomological –related, eco-epidemiological, risk model is a 
univariate or multivariate discrete-time stochastic process whose terms are independent and i.i.d. 
with a zero mean (Jacob et al. 2007). The misspecification term was E γ. Quantification of the 
topographic LULC patterns generated from the distribution of the georeferenced, explanatorial, 
YFV-related geopredictive, empirical, covariate coefficients was required to describe 
independent key dimensions of the underlying spatial processes in the geosampled data for 
defining a spatial pattern in the misspecification term. 

 
A spatial autoregressive (SAR) model was then generated that used an explanatorial 

geopredictive, time series dependent, predictor variable Y, as a function of nearby geosampled, 
empirically regressed, YFV-related, covariate, parameter estimator, coefficient values. Y had an 
indicator value I (i.e., an autoregressive response) and/or the residuals of Y which were values of 
nearby entomological-related, regression-related, parameter estimators, the SAR model furnishes 
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an alternative specification that frequently is written in terms of matrix W (see Jacob et al. 
2005b, Jacob et al. 2006). As such, its spatial covariance is a function of the matrix (I - ρ CD-1)(I 
- ρD-1C) = (I - ρ WT)(I - ρ W), where T denotes matrix transpose (see Griffith 2003). The 
resulting matrix is symmetric, and may be considered a second-order specification as it includes 
the product of two geospatial structure matrices (i.e., WTW) – adjacent geosampled districts as 
well as those having a single intervening unit involved in the autoregressive function. This 
matrix restricted positive values of the autoregressive parameter to the more intuitively 
interpretable range of . 

 
Euclidean distance measurements were defined in terms of an n-by-n geographic weights 

matrix, C, in ArcGIS whose  values were; 1 if the geosampled LULC geolocations i and j 
were deemed nearby, and 0 otherwise. Adjusting this matrix by dividing each row entry by its 
row sum gave C1, where 1 was an n-by-1 vector of ones which converted this matrix to matrix 
W. The resulting SAR model specification, with no geosampled, georeferenced, explanatorial,  
YFV-related, geopredictive, autocovariate probablistic, coefficient values present (i.e., the pure 
spatial autoregression specification), took on the following form: εWY1Y   ρρ)-μ(1    ,  
where μ  was the scalar conditional mean of Y, and  ԑ was an n-by-1 error vector whose 
parameters were statistically independently distributed  normally random variates. The spatial 
covariance matrix for analyzing the geosampled, georeferenced, geopredictive, YFV-related, 
explanatorial, covariate, paremeter estimator coefficients was then calculated using 

21σ)]ρ -)('ρ -[()]μ-()'μ-E[(  WIWIΣ1Y1Y , where E ( ) denoted the calculus of expectations, I 
was the n-by-n identity matrix denoting the matrix transpose operation, and 

2σ  was the error 
variance. 

 
 Next, an autoregressive model specification was generated. The model was written as: 

where   represented the geo-spatiotemporal, geosampled, 
explanatorial, clinical,  field and remote specified, georeferenced, parameter estimators of the 
YFV-related regression model, c which was a constant when  was the white noise. When 
coupled with regression and the normal probability model, an autoregressive specification results 
in a covariation term by characterizing spatial autocorrelation and by denoting the autoregressive 
parameter that with ρ, a conditional autoregressive covariance specification (Griffith 2003) 
which in the autoregressive,time series dependent,  YFV-related eco-epidemiological, 
forecasting, risk model involved the matrix (I - ρ C), where I was an n-by-n identity matrix. In a 
robust  autoregressive expression; however, the response variable is on the left-side of the 
equation, while the spatial lagged version of this variable is on the right side (Glantz and Slinker 
2001, Anselin 1988). Therefore, one of the main objectives during the autoregressive 
specification process was to bring the spatially unlagged endogenous variable  exclusively on 
the left-hand side of the district-level, explanatorial YFV-related, regression equation in order to 
decorrelate the geosampled, georeferenced,  geopredictive, covariate, paramter estimator, 

coefficient errors. This was accomplished by expanding the matrix term: 
  





 
0

1

k

kkVVI 
 as an 

infinite power series, which was feasible under the assumption that the underlying geospatial 
process in the geosampled, eco-entomological, explanatorial, clinical, field and remote-specified, 
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time series dependent datasets was stationary (see Bivand, 1984). The simultaneous 
autoregressive,probablistic, geo-spatiotemporal, error model was then rewritten 
as . Substituting this transformation rendered: 

       XVXVIy 1
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As a part of deciphering the geospatial surface of a geosampled, YFV-related, time 

series-related, geopredictive, eco-epidemiological, explanatorial, variable, it was important to 
consider how the geosampled, LULC, data feature attributes expanded over space and time. This 
was done by specifying the “case” and “order” of the connectivity.  

 
We noticed that the misspecification term  in the explanatorial, 

geopredictive YFV, time series eco-epidemiological, model, remained uncorrelated with the 
exogenous variable, , as the standard OLS assumption of the disturbances, Ɛ, were uncorrelated 
with the error coefficients generated from the parameter estimators (b). The spatial lag model 

was expressed as: .Substituting the transformation rendered:
 






0k

kk XVy 
 and  

   








  
termcationmisspecifi

k

kk XVXy
1

. The misspecification term  included the 
exogenous variables . Consequently, the exogenous variables were correlated with the 
misspecification term. Under this condition, standard OLS results for the basic explanatorial, 
YFV-related, linear regression model , generated from the geosampled, 
georeferenced, erroroneous, covariate, parameter estimator, uncertainty coefficients, provided 
biased estimates  of the underlying regression  predictors. 

An autoregressive integrated moving average (ARIMA) model was then constructed in 
ArcGIS based on  generalization of an autoregressive moving average (ARMA) model. The 
model was referred an ARIMA(p,d,q) model where p, d, and q were non-negative integers that 
refer to the order of the autoregressive, integrated, and moving average parts of the model 
respectively. ARIMA models form an important part of the Box-Jenkins approach to time-series 
modeling (Cressie 1993). Commonly, these models are applied in such cases where data show 
evidence of non-stationarity or where an initial differencing step corresponding to the 
"integrated" part of the model can be applied to remove the non-stationarity (Griffith 2003). 
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 An ARIMA model was fitted to the time series dependent, explanatorial, YFV-related, 
eco-epidemiological data to geopredict sample points (i.e., case distribution) in the series. 
Employing a time series of data Xt where t was an integer index and theXT was the empirical 
dataset of geosampled,  geopredictive, explanatorial, covariate, paramter estimator, coefficient  

values, then a ARMA(p,q) model was constructed by:  where  was the 
lag operator>In the model   was   the  explanatorial,  clinical, field or remote geosampled, geo-
spatiotemporal, covariate,  parameter estimators  of the autoregressive part of the model and  the 

  was the parameters of the moving average part ( see Box and Jenkins 1985). The error terms 
  in such a model would be generally assumed to be independently distributed variables in a 

robust, geopredictive, YFV-related, time series-related, cluster-based, regression model using a 

normal distribution with zero mean, for instance. We assume now the polynomial had 

a unitary root of multiplicity d. This value was rewritten as:  An 
ARIMA(p,d,q) process then expressed this polynomial factorization property which was given 
by the explanatorial, geopredictive, YFV-related, time series dependent, eco-epidemiological, 

forecasting, risk model expression .The residuals were then 
classified as a particular case of an ARMA(p+d,q) process having the auto-regressive 
polynomial with some roots in the unity. ARIMA model with d>0 is not wide sense stationary 
(Cressie 1993). 

Because Bayesian model fit using MCMC algorithms is computationally expensive, 
preliminary model identification to choose the ARIMA parameters, p, d, q, P, D, and Q, was 
performed using standard (frequentist) tools developed for time series with Gaussian marginal 
errors, rather than through fitting many possible MCMC models. in a MATLAB terminal to 
output the figures above. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16
17
18

% METROPOLIS-HASTINGS BAYESIAN POSTERIOR rand('seed',12345)  
 % PRIOR OVER SCALE PARAMETERS B = 1;  
 % DEFINE LIKELIHOOD likelihood = inline('(B.^A/gamma(A)).*y.^(A-1).*exp(-
(B.*y))','y','A','B');  
 % CALCULATE AND VISUALIZE THE LIKELIHOOD SURFACE yy = 
linspace(0,10,100);  
AA = linspace(0.1,5,100);  
likeSurf = zeros(numel(yy),numel(AA)); for iA = 1:numel(AA); 
likeSurf(:,iA)=likelihood(yy(:),AA(iA),B); end;  
   
figure;  
surf(likeSurf); ylabel('p(y|A)'); xlabel('A'); colormap hot  
 % DISPLAY CONDITIONAL AT A = 2 hold on; ly = 
plot3(ones(1,numel(AA))*40,1:100,likeSurf(:,40),'g','linewidth',3)  
xlim([0 100]); ylim([0 100]);  axis normal  
set(gca,'XTick',[0,100]); set(gca,'XTickLabel',[0 5]);  
set(gca,'YTick',[0,100]); set(gca,'YTickLabel',[0 10]);  
view(65,25)  
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

legend(ly,'p(y|A=2)','Location','Northeast');  
hold off;  
title('p(y|A)');  
 % DEFINE PRIOR OVER SHAPE PARAMETERS prior = inline('sin(pi*A).^2','A');  
 % DEFINE THE POSTERIOR p = inline('(B.^A/gamma(A)).*y.^(A-1).*exp(-
(B.*y)).*sin(pi*A).^2','y','A','B');  
 % CALCULATE AND DISPLAY THE POSTERIOR SURFACE postSurf = 
zeros(size(likeSurf)); for iA = 1:numel(AA); postSurf(:,iA)=p(yy(:),AA(iA),B); end;  
   
figure  
surf(postSurf); ylabel('y'); xlabel('A'); colormap hot  
 % DISPLAY THE PRIOR hold on; pA = 
plot3(1:100,ones(1,numel(AA))*100,prior(AA),'b','linewidth',3)  
 % SAMPLE FROM p(A | y = 1.5) y = 1.5;  
target = postSurf(16,:);  
 % DISPLAY POSTERIOR psA = plot3(1:100, 
ones(1,numel(AA))*16,postSurf(16,:),'m','linewidth',3)  
xlim([0 100]); ylim([0 100]);  axis normal  
set(gca,'XTick',[0,100]); set(gca,'XTickLabel',[0 5]);  
set(gca,'YTick',[0,100]); set(gca,'YTickLabel',[0 10]);  
view(65,25)  
legend([pA,psA],{'p(A)','p(A|y = 1.5)'},'Location','Northeast');  
hold off  
title('p(A|y)');  
 % INITIALIZE THE METROPOLIS-HASTINGS SAMPLER  
% DEFINE PROPOSAL DENSITY q = inline('exppdf(x,mu)','x','mu');  
 % MEAN FOR PROPOSAL DENSITY mu = 5;  
 % DISPLAY TARGET AND PROPOSAL figure; hold on;  
th = plot(AA,target,'m','Linewidth',2);  
qh = plot(AA,q(AA,mu),'k','Linewidth',2)  
legend([th,qh],{'Target, p(A)','Proposal, q(A)'});  
xlabel('A');  
 % SOME CONSTANTS nSamples = 5000;  
burnIn = 500;  
minn = 0.1; maxx = 5;  
 % INTIIALZE SAMPLER x = zeros(1 ,nSamples);  
x(1) = mu;  
t = 1;  
 % RUN METROPOLIS-HASTINGS SAMPLER  
while t < nSamples  
    t = t+1;  
   
    % SAMPLE FROM PROPOSAL     xStar = exprnd(mu);  
   
    % CORRECTION FACTOR     c = q(x(t-1),mu)/q(xStar,mu);  
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65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 

    % CALCULATE THE (CORRECTED) ACCEPTANCE RATIO     alpha = min([1, 
p(y,xStar,B)/p(y,x(t-1),B)*c]);  
   
    % ACCEPT OR REJECT?     u = rand;  
    if u < alpha  
        x(t) = xStar;  
    else 
        x(t) = x(t-1);  
    end end 
 % DISPLAY MARKOV CHAIN figure;  
subplot(211);  
stairs(x(1:t),1:t, 'k');  
hold on;  
hb = plot([0 maxx/2],[burnIn burnIn],'g--','Linewidth',2)  
ylabel('t'); xlabel('samples, A');  
set(gca , 'YDir', 'reverse');  
ylim([0 t])  
axis tight;  
xlim([0 maxx]);  
title('Markov Chain Path');  
legend(hb,'Burnin');  
 % DISPLAY SAMPLES subplot(212);  
nBins = 100;  
sampleBins = linspace(minn,maxx,nBins);  
counts = hist(x(burnIn:end), sampleBins);  
bar(sampleBins, counts/sum(counts), 'k');  
xlabel('samples, A' ); ylabel( 'p(A | y)' );  
title('Samples');  
xlim([0 10])  
 % OVERLAY TARGET DISTRIBUTION hold on;  
plot(AA, target/sum(target) , 'm-', 'LineWidth', 2);  
legend('Sampled Distribution',sprintf('Target Posterior'))  
axis tight 

A visual analysis of the YFV-related, time series data detected the presence of a long-
term (i.e., inter annual) change in the mean level, an unstable variance (which appeared to 
increase with the mean), and multiplicative seasonality (i.e., the size of the seasonal effect was 
proportional to the mean). Thus, for the preliminary Gaussian analysis, the data was transformed 
using a fitted Box-Cox transformation in order to stabilize the variance, to make the seasonal 
effect additive, and to make the data approximately normally distributed. The trend in the Box-
Cox transformed series was treated as a stochastic trend, which was of first order difference 
stationary. The augmented Dickey – Fuller test  on a lag order of 15 was used to detect the 
presence of a unit root, to assess whether the series needed to be integrated differenced. Gaussian 
SARIMA models and ARIMA models with a second-order, harmonic, seasonal component, both 
with d = 1 were computed  due to the assumed presence of a unit root. Thus harmonic product 
was fitted with the (frequentist) R software package ‘stats’, and models were evaluated based on 
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Akaike’s information criterion (AIC). The covariate matrix for the seasonal effect using second 
order harmonics was given by  using two sine and 
cosine pairs. A time independent intercept was not included as the intercept dropped out of the 
equation after the first order differencing simulation exercise.     

Bayesian negative binomial versions of four SARIMA models and two ARIMA models, 
with second-order harmonics were identified in the preliminary, YFV-related, eco-
epidemiological, risk analysis .These models  were implemented in SAS  employing  
untransformed, seasonal,  time series dependent, stochastically/deterministically explanatorily, 
interpolatable data variables using a logarithmic link function and ZQ1 transformation. Since 
there were only three observations with zero counts, the results was not sensitive to the choice of 
the transformation constant for ZQ1 which we set at c = 1. Also, versions with identity link were 
considered. Models were evaluated based on two criteria. The first was the deviance information 
criterion (DIC), which was calculated as the mean of the posterior distribution of the deviance 
conditional on the probablistically geosampled clinical, field or remote specified, YFV-related 
observations (w) with  equal to the maximum w of the models compared and augmented with the 
number of effective estimated explanatorial parameters as penalty to prevent overfitting. Models 
with lower DIC were considered to have a better fit.  

A second criterion was defined as the mean absolute relative error of the fitted clincial, 

field or remote geosampled, time series geopredictor values (MARE): MARE = , 
where  was the fitted number of YFV cases at discrete time interval t, and f and l were the first 
and last discrete time intervals, respectively, of the time period under consideration. The MARE 
was calculated for both the entire series except for the first  probabilistic, YFV-related 
observations. Models were fitted to the entire time series dependent, forecasting eco-
epidemiological, explanatorial, autoregressive, clincial, field and remote-specified, risk model 
(i.e., f = +1, l). For the second half of the time series (f = 205,) the models were fitted to the 
first half of the time series only. 

Since the posterior, explanatorial, time series dependent, geopredictive distributions 
estimated at each fitted, YFV-related, LULC data point was skewed, the median of the posterior 
distribution was taken for . The MARE is similar to the mean absolute percentage error 
(MAPE), which is applicable to series for which the variance is dependent on the mean (Hosmer 
and Lemeshew 2000). However, since the denominator was equal to or larger than one, this 
prevented problems with  the larger geosampled explanatorial, clincial, field  and remote, 
endemic, transmission-oriented, covariat, paramter estimator  coefficient  values caused by 
dividing by small numbers, and a major critique of the MAPE. The MARE statistic does not 
have a built-in penalty to prevent over fitting, but among models with similar value of MARE, 
the model with the least number of ecogeographic parameters is preferred(Griffith 2003). The 
MARE estimate is comparable across models with different distributional assumptions, in 
contrast to the DIC(Cressie 1993). Geo-predictive,  explanatorial,  YFV-related, eco-
epidemiological, time series dependent, forecasting, risk-related,  simulation models were run 
with three Markov chains of 11,000 iterations each including a burn-in of 1,000 iterations. 
Convergence was assessed by studying plots of the Gelman-Rubin convergence statistic (on 
estimated parameters), employing guidelines as  modified by Brooks and Gelman (1992a). 
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  We proposed a general approach to monitoring convergence of MCMC output in which 
m > 1 parallel chains were run with starting geosampled clincial, field  and remote, endemic 
transmission-oriented, covariate, paramter estimator  coefficient  values  that were overdispersed 
relative to the posterior distribution. Convergence is diagnosed when the chains have `forgotten' 
their initial values, and the output from all chains is indistinguishable. The gelman.diag 
diagnostic was applied to a single variable from the chain. It was based a comparison of within-
chain and between-chain variances. We estimated the variance of the stationary distribution: the 
mean of the empirical variance within each chain, W, and the empirical variance from all chains 
combined, was expressed as  sigma.hat^2 = (n-1)W/n + B/n  where n was the number of geo-
spatiotemporally geosampled, clinical, field or remote geosampled, YFV-related  iterations and 
B/n was the empirical between-chain variance.  If the chains have converged, then both estimates 
are unbiased (Cressie 1993).  

The convergence diagnostic was then  based on the assumption that the target distribution 
was normal for simulating YFV-related iterations. A Bayesian credible interval was constructed 
using a t-distribution with mean mu.hat = Sample mean of all chains were then  combined and 
variance was tabulated employing V.hat=sigma.hat2 + B/(mn). Subsequently, the degrees of 
freedom was estimated by the method of moments using d = 2*V.hat^2/Var(V.hat).Use of the t-
distribution accounts for the fact that the mean and variance of the posterior distribution are 
estimated (Griffith 2003). The convergence diagnostic itself was R=sqrt((d+3) V.hat /((d+1)W). 
Values substantially above 1 indicated lack of convergence. If the chains have not converged, 
Bayesian credible intervals based on the t-distribution were considered too wide, and had the 
potential to shrink by this factor if the MCMC run was continued.  

 Knowing whether the selected models and their underlying distributions fit the variation 
in the time series geosampled, YFV-related, temporal data adequately was of special interest to 
us. If these models are used to geopredict malaria cases in a discrete time interval (in this case, a 
month), then not only is the point estimate of the posterior, geopredictive distribution of interest, 
but also the entire distribution. Let be the cumulative, posterior, geopredictive distribution 
function of . The lower tail residual probability , (i.e. the value of the cumulative, 
posterior, geopredictive YFV distribution calculated at the observed clincial, field or remote  
data ) also called the probability integral transform, was calculated for each 
sampled month .  

Thereafter, a CDF of for all months of interest allowed for the analysis of the 
appropriateness of the time series dependent, YFV-related, probablistic, geopredictive, 
explanatorial, forecasting, eco-epidemiological risk model including the assumed underlying 
distribution. If the model fits the data appropriately, this ‘cumulative distribution function of 
residual probability values (C-R plot)’ will follow an approximately straight diagonal line 
between the origin and point (1,1), similar to a Probability-Probability plot( Box and Jenkins 
1985). The C-R plots were also used to assess appropriateness of models fitted to a time series 
with a Poisson GARIMA(1,1,0) structure.  

Thus, after fitting the eco-epidemiological, forecasting, risk, time series, YFV model and 
obtaining posterior distributions, the was calculated for each geosampled explanatorial 
observation. Because of the fact that the  CDF for the negative binomial models is discrete, the 
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residual probability value was randomized by drawing a random value from the uniform 
distribution in the interval , following a procedure by Dunn and Smyth 
(2005), where was estimated with 30,000 samples from this distribution. This procedure is 
advocated by Cressie (1993) for discrete GARMA models. The appropriateness of selected 
models was compared using plots of their  CDFs of (i.e., randomized) residual probability 
values, both on the entire, YFV-related,  case time series and on a dataset of explanatorial 
georeferencable observations, where case numbers were relatively low. 

It is standard practice to test time series explanatorial, entomological-related, time series 
dependent, eco-epidemiological, forecasting, risk model residuals for remaining autocorrelation 
(Jacob et al. 2005b, Griffith 2005). However, standard tools presume approximately Gaussian 
distributed data in these models. Therefore, the randomized residual probability values were 
converted into normalized randomized quantile residuals  employing the quantile function (i.e., 
inverse CDF ) of the normal distribution with zero mean and unity variance. Prior to conversion, 
randomized, residual probability values of zero (i.e., when all YFV-related samples from the 
posterior predictive distribution function were above the observed value) were set to 0.00001 and 
the probability values of 1(i.e., when all the YFV-related samples from the posterior predictive 
distribution function were below the observed value) were set to 0.99999. The normalized 
randomized probablistic, quantile residuals were analyzed thereafter for unquantitated latent 
autocorrelation with the Ljung-Box test and visual analysis of autocorrelation and partial 
autocorrelation functions. 
 

We then created a geopredictive model in C++ for qualitatively quantitating, a dataset of 
georeferencable, clinical, field and remote geosampled,  explanatorial, time series dependent, 
YFV-related variables based on three main covariate paramter estimators, namely rainfall, LULC 
change distances and human population statistics. The hypothesis was, as the rainfall increases, 
prevalence of Ae. aegypti increases, in turn increasing the chance of transfer of  YFV to human 
population.  Another hypothesis was that as the distance between human population in an agro-
village compelexes and forest region decreases, the probability of Ae aegypti infecting human 
population with YFV case distribution increase. And as the population of urban LULC areas 
increases, the probability of occurrence of an epidemic increases from small amount of infected 
humans.  
  
 To generate the effective prediction model from above hypothesis, we needed to 
determine accurate correlation between Yellow Fever occurrences and the c estimators discussed 
above. This  was addressed by 3-dimensional (D) regression. In our case, we had three covariate 
parameter estimators, rainfall, LULC and anthropogeic population. In the 3-D regression it was 
assumed that as population increased linearly the probability of Yellow Fever prevalence 
increased. It should be noted that the model was designed such that, it was dependent only on 
input provided. 
 
Table 2: Regressors establishing the relation between co-variates and Yellow Fever cases, 
following input data table  into C++  
             
  Year,  Rainfall, LULC,  Population, YFCases 
  2002,  1449,  5.3,  24067200, 0 
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  2003,  1456,  5.22,  25089400, 11 
  2004,  1482,  5.14,  25859700, 0 
  2005,  1253,  5.07,  26741300, 0 
  2006,  1374,  4.99,  27629300, 0 
  2007,  1477.9,            4.92,              28581300, 0 
  2008,  1320.2, 4.84,              29592600, 0 
  2009,  1311.2,             4.77,   30661300, 0 
  2010,  1702.1, 4.71,   31784600, 106 

RESULTS 

Initially, the CLUSTER procedure in SAS hierarchically aggregated the geosampled time 
series, explanatorial, YFV-related observational geopredictors. PROC CLUSTER then computed 
all Euclidean distances in the empirical geosampled dataset based on the flexible-beta method. 
PROC CLUSTER thereafter generated the number of clusters in the time series-related, 
geopredictive, YFV-related, explanatorial, covariate parameter estimatators.  

PROC CLUSTER created an output dataset which was employed by the TREE procedure 
in SAS to draw a diagram of the YFV-related LULC cluster hierarchy. To obtain the five-cluster 
solution, we first employed PROC CLUSTER with the OUTTREE= option, and then used this 
output dataset as the input dataset to the TREE procedure. Within PROC TREE, NCLUSTER 
specified the number of clusters based on the georeferenced, geosampled, time series-dependent, 
explanatorial, geopredictive, YFV-related, data feature attributes and the OUT= options obtained 
the final solution and drew a tree diagram. Since we considered all the explanatorial, 
georeferenced, YFV-related, geopredictor covariate  paramter estimators to be equally important, 
we employed the STD option in PROC CLUSTER to standardize the variables to mean 0 and 
standard deviation 1.  A data analyst can remove outliers before using PROC CLUSTER with the 
STD option (www.sas.edu). 

  The relationship between prevalence of each individual potential time series dependent, 
YFV-related, geopredictive, explanatorial, predictor variable geosampled in the Gulu eco-
epidemiological study site was investigated by single variable regression analysis in PROC NL 
MIXED. We used a quadrature method to approximate a given explanatorial, geosampled, 
clinical, field and/or remote specified integral by a weighted sum over predefined abscissas for 
qualitatively regressively quantitating the seasonal, endemic, transmission-oriented, geosampled, 
random effects in the YFV-related, forecasting, eco-epidemiological, risk model. A good 
approximation can be obtained with an adequate number of quadrature points in a regressed 
dataset of  covariate parameter estimators as well as appropriate centering and scaling of the 
abscissas (Hosmer and Lemeshew 2000). Adaptive Gaussian quadrature for the integral over 

centered the integral at the empirical Bayes estimate of , which we defined as the vector that 
minimized with and set equal to their current estimates. The final 
Hessian matrix from this optimization was then used to scale the quadrature abscissas.  

We then employed to denote the standard Gauss-Hermite abscissas 
and weights in the seasonal, geopredictive, explanatorial, endemic, transmission-oriented, time 
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series dependent, clinical, field and remote geosampled, covariate paramter estimator 
coefficients as in (Golub and Welsch 1969 and Abramowitz and Stegun 1972). The adaptive 
Gaussian quadrature integral approximation was then parsimoniously quantitated using 

and where  
was the dimension of ,  was the Hessian matrix from the empirical Bayes minimization, 

 was a vector with elements , and  

PROC NLMIXED then selected  the number of quadrature points adaptively by 
evaluating the log-likelihood function at the starting values of the seasonal, geopredictive, 
explanatorial, endemic, transmission-oriented, clinical, field and remote geosampled, covariate 
parameter estimator until two successive evaluations had a relative difference less than the value 
of the QTOL= option. The specific search sequence was described under the QFAC= option. 
Using the QPOINTS= option, we adjusted the number of quadrature points to obtain different 
levels of accuracy in the probabilistically regressed clinical, field and remote specfiied, time 
series, empirical, geosampled, eco-epidemiological  dataset. Setting resulted in the 
Laplacian approximation as described in Beal and Sheiner (1992), Wolfinger (1993), Vonesh 
(1992, 1996), Vonesh and Chinchilli (1997), and Wolfinger and Lin (1997).  

The NOAD option in the PROC NLMIXED statement requested non-adaptive Gaussian 
quadrature. Here all  were set equal to zero and the Cholesky root of the estimated variance 
matrix of the seasonal, geopredictive, explanatorial, endemic, transmission-oriented, geo-
spatiotemporal clinical, field and remote geosampled, specified, random effects was substituted 
for   employing the expression for . In this case derivatives were computed 
using the algorithm of Smith (1995). The NOADSCALE option requested the same scaling 
substitution but with the empirical Bayes .  PROC NLMIXED then computed the derivatives of 
the adaptive Gaussian quadrature approximation for carrying out the default dual quasi-Newton 
optimization of the YFV-related explanatorial, time series dependent, clinical, field and remote 
variables.  

Another integral approximation in PROC NLMIXED we employed was the first-order 
method of Beal and Sheiner (1982, 1988) and Sheiner and Beal (1985). This approximation  was 
expressed in the geo-spatiotemporally, geosampled, YFV-related, geopredictive, linearized, 
endemic, transmission-oriented, explanatorial, clinical, field and remote, eco-epidemiological, 
specified, diagnostic,probablistic,  risk model when was normal—that is,  when 

where  was the dimension 
of , was a diagonal variance matrix, and  was the conditional mean vector of . The first-
order approximation was then derived by expanding with a one-term Taylor series 
expansion about , resulting in the approximation 

where was the Jacobean matrix 
evaluated at .  
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Assuming that  was normal with mean and variance matrix , the first-order 
integral approximation was computable in the seasonal, geopredictive, endemic, transmission-
oriented, explanatorial, clinical, field and remote geosampled, YFV, geo-spatiotemporal,eco-
epidemiological, probablistic, risk model in closed form after completing the square: 

w
here . The resulting approximation for was 
then minimized over to obtain the first-order estimates.  

Interestingly, the NLMIXED procedure first displayed the "Specifications" table, listing 
basic information about the nonlinear, seasonally mixed, YFV-related, explanatorial, 
geopredictive, endemic, transmission-oriented, clinical, field and remote geosampled analyses 
that we specified. This included the principal variables and estimation methods. The 
"Dimensions" table listed the counts of important quantities in our non-linear, mixed, 
transmission-oriented, eco-epidemiological geosampled, probablistic, explanatorily 
interpolatable,  endemic, risk model, including the number of observations, subjects, parameters, 
and quadrature points. The "Parameters" table displayed the information we provided with the 
PARMS statement and the value of the negative log-likelihood function evaluated at the starting 
seasonal, geopredictive, endemic, transmission-oriented, explanatorial, clinical, field and remote 
geosampled, risk model, covariate paramter estimator  coefficient values. The START option in 
the PROC NLMIXED statement displayed the gradient of the negative log-likelihood function at 
the starting values of the estimator coefficient values. If you also specify the HESS option, then 
the starting Hessian is displayed as well[www.sas.edu].  The iteration history consists of one line 
of output for each iteration in the optimization process. The iteration history is displayed by 
default because it is important that you check for possible convergence problems. The default 
seasonal, explanatorial, geopredictive, endemic, transmission-oriented, geosampled,  eco-
epidemiological, risk model iteration included the following variables: Iter, the iteration number; 
Calls, the number of function calls ,NegLogLike, the value of the objective function ;Diff, the 
difference between adjacent function values; MaxGrad, the maximum of the absolute (projected) 
gradient components (except NMSIMP) ;Slope, the slope of the search direction at the 
current parameter iterate (QUANEW only); Rho, the ratio between the achieved and 
geopredicted,  YFV-related, geo-spatiotemporal, endemic, clinical, field and remote geosampled 
values of Diff (NRRIDG only) ;Radius, the radius of the trust region (TRUREG only) ;StdDev, 
the standard deviation of the simplex values (NMSIMP only); Delta, the vertex length of the 
simplex (NMSIMP only) ;Size, the size of the simplex (NMSIMP only)  

For the QUANEW method, the value of Slope was significantly negative. Interestingly, 
the line-search algorithm had difficulty reducing the functional, seasonal, YFV-related, 
geopredictive, explanatorial,endemic, transmission-oriented, geosampled, clinical, field and 
remote specified, forecasting, eco-epidemiological, probablistic,  risk model explanatorial, 
clinical, field or remote-geosampled, covariate, parameter estimator, coefficient value 
sufficiently. When this difficulty was encountered, an asterisk (*) appeared after the iteration 
number. If there was a tilde after the iteration number, the BFGS update was skipped, and 
very high seasonal geosampled probablistic values of the Lagrange function were produced. 
Further, a backslash (  ) after the iteration number indicated that Powell’s correction for the 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

317 
Copyright © acascipub.com, all rights reserved.  

BFGS update was used. For methods employing second derivatives, an asterisk (*) after the 
iteration number means that the computed Hessian approximation is singular and has to be 
ridged with a positive value (www.sas.edu). For the NMSIMP method, only one line was 
displayed for several of our internal iterations. This technique skipped the output for some 
iterations as some of the termination tests (e.g., StdDev and Size) were rather time-consuming 
compared to the simplex operations, and they were performed only every five simplex 
operations.  

The ITDETAILS option in the PROC NLMIXED statement provided a detailed iteration 
history. Besides listing the current values of the geosampled, clinical, field or remote-specified, 
YFV geo-spatiotemporal parameter estimators and their gradients, the ITDETAILS option 
provided the following values in addition to the default output: Restart, the number of iteration 
restarts; Active, the number of active constraints; Lambda, the value of the Lagrange multiplier 
(TRUREG and DBLDOG only);Ridge, the ridge value (NRRIDG only) and Alpha, the line-
search step size (QUANEW only). An apostrophe (’) trailing the number of active constraints 
indicated that at least one of the active seasonal, YFV-related, geopredictive, explanatorial, 
endemic, transmission-oriented, eco-epidemiological, risk model constraints was released from 
the active set due to a significant Lagrange multiplier.  

Interestingly, the "Convergence Status" table contained a status message describing the 
reason for termination of the optimization. For ODS purposes, the name of this table was 
"ConvergenceStatus,” We then queried the nonprinting numeric variable Status to check for a 
successful optimization. This was useful in our batch processing, and for quantitating BY groups, 
for instance, in simulations. Successful convergence was then indicated by Status . The 
"Fitting Information" table listed the final, minimized, seasonal, YFV-related, geopredictive 
explanatorial, endemic, transmission oriented, probabilistic, ec-epidemiologica, risk model 
covariate,parameter estimator, coefficient value of times the log likelihood as well as the 
information criteria of Akaike (AIC) and Schwarz (BIC), as well as a finite-sample corrected 
version of AIC (AICC). The criteria were computed as follows:  

, = , = where was the negative 
of the marginal log-likelihood function, was the vector of the geosampled, empirically 
regressable, YFV-related parameter estimators,  was the number of eco-epidemiological 
estimators,  was the number of observational predictors, and was the number of explanatorial, 
clinical, field or remote-specified, YFV-related, geo-spatiotemporal subjects in the risk covariate 
analyses (LULC,meterological).  

The "Parameter Estimates" table listed the estimates of the seasonal geosampled, YFV-
related, geopredictive, explanatorial, endemic, transmission-oriented, clinical,  field and remote 
geosampled, risk eco-epidemiologial,  model, covariate, parameter estimator, coefficient values 
after successful convergence and optimization. Standard errors were computed from the final 
Hessian matrix. The ratio of the estimate with its standard error produced a  value, with 
approximate degrees of freedom computed as the number of subjects minus the number of 
random effects. A -value and confidence limits based on this distribution were also provided. 
Finally, the gradient of the negative log-likelihood function was displayed for each geosampled, 
time series, explanatorial, YFV-related, geopredictive, endemic, transmission-oriented, 
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geographically specified, eco-epidemiological,  risk model, covariate,parameter estimator, 
coefficient value. We then verified that they each coefficient value were sufficiently small for the 
nonconstrained predictors. Following standard maximum likelihood theory as in Serfling (1980), 
the asymptotic variance-covariance matrix of the estimatators equaled the inverse of the Hessian 
matrix. We then displayed this matrix with the COV option in the PROC NLMIXED statement. 
The corresponding correlation form is available with the CORR option (www.sas.edu).  

The "Additional Estimates" table displayed the results of all ESTIMATE statements that 
we specified, with the same columns as the "Parameter Estimates" table. The ECOV and 
ECORR options in the PROC NLMIXED statement produced tables displaying the approximate 
covariance and correlation matrices of the additional, seasonal,geosampled,  YFV-related, 
geopredictive, explanatorial, endemic, transmission-oriented, probablistic, risk model, covariate, 
paramter estimator, coefficient value, probablistic estimates. These variables were then 
computed using the delta method as in Billingsley (1986) and Cox (1998).  

Assuming a prediction is to be made regarding the th subject, we supposed that  
was a differentiable function for  predicting  the YFR-related, time series dependent, 
geospatotemporal forecasts. In the model  denoted  the vector of unknown parameters and 

denotee the vector of random effects. A natural point prediction was , where  was the  
MLE of and  was  the empirical Bayes estimate of  An approximate prediction variance 

matrix for was then constructed which revealed  
where  was  the approximate Hessian matrix from the optimization for ,  was the 
approximate Hessian matrix from the optimization for , and  was the derivative of 

with respect to , evaluated at . The approximate variance matrix for  was based on  
which in the geo-spatiotemporally,geosampled, time series dependent, YFV-related , eco-
epidemiological, forecasting, risk model  an approximation to the conditional mean squared error 
of prediction.  

The prediction variance for a general scalar function   in the model was then  
defined as the expected squared difference PROC NLMIXED computed an 
approximation to  the model derivatives  employing the derivative of  which we thereafter  
computed with respect to each element of and evaluated it subsequently at . If  was  
the resulting vector, then the approximate prediction variance was  . This approximation is 
known as the delta method (Billingsley 1986, Cox 1998). The EDER option in the PROC 
NLMIXED statement then produced a table that displayed the derivatives of the additional 
estimates with respect to the model covariate parameter estimators evaluated at their final 
estimated values.  

 
 
 Since nonlinear optimization is an iterative process that depends on many factors (Cressie 
1993), it was difficult to estimate how much computer time was necessary to find an optimal 
solution satisfying one of the termination criteria. We employed the MAXTIME=, MAXITER=, 
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and MAXFUNC= options to restrict the amount of CPU time. The number of iterations, and the 
number of function was called in a single run of PROC NLMIXED. In each iteration , the 
NRRIDG technique used a symmetric Householder transformation to decompose the 

Hessian matrix ,  to compute the (Newton) 
search direction , The TRUREG and NEWRAP 
techniques used the Cholesky decomposition to solve the same linear system while computing 
the search direction. The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques did not 
need to decompose the Hessian matrix. 
  
 The (dual) quasi-Newton method then  employed the gradient to parsimoniously 
quantitate the geosampled, dataset of seasonal, YFV-related geopredictive, covariate, paramter 
estimator coefficient values. It worked especially well for medium to moderately large 
optimization problems where the objective function and the gradient were much faster to 
compute than the Hessian; but, in general, it required more iterations than the TRUREG, 
NEWRAP, and NRRIDG techniques, which then computed second-order derivatives. QUANEW 
is the default optimization algorithm because it provides an appropriate balance between the 
speed and stability required for most nonlinear mixed model applications (www.sas.edu).  

The QUANEW technique was updated based on the value of the UPDATE= option. The 
original quasi-Newton algorithm updated an approximation of the inverse Hessian employing the 
dual quasi-Newton algorithm, which then subsequently updated the Cholesky factor of an 
approximate Hessian (default).  We then specified four update formulas with the UPDATE= 
option: DBFGS performed the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) updated 
the Cholesky factor of the Hessian matrix. By so doing, the default in the model was determined. 
DDFP performed the dual Davidon, Fletcher, and Powell (DFP) for updating the Cholesky factor 
of the Hessian matrix. BFGS performed the original BFGS for updating the inverse Hessian 
matrix. DFP performed the original for DFP updating the inverse Hessian matrix. Although the 
negative of the Hessian (the matrix of second derivatives of the posterior with respect to the 
probablistically geosampled,clinical, field and remote, YFV-related geopredictive, geo-
spatiotemporal, time series dependent, estimators) was  tabulated the output was positive definite 
thus we were  able to compute the variance matrix  

In each iteration, a line search was performed along the search direction to find an 
approximate optimum. The default line-search method employed quadratic interpolation and 
cubic extrapolation to obtain a step size  for satisfying the Goldstein conditions. One of the 
Goldstein conditions can be violated if the feasible region defines an upper limit of the step size 
(www.sas.edu) Violating the left-side Goldstein condition can affect the positive definiteness of 
the quasi-Newton update (Cressie 1993). In our case, the iterations were restarted with an 
identity matrix, resulting in the steepest descent or ascent search direction. We specified the line-
search algorithms other than the default with the LINESEARCH= option.  

The QUANEW algorithm employed its own line-search technique. No options and YFV-
related covariate parameter estimators (except the INSTEP= option) controlling the line search in 
the other algorithms were considerable applicable. In several applications, large steps in the first 
iterations are troublesome (www.sas.edu). We used the INSTEP= option to impose an upper 
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bound for the step size during the first five iterations. We then used the INHESSIAN=  option 
to specify a different starting approximation for the Hessian. Thereafter we specified only the 
INHESSIAN option.  

The Cholesky factor of a (possibly ridged) finite difference approximation of the Hessian 
was used to initialize the quasi-Newton update process. Interestingly, the seasonal, geosampled, 
YFV-related, geopredictive, explanatorial, endemic, transmission-oriented,eco-epidemiological,  
clinical,  field and remote geosampled, risk model covariate parameter estimator, coefficient 
value v of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which controlled the 
processing of linear and boundary constraints which were valid only for the quadratic 
programming subroutine used in each iteration of the QUANEW algorithm.  

The FD= and FDHESSIAN= options then specified the use of finite-difference 
approximations of the seasonal, geosampled, clinical, field and remote-specified, YFV-related, 
geopredictive, risk model derivatives. The FD= option specified that all the  probablistic 
derivatives  be approximated using function evaluations. The FDHESSIAN= option specified 
that second-order derivatives be then approximated using gradient evaluations. We noted that 
computing the robust, seasonal, YFV-related, geopredictive, explanatorial, endemic, 
transmission-oriented, eco-epidemiological,risk model derivatives by finite-difference 
approximations was very time-consuming, especially for second-order derivatives based only on 
values of the objective function (FD= option). Since analytical derivatives were difficult to 
obtain when a function was computed by an iterative process, we considered one of the 
optimization techniques which used first-order derivatives only (i.e., QUANEW, DBLDOG, or 
CONGRA). In the expressions that followed, denoted the parameter vector, denoted the step 
size for the th geosampled, explanaorial, probablistically regressed, YFV-related, geopredictive, 
eco-epidemiological, forecasting,  risk model, covariate, parameter estimator, and  was a vector 
of zeros with a in the th position.  

We also noted that the forward-difference derivative seasonal, probablistically 
regressed,YFV-related, geopredictive, explanatorial, endemic, transmission-oriented, specified, 
risk model covariate, parameter estimator, coefficient value approximations consumed less 
computer time, but were usually not as precise as approximations that used the  central-
difference formulas. For the first-order derivatives,  additional functions were required which 

we determined employing  = .For second-order derivatives based on 
function calls only  additional function calls were required for our  dense Hessian: 

 For parsimoniously regressively  
qualitatively quantitating the seasonal, probablistic, YFV-related, geopredictive, explanatorial, 
endemic, transmission -oriented,  eco-epidemiological, specified, dignaostic, risk model, second-
order derivatives based on gradient calls additional gradient were required which we determined 

employing: . 
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 Thus, for qualitatively quantitating first-order, seasonal, YFV-related, geopredictive, time 
series dependent, endemic ,transmission-oriented, explanatorial, clinical, field and remote, 
specified, risk model derivatives, additional function calls were required: 

= .For quantitating second-order, clinical, field and remote 
geosampled, specified, risk model derivatives)(i.e.,   )additional function calls were 
required. We validated these residual forecasts using the eco-epidemiological  model 

and subsequently therefater the model 

revealed   For second-order 
derivatives based on gradient calls, additional gradient calls were required which we 

determined employing   

We then used the FDIGITS= option to specify the number of accurate digits in the 
evaluation of the objective function in the geo-spatiotemporally geosampled, clinical, field and 
remote-specified, YFV-related, eco-epidemiological, time series dependent, probablistic, risk 
model. This specification was helpful in determining an appropriate interval size to be used in 
the finite-difference, seasonal, YFV-related, geopredictive, explanatorial, endemic, transmission-
oriented, geosampled, risk model formulas. The step sizes   were defined as follows: 
For the forward-difference approximation of first-order derivatives a function call was employed 
in PROC NL MIXED and second-order derivatives used gradient calls as determined 
by . For the forward-difference approximation of second-order derivatives we 
used only function calls and all central-difference formulas, (i.e. ). The value of 

 was defined by the FDIGITS= option.  

We specified the number of accurate digits by using FDIGITS= , where   was set to . 
If the FDIGITS= option is not specified, is set to the machine precision  (www.sas.edu). Rows 
and columns of the Hessian matrix were then scaled. Newton-Raphson and double-dogleg 
optimization techniques were applied to the empirical, geosampled, eco-epidemiological dataset 
of seasonal, YFV-related, geopredictive, explanatorial, endemic, transmission oriented, risk 
model covariate, parameter estimators. Each element   was divided by the scaling 
factor , where the scaling vector  was iteratively updated in a way specified by 
the HESCAL=  option, as follows:  Importantly, no scaling was done equivalent to . 

 The first iteration and each restart iteration set: and 

then  to   
was reset in each iteration. The parameter vector was subject to a set of linear equality 

and inequality constraints: .The 
seasonal, YFV-related, probablistic, geopredictive, explanatorial, endemic, transmission 
oriented, clinical, field and remote geosampled, risk model,eco-epidemiological,  covariate, 
parameter estimator, coefficient values and right-hand sides of the equality and inequality 
constraints were collected in the matrix and the vector . The linear constraints defined 
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a feasible region in that contained the point that minimized the geosampled data. If the 
feasible region is empty, no solution to the optimization problem exists( www.sas.edu).  

In PROC NLMIXED, all optimization techniques used the active set methods. The 
iteration of the probablistically regressed seasonal, YFV-related, time series dependent, 
geopredictive, endemic, transmission-oriented, clinical,  field and remote, explanatorial, 
geosampled, covariate, parameter estimators started with a feasible point , which we 
computed by the Schittkowski and Stoer (1979) algorithm implemented in PROC NLMIXED. 
The algorithm then moved from one feasible geosampled, eco-epidemiological, georeferncable,  
YFV-related point to a better feasible point along a feasible search direction , 

 

The path of the seasonal, geopredictive, YFV-related, explanatorial, endemic, 
transmission-oriented, eco-epridemiological, risk model, covariate, parameter estimator’s points 

never left the feasible region of the optimization problem, but it reached its boundaries. The 
active set of point was then defined as the index set of all linear equality constraints and 
those inequality constraints were satisfied at . If no constraint is active , the point is located 
in the interior of , and the active set is empty (Hazewinkle 2001). If our geosampled 
explanatorial, probablistic, clinical, field and remote specified point in iteration hit the 
boundary of inequality constraint , this constraint became active and was added to . Each 
equality constraint and each active inequality constraint reduced the dimension (degrees of 
freedom) of the optimization problem.  

The LCEPSILON=  option specified the range for active and violated linearized  
seasonal, YFV-related, geopredictive, explanatorial, endemic transmission-oriented, clinical, 
field and remote geosampled, probabilistic, eco-epidemiological, risk model, covariate, 
parameter estimator, empirical constraints. In practice, the active constraints can be satisfied only 
with finite precision (Hosmer and Lemeshew 2000). In the eco-epidemiological, forecasting, 
YFV-related, risk model, if the geosampled explanatorial, georefernced, clincial, field or remote 

specified point satisfied the condition where , then the 
constraint  was recognized as an active constraint. Otherwise, the constraint  was classified 
either an inactive inequality or a violated inequality or equality constraint. Due to rounding 
errors in computing the projected search direction, error can be accumulated so that an iterate 

steps out of the feasible region (Fotheringham 2002). 

 
 Thereafter the NLMIXED procedure computed the conditional log-likelihood functions 
of the geosampled YFV data given the random effects. Note, however, that in addition to these 
basic equations, the NLMIXED procedure employed a number of checks for missing values and 
floating-point arithmetic. We saw the entire program employed by the NLMIXED procedure to 
compute the conditional log-likelihood functions by adding the LIST debugging option to 
the PROC NLMIXED statement.  
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This parameterization of the gamma distribution differed from the parameterization 

employed in the GLIMMIX and GENMOD procedures. The following statements revealed the 
equivalent re-parameterization in the NLMIXED procedure that fit  a GLM for the gamma-
distributed  geo-spatiotemporally, geosampled, eco-epidemiological, YFV-related, explanatorial, 
clinical, field or remote-geosampled, covariate, parameter estimator coefficients in the 
parameterization of the GLIMMIX procedure:  

   proc glimmix; 
      model y = x / dist=gamma s; 
   run; 
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   proc nlmixed; 
      parms b0=1 b1=0 scale=14; 
      linp = b0 + b1*x; 
      mu   = exp(linp); 
      b    = mu/scale; 
      model y ~ gamma(scale,b); 
   run; 

 
 

  

  
 

 
 
This form of the negative binomial distribution is one of the many parameterizations in which 
the mass function or log-likelihood function appears(Hosmer and Lemeshew 2002).  

Another common parameterization was also employed to quantitate the probablistically 
regressable , time series dependnet, clinical, field and remote YFV estimators which was: 

 
with . Note that the parameter  in the eco-epidemiological, geo-
spatiotemporal model was real-numbered so it did not have to be integer-valued. The 
parameterization of the negative binomial distribution in the NLMIXED procedure differed from 
that in the GLIMMIX and GENMOD procedures. The following statements revealed  the 
equivalent formulations for   conducting the MLE in the GLIMMIX and NLMIXED procedures 
in the  negative binomial regression model:  

   proc glimmix; 
     model y = x / dist=negbin s; 
   run; 
   proc nlmixed; 
      parms b0=3, b1=1, k=0.8; 
      linp = b0 + b1*x; 
      mu = exp(linp); 
      p  = 1/(1+mu*k); 
      model y ~ negbin(1/k,p); 
   run; 
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 We used the regression line  to generate a pseudo R2 value 
where the first term was the total variation in the response y (i.e.,geosampled time series 
dependent, explanatorial,  geopredictive, YFV-related, covariate, parameter estimator 
coefficients ) and  the second term was the variation in mean response based on the geosampled 
probabilistic regressors. The third term was the residual value in the eco-epidemiological, YFV-
related model estimates. Squaring each of these terms and adding over all of the geosampled, 
observational, geopredictors generated the equation . This 
equation was then written as SST = SSM + SSE, where SS was notation for sum of squares and 
T, M, and E were the notation for total, model, and error, respectively.  

We noted that the square of the sample correlation  in the seasonal, YFV-related, risk 
model was equal to the ratio of the estimates while the sum of squares was related to the total 
sum of squares: r² = SSM/SST. This formalized the interpretation of the pseudo  R2 for 
explaining the fraction of variability in the geosampled, time series dependent, explanatorial, 
YFV-related, covariate, parameter estimatators explained by the regression model.  The sample 
variance sy² was equal to , which in turn was equal to the SST/df, the total sum 
of squares divided by the total df. A regression equation was then constructed using the mean 
square model (i.e. MSM) = , which was coincidentally equal to the SSM/df. The 
corresponding mean square error (i.e. MSE) was , which was equal to SSE/df 
and the estimate of the variance about the regression line (i.e., σ²).  The MSE is an estimate of σ² 
for determining whether or not the null hypothesis is true (Hosmer and Lemeshew 2000).  

 
For the time series modeled the DFM which was  equal to p, and the error degrees of 

freedom (dfe) which  subsequently was equal to (n - p - 1), and the total degrees of freedom (dft). 
This product which was then equal to (n - 1), the sum of DFM and DFE. Explanatorial and 
response variables were numeric. The relationship between the mean of the response variable 
and the level of the geosampled covariate, estimator coefficients in the probablistic, time series, 
regression equation were assumed to be approximately linear (i.e., straight line). The 
corresponding table generated classified each of the time series dependent, explanatorial, YFV-
related, geopredictive parameters in SAS as in Table 3. 
 
Table 3:  The YFV-related regression-based model parameters  
 
         Source Degrees of Freedom Sum of squares Mean Square      

Model  p MSM/MSE        ( i- )²      SSM/DFM   

Error  n - p – 1           (yi- i)²        SSE/DFE   

            
     

Total  n - 1            (yi- )²           SST/DFT  

In the  endemic, YFV-related multiple regression analyses, the test statistic MSM/MSE 
had an F(p, n - p - 1)  distribution. The null hypothesis was 1 = 2 = ... = p = 0, and the 
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alternative hypothesis was at least one of the geosampled, time series dependent, explanatorial, 

geopredictive, YFV-related, parameters j  0, j = 1, 2, ,,, p. The F test did not indicate which 
of the parameters j was not equal to zero, only that at least one of them was linearly related 
to the response variable. The ratio SSM/SST = pseudo R² (i.e., squared multiple correlation 
coefficient) was the proportion of the variation in the response variable that was explained by the 
geosampled, eco-epidemiological, geo-spatiotemporal, explanatorial, clinical, field or remote-
specified, YFV-related data. The square root of pseudo R² (i.e., the multiple correlation 
coefficient) was the correlation then between the geosampled, time series dependent, 
explanatorial, geopredictive, YFV-related, parameter estimate (i.e., yi ) and the fitted values (i.e., 

i.).  

Additionally, from the geosampling distribution, generated from the geosampled, YFV-
related, t time series dependent, explanatorial parameters, the probability of obtaining an F was 
large or larger than the one that was calculated. Since there were only two means to compare, the 
t-test and the F-test were equivalent; the relation between ANOVA and t was given by F = t2. 
Significant differences by ANOVA were noted for mean numbers of the geosampled, time series  
dependent,explanatorial, geopredictive, YFV-related, explanatorial, clinical, field or remote-
specified, parameter estimates captured throughout the sampling frame (F = 41.4, df = 1). 

     We then constructed a Poisson probability regression model to determine the 
relationship between the geosampled, time series-dependent, explanatorial, geopredictive, 
LULC, YFV-related, parameter estimate count data and the geosampled case distribution data. 
The Poisson models were built using the field and remote-sampled data. The Poisson distribution 
is a special case of the negative binomial distribution, where the mean approximates the standard 
deviation (Neter 1992). We assumed that the log of the mean,, was a linear function of 
independent variables,  log() = intercept + b1*X1 +b2*X2 + ....+ b3*Xm in the model which 
implied that  was the exponential function of independent variables when  = exp(intercept + 
b1*X1 +b2*X2 + ....+ b3*Xm) (see Jacob et al. 2005b)..  

 
Thereafter, the NL MIXED procedure estimated the regressed probablistic, parameters 

estimators of  the seasonal, YFV-related, geopredictive, explanatorial,  eco-epidemiological, risk 
model numerically through an iterative fitting process. The dispersion parameter was then 
estimated by the residual deviance and by Pearson’s chi-square divided by the degrees of 
freedom. Covariance, standard errors, and p-values were then computed for the estimated 
covariate, parameter estimator,  coefficient values based on the asymptotic normality derived 
from  MLE. 

  Note, that the sample size N completely dropped out of the probability function which 
coincidentally  had the same functional form for all the geo-spatiotemporal, geosampled, eco-
epidemiological, YFV-related, covariate, parameter estimator, indicator values (i.e., ). As 
expected, the Poisson distribution was normalized so that the sum of probabilities equaled 1. The 

ratio of probabilities was then provided by 
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.The Poisson distribution revealed that the geosampled, YFV-
related, covariate,parameter estimator, coefficient values reached a maximum when 

where  was the Euler-Mascheroni constant and  was a harmonic 
number, leading to the transcendental equation . The model forecasts revealed that 
the Euler-Mascheroni constant arose in the integrals as 

= = = = (2 .2).   

 Commonly, integrals that render  in combination with geo-spatiotemporal constants 

include =  and = ( see Haight 1967). 
Thereafter, the double integrals in the time series dependent, YFV-related, regression model 

included . An interesting analog of equation (2.2) in the model was 

then provided by = = =  . 

This solution was also provided by incorporating Marten’s theorem [i.e., ] 
where the product was aggregated over the seasonal, geosampled, georefernced,  YFV-related, 
explanatorial, time series dependent, covariate, parameter estimator, coefficients  values found in 

the ecological empirical datasets. Marten’s' 3rd theorem:   is related to 
the density of prime numbers where γ is the Euler–Mascheroni constant (see Hosmer and 
Lemeshew 2000). By taking the logarithm of both sides in the time series dependent, 
explanatorial, YFV-related, geopredictive, eco-epidemiological, forecasting,  probablistic  
regression-related, risk  model, an explicit formula for  was then obtained using 

 This product was also given by series due to Euler, which followed 

from equation (2.2) by first replacing b , in the equation and then 

generating  .We then substituted the telescoping sum 

 for which rendered .Thereafter, we obtained 

=  .                                       

       Additionally, other series in the geo-spatiotemporal, geosampled, explanatorial, 
geopredictive, YFV-related, time series dependent, autoregressive, probablistic regression model 
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included the equation (◇) where  = and where  was 

(i.e., the Riemann zeta function). The Riemann zeta function ζ(s), is a function 

of a complex variable s that analytically continues the sum of the infinite series which 
converges when the real part of s is greater than 1 where log is the logarithm to base 2 and  is 
the floor function (Titchmarsh 1986). Nielsen (1921) earlier gave a series equivalent to 

and thereafter    which was then added 
 to render Vacca's formula. Additionally, we used the sums 

= =  as determined by Gosper et al. (1972) with  by 
replacing the undefined I and then rewrote the equation as a double series for applying the 
Euler's series transformation to each of the geosampled, time-series dependent, georefernced, 
probablistic, YFV-related, explanatorial, covariate, paramter estimator, coefficients estimates. 

 was used as a binomial coefficient, rearranged to achieve the conditionally convergent series 
in the time-series dependent, georefernced, YFV-related, eco-epidemiological, forecasting, 
regression-related, geopredictive, risk  model as the plus and minus terms were first grouped in 
pairs of the geosampled covariate,parameter estimator, coefficient estimates employing the 
resulting series of the actual geosampled measurement values. The double series was thereby 

equivalent to Catalan's integral:  Catalan's integrals are a special case of 

general formulas due to  where is a Bessel function 
of the first kind (see Catalan, 1883).  

 The Bessel function is a function defined in a robust, probabilistic, regression model 

by employing the recurrence relations and (see Hosmer and 
Lemeshew 2000), which more frequently has been defined as solutions in a regression models 

using the differential equation (see Watson, 1966 ). The Bessel 

function  was defined by the contour integral where the contour 
enclosing the origin and was traversed in a counterclockwise direction. This function generated: 

  and . Thereafter, to quantitate the equivalence in 
the geo-spatiotemporal, geosampled dataset of the YFV-related, regression-based, covariate, 
parameter estimators, we expanded in a geometric series and multiplied the sampled data 
by , and integrated the term wise as in Sondow and Zudilin (2003). Other series for  were 
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then employed including:  and 

 A rapidly converging limit for  was then provided by 

= =  where  was a 
Bernoulli number.  Another limit formula was then provided by the 

equation . Limits to the regression model were then rendered 

by  where was the Riemann zeta function.  

The Riemann zeta function or Euler–Riemann zeta function, ζ(s), is a function of a 

complex variable s that analytically continues the sum of the infinite series  which 
converges when the real part of s is greater than 1(Hosmer and Lemeshew 2002). The Riemann 
zeta function plays a pivotal role in analytic number theory and has applications in physics, 
probability theory, and applied statistics (Hazewinkle 2001). In the geo-spatiotemrpoal, 
geosampled, probabilistic, YFV-related eco-epidemiological, forecasting risk model,the 
Riemann zeta function ζ(s)was  a function of a complex variable (i.e., s = σ + it). The notation 
with s, σ, and t is traditionally used in the study of the ζ-function, following Riemann(Hosmer 
and Lemeshew 2002).  

The following infinite series converged for all empiricial, geo-spatiotemporal, 
explanatorial YFV-related, eco-epidemiolgical, time series dependent,  clinical, field and remote-
gesampled, covariate, paramter estimators coefficients with real part greater than 1, and defined 

ζ(s) as The model derivative forecast also was 

defined by the integral where Γ(s) was the gamma function. 

We noted that the gamma function (i.e.,  Γ)  in the empiricial, geo-spatiotemporal, 
explanatorial YFV-related, eco-epidemiological, clinical, field and remote-gesampled, 
geopredictive, eco-epidemiological, risk  model  was an extension of the factorial function, with 
its argument shifted down by  for the regressor coefficient values. That is, if n was an empirical 
dataset of  geo-spatiotemporal, YFV-related clinical, field or remote geosampled ,georeferenced, 
explanatorial, covariate paramter estimator, coefficient values then    The 
gamma function was then defined for all the  geosampled,YFV-related, probablistic,  coefficient 
values except the non-positive integers.  For qualitatively regressing quantitating a positive real 
part, a YFV-related, eco-epidemiological, time series dependent,  gamma function was defined 

via a convergent improper integral: .This integral function was 
extended by analytic continuation to all  the time series dependent, YFV-related,geo-
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spatiotemporal regressors except the non-positive integers (where the function has simple poles) 
for robustly  yielding the meromorphic function and the gamma function. The gamma function 
corresponds to the Mellin transform of the negative exponential function: 

(Hazewinkle 2001). 

A Cantor set ,  was rendered given by taking the interval (set ), removing the 
open middle third ( ), removing the middle third of each of the two remaining pieces ( ), and 
continuing this procedure ad infinitum. It was therefore the set of points in the interval  .The 
th iteration of the Cantor  for the YF , Ae.. aegypti model I was implemented in the Wolfram 

Language as CantorMesh[n].  The sequence of binary bits produced  was 1, 0, 1, 0, 0, 0, 1, 0, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ... (whose th term was given by 

(mod 3), where is a (central) Delannoy number and is a Legendre 
polynomial . The recurrence plot for this sequence was illustrated above. This produces the set of  

predicticted larval habitat s immature counts such that where may equal 
0 or 2 for each . This is an infinite, perfect set. The total length of the line segments in the th 

iteration was and the number of line segments is , so the length of each element  

in the YF model was and the capacity dimension  

was = = = =0.6319. 

 The Mellin transform in the empiricial, geo-spatiotemporal, explanatorial YFV-related 
eco-epidemiolgical, clinical, field and remote-gesampled, geopredictive , eco-epidemiological, 
risk  model  was  an integral transform that  we regarded as the multiplicative version of the two-
sided Laplace transform.The two-sided Laplace transform was then defined in terms of the 
Mellin transform  by  for remotely regressively quantizing the 
explanatorial,time series dependent, geo-spatiotemporal, YFV-related, clinical, field or remote 
geosampled,ecogeoreferenced, forecasting, eco-epidemiological,probabilistic, risk model, 
covariate, paramter estimators.We assumed that the Mellin transform may be rendered  from the 
two-sided Laplace transform by The Mellin transform may be thought of 

as integrating using a kernel xs with respect to the multiplicative Haar measure, , which is 

invariant under dilation , so that  . In he eco-epidemiological, time series 
dependent, YFV-related forecasting, risk model, the two-sided Laplace transform was integrated 
with respect to the additive Haar measure , which was a translation invariant, so that 

. We then defined the Fourier transform in the forecasting model in terms of the 
Mellin transform and vice versa. We then defined the two-sided Laplace transform as 

The process was reversed by employing 
The Mellin transform also connected the Newton series 

or binomial transform together with the Poisson generating, YFV-related, time series dependent 
function, by means of the Poisson–Mellin–Newton cycle. 
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The Poisson–Mellin–Newton cycle, noted by Flajolet et al. in 1985, is the observation 
that the resemblance of the Nørlund–Rice integral to the Mellin transform is not accidental, but is 
related by means of the binomial transform and the Newton series. In the  empiricial, geo-
spatiotemporal, explanatorial, YFV-related, probablistically geosampled,  eco-epidemiolgical, 
explanatorial, clinical, field and remote-gesampled, geopredictive, eco-epidemiological, risk  
model,  we  let be a sequence, and let g(t) be the corresponding Poisson generating function, 

that is, we let Taking its Mellin transform[i.e., ] we  then 
regained the original sequence by means of the Nörlund–Rice integral [i.e., 

] where Γ was the gamma function.The gamma function is a 
component in various probability-distribution functions, and, as such, it is applicable in the fields 
of probability and statistics, as well as combinatorics(Hosmer and Lemeshew 2002). 

The Riemann zeta function for the geo-spatiotemporal, empirical, YFV-related, eco-
epidemiological, forecasting, risk model was  defined as the analytic continuation of the function 
defined for σ > 1 by the sum of the preceding series in the  empirical geosampled dataset. 
Leonhard Euler considered the above series in 1740 for positive integer values of s, and later 
Chebyshev extended the definition to real s > 1.  

Our series was a prototypical Dirichlet series that converged absolutely to an analytic 
function for s such that σ > 1 and diverged for all other time series dependent, YFV-related, 
geosampled, clinical, field or remote-specified, covariate, parameter estimator, coefficient values 
of s. Riemann showed that the function defined by the series on the half-plane of convergence 
can be continued analytically to all complex values s ≠ 1 (Hosmer and Lemeshew 2002). For 
s = 1 the series in the model was the harmonic series which diverged to +∞, 

and . Thus, the Riemann zeta function in our geo-spatiotemporally-
geosampled YFV-related eco-epidemiological, forecasting, risk model was a meromorphic 
function on the whole complex s-plane, which was then subsequently  holomorphic everywhere 
except for a simple pole at s = 1 with residue 1. 

Another connection with the primes in the eco-epidemiological, geosampled, dataset 
was provided by for the geopredictive time series dependent, explanatorial 
regressor numerical values from 1 to  which was found to be asymptotic 

to . De la Vallée Poussin [1898] proved that, if a large number n is 
divided by all primes , then the average amount by which the quotient is less than the 
next whole number is .  An elegant identity for  in our YFV regression model was 

provided by   where was a modified Bessel function of the first 

kind,  was a modified Bessel function of the second kind, and  
where  was a harmonic number. This provided an efficient iterative algorithm for  by 
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computing = , = , =  and = with 
 and     Reformulating this identity rendered the limit 

.Infinite products involving  also arose from the Barnes G-
function since we employed n. 

  
In mathematics, the Barnes G-function G(z) is a function that is an extension of 

superfactorials to the complex numbers which is related to the gamma function (see Borwein 

and Bailey 2003). This function provides = and = . 
The Barnes G-function was linearly defined then in our time-series explanatorial,  
geopredictive, eco-epidemiological, YFV-related, probablistically regression–based, risk 
model which was then defined by 

where γ was the Euler–
Mascheroni constant, exp(x) = ex, and ∏ was capital pi notation. The Euler-Mascheroni 
constant was rendered by the expressions =  =  where  was the symmetric 

limit form of  and .  
 
In mathematics, the digamma function is defined as the logarithmic derivative of the 

gamma function:  where it is the first of the polygamma 
functions (Borwein and Bailey 2003). The digamma function, often denoted also as ψ0(x), is 
related to the harmonic numbers in that  where Hn is the nth harmonic 
number, and γ is the Euler-Mascheroni constant (see Sondow and Zudilin 2006). The 
difference between the nth convergent in equation (◇) and  in our explanatorial, 
probbalistic, geosampled,  YFV-related, regression-based, eco-epidemiological,forecasting  

risk model was then rendered by  where  was the floor function 

which satisfied the inequality .The floor function , also 
called the greatest integer function or integer value (Spanier and Oldham 1987), gives the 
largest integer less than or equal to .  

Unfortunately, in many older and current works (e.g., Honsberger 1976, Steinhaus 1999, 
Shanks 1993; Ribenboim 1996; Hilbert and Cohn-Vossen 1999,; Hardy 1999,), the symbol is 
used instead of  in time series related, probablistic, regression-related models. In fact, this 
notation harks back to Gauss in his third proof of quadratic reciprocity in 1808. However, 
because of the elegant symmetry of the floor function and ceiling function symbols  and   in 
the geo-spatiotemporally, geosampled, YFV-related, eco-epidemiological, explanatorial, 
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forecasting, probablistic, risk model and because  is such a useful symbol when interpreted as 
an Iverson bracket, the use of  denoted the floor function in the model. The symbol  was 
used to denote the nearest integer function since it naturally fell between   and symbols. 

In mathematics, the Iverson bracket is a notation that denotes a number that is 1 if the 
condition in square brackets is satisfied, and 0 otherwise( Hazewinkle 2001). More exactly, 

where P is a statement that can be true or false. The Iverson bracket in our eco-
epidemiological, geo-spatiotemporally,geosampled clinical, field and remote-specified, 
probabilistic, YFV-related ,explanatorial, geopredictive, eco-epidemiological,  risk model was 
converted a Boolean value to an integer value through the natural map , 
which allowed counting to be represented as summation. For instance, the Euler phi function that 
counted the number of positive integers  in our empirical, geosampled, geo-spatiotemporal, 
YFV-related, clinical, field and remote-specified,  covariate, parameter estimator, coefficient 
values  in the empiricial dataset  was up to n which were also coincidentally was a  coprime to n 

which  then was subsequently expressed by . More 
generally the notation allowed moving boundary conditions of summations (or integrals) as a 
separate factor into the summand, freeing up space around the summation operator while 
simutaneously allowing the geosampled, YFV-related, covariate, paramter estimators  to be 
manipulated algebraically. For example, a YFV-related rendered explanatorial, time series 

dependent, eco-epidemiological, forecast threshold of     maintained the 
first sum of the index  which was limited to be in the range 1 to 10. The second sum was 
allowed to range over all the explanatorial,  geopredictive, time series dependent,  geosampled 
integer values but  only where i was strictly less than 1 or strictly greater than 10 and  the 
summand was 0 which of corse did not  contribute nothing to the sum in the regression model 
estimation process. Use of the Iverson bracket can permit easier manipulation of these 
expressions(Hosmer and Lemeshew 2000). 

Another use of the Iverson bracket in the geo-spatiotemporally, geosampled YFV-related, 
explanatorial,  eco-epidemiological, clinical, field and remote specified, forecasting, risk model 

was to simplify equations with special cases. For example, the formula  was 
valid for n > 1 in our  geopredictive, time series dependent,  YFV-related, eco-epidemiological,  
regression model but was off by 1/2 for n = 1. To get an identity valid for all  the positive 
explanatorial,  geopredictive,  time series dependent,  YFV-related, endemic transmission-
oriented, eco-epidemiological, risk modeln all geosampled probablistic values for which  
had to be  defined and a correction term involving the Iverson bracket had to be  added: 

 . By so doing,the Kronecker delta notation was then  a specific 
case of Iverson notation when the condition expressed equality (e.g., ). The 
indicator function has a set membership as its condition: (Hazewinkle 2001). 
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The simplest interpretation of the Kronecker delta  in the time series dependent,  eco-
epidemiological, YFV-related forecasting, risk model, residual derivatives was  then defined  as 

the discrete version of the delta function which was subsequently   defined by   

The Kronecker delta was  implemented in Mathematica as KroneckerDelta[i, j], as well 
as in a generalized form KroneckerDelta[i, j, ...] that returned 1 if all arguments was equal and 0 
otherwise was rendered by the residual derivatives from the time series dependent, probablistic, 
YFV-related, eco-epidemiological, explanatorial, clinical, field and remote-specified, 

geosampled risk model.  It had the contour integral representation  where  
was a contour corresponding to the unit circle and and where  the geosampled integer 
covariate, paramter estimator,  coefficient values.   In three-space, the Kronecker delta satisfied 
the identities , , ,  where Einstein 
summation was implicitly assumed, , 2, 3, and was the permutation symbol.  

In mathematics, especially in applications of linear algebra to physics, the Einstein 
notation or Einstein summation convention is a notational convention that implies summation 
over a set of indexed terms in a formula, thus achieving notational brevity. As part of 
mathematics it is a notational subset of Ricci calculus; however, it is often used in applications in 
physics that do not distinguish between tangent and cotangent spaces. It was introduced to 
physics by Albert Einstein in 1916 mathematics, Ricci calculus constitutes the rules of index 
notation and manipulation for tensors and tensor fields(Hosmer and Lemeshew 2002). It is also 
the modern name for what used to be called the absolute differential calculus (the foundation of 
tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–96, and subsequently 
popularized in a paper  written with his pupil Tullio Levi-Civita in 1900.  

A component of a tensor in the eco-epidemiological, explanatorial, clinical, field or 
remote geosampled, YFV-related, geo-spatiotemporally, georeferenced, eco-epidemiological, 
forecasting risk model was used as a coefficient of a basis element for the tensor space. The 
tensor is the sum of its components multiplied by their basis elements (Hazewinkle 2001).For the 
eco-epidemiological, YFV-related geopredictive, risk model  tensors and tensor fields were 
expressed in terms of their components, and operations on tensors and tensor fields were 
expressed in terms of operations on their components. The description of tensor fields and 
operations on them in terms of their components was focus of our  Ricci calculus calculations. 
Where needed, the notation extended to components of non-tensors, particularly 
multidimensional arrays(Hazewinle 2001).Henceforth, we defined an eco-epidemiological, 
probablistic,  YFV-related, explanatorial, geo-spatiotemporally, geosampled,  eco-
epidemiological tensor as a linear sum of the tensor product of vector and covector basis 
elements. The resulting tensor components were labelled by indices of the basis. Each index had 
one possible value per dimension of the underlying vector space in the model residual 
derivatives. The number of indices equaled the order of the tensor. 

For compactness and convenience, the notational convention implied certain things, in 
our  geo-spatiotemporal, forecasting risk model notably that the  summation over indices  may be 
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repeated within a term employing a universal quantification over  the free indices (i..e, those not 
so summed). Expressions in the notation of the Ricci calculus were interpreted as a set of 
simultaneous YFV-related geopredictive equations relating and their eco-epidemiological, 
components were classified as  time series functions over a manifold. More specifically these 
functions of the coordinates on the manifold allowed intuitive manipulation of the model 
expressions with familiarity of only a limited set of rules. 

 Technically, the Kronecker delta was a tensor defined by the relationship 

in the eco-epidemiological, YFV-related, forecasting, risk model 
since, by definition, the seasonal, geosampled explanatorial, geopredictive time series dependent,  

geocoordinates and  were  independent for , so and   was 
really a mixed second-rank tensor. This model output satisfied 

= = ; = ; = =  The sign function and 
Heaviside step function was also easily expressed in this notation as  

 The floor and ceiling functions in the empirical 
geosampled, explanatorial, geopredictive, time series –related, probablistic, YFV-related, 

regression model was then expressed:    

In mathematics, the Kronecker delta or Kronecker's delta, is a function of two variables, 
usually integers (Haight 1967). The function is 1 if the variables (e.g., empirical geosampled, 
explanatorial, geopredictive, time series dependent, YFV-related regressors) are equal, and 0 

otherwise:  where the Kronecker delta δij is a piecewise function of variables 
and . For example, δ1 2 = 0, whereas δ3 3 = 1. Further, in linear algebra, the identity matrix can 

be written as  and the inner product of vectors can be written as  
The Kronecker delta is used in many areas of mathematics, physics and engineering, primarily as 
an expedient to convey in a single equation what might otherwise take several lines of text and 
the tracheotomy of the reals which may then be  expressed as  

(Hosmer and Lemeshew 2000).  The Macaulay brackets  in the 
YFV-related, eco-epidemioloigical, forecasting, risk model were then be expressed 

 

The floor function satisfied the identity  for all the geosampled, YFV-related, 
explanatorial, covariate, parameter estimator coefficients . A number of explanatorial,  
geometric-like sequences with a floor function in the numerator of our eco-epidemiological, 

probablistic, risk model  were done analytically. For instance, the  sums of the form   were  
qualitatively quantiated  analytically for the rational x in the model derivatives. For a unit 
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fraction was generated. Sums of this form lead to the Devil's staircase-like 
behavior.   

 A plot of the Devil's staircase-like behavior is a map winding number resulting from 

mode locking as a function of  for the circle map with  (Bailey and 
Crandall 2001).Interestingly, since the circle explanatorial,  geopredictive, time series dependent,  
YFV-related, regressor map became a mode-locked where the vulnerability risk map winding 
number was independent of the initial starting argument . At each seasonal, geosampled, YFV-
related  observation , the map winding number was some geosampled, covariate, paramter 
estimator, coefficient value. The result was a monotonic increasing "staircase" for which the 
rational, geosampled, explanatorial, clinical, field and remote covariate coefficient had the 
largest steps. The Devil's staircase continuously mapped the interval  onto , but it was 
constant almost everywhere. For , the measure of quasiperiodic states (  irrational) on the 

-axis in the YFV-related, risk model output  was 0, and the measure of mode-locked state was  
1. The dimension of the Devil's staircase in the model .  For irrational , 
continued fraction convergent in the forecasts , and , 

. This lead to the rather amazing relating sums of the floor 
function of multiples of  based on the continued fraction of by 

.   The symbol  was then   . This led to 
the radical representation of the geosampled, georefernced, YFV-related explanatorial, 
geopredictive, regressed  covariate, parameter estimator, coefficient values 

as which was related to the double series  

and a binomial coefficient. Thereafter, another proof of product in the geo-spatiotemporal, 
geo-sampled, YFV-related, regression-related, forecasting, eco-epidemiological, risk model was 

provided by the equation . The solution was then made even 
clearer by changing . Both these regression-based formulas were also analogous to the 

product for  which was then rendered by the computation: . 

Importantly, the distribution of a empirically probablistic, YFV-related, random,  
explanatorial, endemic, transmission-oriented, LULC, NDVI and other remotely ecogeographical  
covariate paramter estimator  geosampled at the Gulu eco-epidemiological study site was 
discrete. Further, X was a discrete random variable, if . It then followed that such a 
random variable could assume only a finite or countably infinite number of the empirically 
regressed,  explanatorial, time series dependent, geopredictive endemic, transmission-oriented, 
geosampled coefficient values. For the number of potential values to be countably infinite even 
though their probabilities sum to 1 requires that the probabilities decline to zero fast enough: for 
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example, if for n = 1, 2, ..., the sum of probabilities 1/2 + 1/4 + 1/8 + ... = 1 would 
be efficiently quantified (Hosmer and Lemeshew 2000). 

The Poisson probability  model allowed the mean of the geo-sampled, geopredictive 
YFV-related, explanatorial, clinical,  field and remote specified, eco-epidemiological, 
observational indicators to depend on a linearized time series dependent, geopredictive, endemic, 
transmission-oriented ,covariate, paramter estimator, coefficient through a nonlinear link 
function. This Poisson regression feature allowed the response probability distribution to be any 
member of an exponential family of YFV-related, seasonal, endemic, transmission-oriented, 
explanatorial distribution. The response variable (i.e., Y) then represented prevalence rates which 
was numeric and had nonnegative integer values. 

 We constructed a Poisson regression model employing the geo-spatiotemporal, seasonal-
geosampled, YFV-related, covariate, paramter estimator  coefficient, measurement values. Our 
model was generalized by introducing an unobserved heterogeneity term for each geosampled, 
time series observation . The weights were then assumed to differ randomly in a manner that 
was not fully accounted for by the other seasonal-geosampled covariate parameter estimators. 

The process was formulated as where the unobserved heterogeneity 

term was independent of the vector of regressors . Then the distribution of was 
conditional on and had a Poisson specification with conditional mean and conditional variance 

. We then let be the pdf of . Then, the distribution 

was no longer conditional on .Instead it was obtained by integrating with 

respect to   
lines(C,lty=2) 
C=trans3d(x,y,z,mat) 
lines(C,col="blue")} 

 We found that an analytical solution to this integral existed in our probablistic, YFV-
related, model when was assumed to follow a gamma distribution. The model also revealed 
that , was the vector of the geosampled predictor covariate, paramter estimator coefficients 

while , was independently Poisson distributed with and the mean 
parameter — that is, the mean number of  geosampling events per geo-spatiotemporal period — 

was given by where  was a parameter vector. The intercept in the model 

was and the coefficients for the regressors were Taking the exponential of 

ensured that the mean parameter was nonnegative. Thereafter, the conditional mean was 

provided by .  

The clinical,field and remote-geosampled, covarite parameter estimators were then 
evaluated using . Note, that the conditional variance of the count random 
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variable was equal to the conditional mean (i.e., equidispersion) in the eco-epidemiological, YFV 
model [i.e., , . In a log-linear model the logarithm of the conditional mean 
is linear(Hosmer and Lemeshew 2002). The marginal effect of any YFV-related, probbalistic,  
geosampled regressor in the geo-spatiotemporal eco-epidemiological, time series dependent, risk 

model was then provided by . Thus, a one-unit change in the th 

regressor in the model led to a proportional change in the conditional mean .  
The standard estimator for our Poisson probability risk model was the MLE. Since the 

observations were independent, the log-likelihood function in the model was then: 

. Given the geosampled dataset of the clinical, field and 
remote YFV-related,  covariate  parameter estimators (i.e., θ ) and an input vector x, the mean of 
the predicted Poisson distribution was then provided by . By so doing, the Poisson 

distribution's pmf was then rendered by  The pmf in a targeted geo-
spatiotemporal, predictive, seasonal, eco-epidemiological, probablistic,  risk model can be the 
primary means for defining a discrete probability distribution, and, as such, functions could exist 
for either scalar or multivariate, multitemproal, field geosampled, random variables, given that 
the distribution is discrete(Jacob et al. 2013). Gu and Novak (2005) found that a targeted geo-
spatiotemporal, predictive, seasonal, risk model is vital for IVM.  

Since the geosampled data consisted of m vectors , along with a set of m 
values then, for the covariate parameter estimator’s θ, the probability of attaining a 
particular set of the geosampled, explanatorial, clinical, field or remote  observations was 

provided by the equation .Consequently, we found the set of θ 
that made this probability as large as possible in the model probilistic regression estimates. To do 
this, the explanatorial  equation was first rewritten as a likelihood function in terms of θ[i.e.,  

].Note the expression on the right hand side in our model had not 

actually changed. Next, we used a log-likelihood [i.e., . 
Because the logarithm is a monotonically increasing function, the logarithm of a function 
achieves its maximum value at the same points as the function itself, and, hence, the log-
likelihood can be used in place of the likelihood in  MLE and related techniques (Hosmer and 
Lemeshew 2002). Finding the maximum of a function in a time series dependent, geopredictive, 
eco-epidemiological, risk model often involves taking the derivative of a function and solving for 
the parameter estimator being maximized, and this is often easier when the function being 
maximized is a log-likelihood rather than the original likelihood function (Jacob et al. 2005).  

We noticed that the that the geo-spatiotemporal, geosampled,YFV-related, eco-
epidemiological, explanatorial,  clinical, field and remote, probablistically regressed,  parameters 
θ only appeared in the first two terms of each  derivative in the summation. Therefore, given that 
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we were only interested in finding the optimal value for θ in the geopredictive, YFV-related, 
regression, time series dependent, probabilistic, eco-epidemiological, clinical, field or remote-

specified, risk  model we dropped the yi! and simply wrote . Thereafter, to 

find a maximum, we solved an equation which had no closed-form solution. 
However, the negative log-likelihood (LL)[i.e., ] was a convex function, and so standard 
convex optimization was applied to find the optimal value of θ.   

We found that given the probbality Poisson process in our YFV-related, regression, eco-
epidemiological, probabilistic,  risk  model had the limit of a binomial distribution which was 

Viewing the distribution as a function of the expected number of 
successes[i.e., ] in the model derivatives, instead of the sample size N for fixed P, then 

rendered the equation (2.1) which then became Our model revealed 
that as the sample size n  became larger, the distribution approached P when the following 
equations 

aligned

. Note, that the sample size n had completely dropped out of the probability 
function, which had the same functional form for all values of in the YFVmodel.  

 
Thereafter, as expected, the probability  Poisson regression distribution was normalized 

so that the sum of probabilities was equal to 1, since . The ratio of 

probabilities was then provided by the equation .  The YFV model revealed 

that the Poisson distribution reached a maximum when  where g was the 

Euler-Mascheroni constant and was a harmonic number, leading to the equation 

which could not be solved exactly for n.  

 
Next, the moment-generating function of the  geospatiotemporal, geosampled, 

probablistic, YFV-related, eco-epidemiological, explanatorial, time series dependent, Poisson 
probability distribution was given by 

,when the equation 
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,  so . The raw moments were also computed directly by 
summation, which yielded an unexpected connection with the exponential polynomial 

and Stirling numbers of the second kind[i.e. which in this 
research was the Dobiński's formula.  

In combinatorial mathematics, Dobinski’s formula states that the number of partitions of 

a set of n members is . This number has come to be called the nth Bell number Bn, where 
the proof is rendered as an adaptation to probabilistic language(see Hosmer and Lemeshew 
2002). In our YFV-related, probbalistic, time series dependnet, explanatorial, clinical, field or 
remote geosampled, eco-epidemiological,forecasting regression model the formula 

was viewed as a particular case, for x=0, employing the 

relation . The expression given by the model’s Dobinski's formula was then 
revealed as the n th moment of the Poisson distribution with expected value 1. This value was 
derived by dividing the generating function formula for a Stirling number of the second kind 

by , yielding Then and 

Dobinski's formula was the number of partitions of a set of the 
geosampled, probablistic,  YFV-related, covariate  parameter estimator size (i.e. n) which 
equaled the nth moment of that distribution.  

We partioned a set of n elements into M non-empty sets ( i..e, m set blocks). For 
example, the empirical, YFV-related, explanatorial, clinical, field and remote geosampled datset  
was transformed into elements into nonempty sets (i.e., set blocks), (i.e., a Stirling set 
number) . For example, the empirical geosampled, dataset of YFV-related explanatorial, time 
series-related regressors   was  partitioned into three subsets in one way: ; into 
two subsets in three ways: , , and ; and into one subset in one 
way: .  The Stirling numbers of the second kind have been variously denoted (by 

Jacob et al. (2012)  , (Jordan 1965), , or Knuth's notation (Graham et al. 1994; 
Knuth 1997). The Stirling numbers for qualitatively regressively quantiating the explanatorial, 
clinical, field or remote geosampled covariate, paramter estimators of the second kind can be 

computed from the sum with a binomial coefficient, or the 

generating functions = = where is the falling factorial 
(Roman 1984, pp. 60 and 101). For qualitatively quantiating the Stirling numbers of the second 
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kind  we used the Wolfram Language as StirlingS2[n, m], and denoted . Designed for the 
new generation of programmers, the Wolfram Language has a vast depth of built-in algorithms 
and knowledge, all automatically accessible through its unified symbolic language 
(http://www.wolfram.com/language/). 

First, according to Stirling's formula, we can replace the factorial of a large number n with the 
approximation: 

 

Thus, 

 

Next, use the approximation to match the root above to the desired root on the right-hand 
side. 

 

            Finally, we rewrote the expression in the yellow fever model  as an exponential and use s 

the Taylor Series approximation for ln(1+x): n Note that k 
cannot be fixed or it would quickly fall outside the range of interest as n → ∞. What is needed is 
to let k vary but always be a fixed number of standard deviations from the mean, so that it is 
always associated with the same point on the standard normal distribution ( see Hosmer and 
Lemeshew 2002) . For the yellow fever model we defined  for some fixed x. 
Then when x = 1, k we had 1 standard deviation from the mean. From this definition we have the 

approximations k→np and as n → ∞.However, the left-hand side requires that k be an 
integer. Keeping the notation but assuming that k is the nearest integer given by the definition, 
this is seen to be inconsequential in the limit by noting that as n → ∞ the change in x required to 
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make k an integer becomes small and successive integer values of k produce converging values 
on the right-hand side: 

 

The model construction consisted of transforming the left-hand side to the right-hand side by 
three approximations such that: 

 

The Stirling numbers in the geospatiotemporally, geosampled, YFV-related, 
explanatorial,  clinical, field or remote-geosampled eco-epidemiological, risk model  of the 
second kind for three elements were =1, =3, =1. Since a set of  elements can 
only be partitioned in a single way into 1 or subsets(Griffith 2003), we employed 

 The triangle of Stirling numbers of the second kind  was 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

343 
Copyright © acascipub.com, all rights reserved.  

where the th row in the  eco-peimdeiological, risk model corresponded to the 

coefficients of the Bell polynomial  (see Figure 5). In the model  and 

= = = for (Abramowitz and Stegun 1972,Stanley 
1997,), where iwas a Pochhammer symbol. Another generating function was  given by 

for , where  was the polylogarithm.  

Figure 5 Stirling numbers of the second kind intimately connected with the Poisson 

distribution using the Dobiński's formula where is a geo-
spatiotemporal YFV-  Bell polynomial  

 

                  The polylogarithm , was  the function in the geo-spatiotemporal, 
geosampled , YFV-related eco-epidemiological, explanatorial, clinical, field and remote-
specified eco-epidemiological, risk model defined in the complex plane. Its definition on the 
whole complex plane then followed uniquely via analytic continuation. Note that the similar 
notation was  employued for computing the logarithmic integral. The polylogarithm was 
also denoted which was  equal to where was the Lerch 
transcendent .  
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The Lerch transcendent is generalization of the Hurwitz zeta function and polylogarithm 
function. Many sums of reciprocal powers can be expressed in terms of it.  We defined this 
transcendent in the geo-spatiotemporal, geosampled, eco-epidemiological, explanatorial, clinical, 
field and remote, interpolatable,  YFV-related eco-epidemiological risk model  by 

for and ,  . The polylogarithm was implemented in the Wolfram 
Language as PolyLog[n, z]. The polylogarithm  arose in the closed form of the integrals of the 

Fermi-Dirac distribution in the model where  waSs the gamma 

function, and the Bose-Einstein distribution  

The  Fermi-Dirac distribution arose in the study of half-integer as whose 

integral was  given by = = where 
was the Lerch transcendent and  was a polylogarithm. The  in the geo-

spatiotemporal, geosampled, YFV-related, eco-epidemiological, explanatorial, clinical, field or 
remote-specified,  geosampled, probabilistic,  risk model reduced to where was 
the Riemann zeta function. Note,  that the meaning of for fixed complex  was not 
completely well-defined in the model resdiual forecasts  since it was dependent on how  was 
quantitated  in four-dimensional -space.  

The polylogarithm of negative integer order arose in sums of the 

form = = where was an Eulerian number in the YFV model.  

Polylogarithms also arose in sum of generalized harmonic numbers as in the 
YFV-related eco-epidemiological risk model derivatives for . Special forms of low-order 
polylogarithms in the model also included  

= , = , = , = At arguments and 1, the general geo-
spatiotemporal, regressively  quantitated polylogarithms became =  and 

= where  was the Dirichlet function and was the Riemann zeta function. The 
polylogarithm for argument  was also evaluated analytically for  when 

= , = and =   

The derivative of the geo-spatiotemporal, eco-epidemiological, georeferncable, 
explanatorial, clinical, field and remote geosampled,  time series dependent, YFV model 

polylogarithm was itself a polylogarithm, Bailey et al. showed that 
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A number of remarkable identities exist 
for polylogarithms, including the amazing identity satisfied by , where 

 where  the smallest Salem constant, i.e., the 
largest positive root of the polynomial in Lehmer's Mahler measure problem may be efficiently 
quantitated (Cohen et al. 1992; Bailey and Broadhurst 1999; Borwein and Bailey 2003).  

We used the Pochhammer symbol (x)n to denote the falling 

factorial  in the YFV-related, eco-epidemiological, time series 
dependent, forecasting, probablistic,  risk model. If x and n are nonnegative integers, [i.e., 0 ≤ n 
≤ x], then (x)n is the number of one-to-one functions that map a size-n set into a size-x set(Cressie 
1993). At this junction we let ƒ be any function from a size-n set A into a size-x set B. Thus, in 
the eco-epidemiological, YFV-related, forecasting, risk model residual forecasts u ∈ B .We then 
let ƒ−1(u) = {v ∈ A : ƒ(v) = u}. Then {ƒ−1(u) : u ∈ B} was a partition of A. This equivalence 
relation was the "kernel" of the function ƒ.  

Any function from A into B factors into one function that maps a member of A to that part 
of the kernel to which it belongs, and another function, which is necessarily one-to-one, that 
maps the kernel into B(Jensen 2005). The first of these two factors was completely determined 
by the partition π, in the YFV model  that is the kernel. The number of one-to-one functions from 
π into B was then (x)|π|, in the  operationizable, time series dependent  YFV-related regression, 
model when |π| was the number of parts in the partition π. Therefore, the total number of 

functions from a size-n set A into a size-x set B was in the model when the index π ran 
through the set of all partitions of A. On the other hand, the number of functions from A into B 

was clearly xn. Thus, we had Since X was a geo-spatiotemporal, Poisson-distributed, 
seasonal, clinical, field and remote geosampled, YFV-related, explanatorial, random variable 

with expected value 1, then the nth moment of this probability distribution was  
but all of the factorial moments E((X)k) of this probability distribution was equal to 1 in the 

model derivatives also. Thereafter, we had, ,which was the number of optimal; 
partitions of the set A in the model.  

Next, the central moments in the geo-spatiotemporally,geosampled , operationizable, risk 

model was computed as so the mean, variance, skewness, and kurtosis were rendered as 

respectively. The characteristic function for 
the Poisson distribution in the geopredictive, autoregressive, eco-epidemiological, risk model 

was then revealed as and the cdf was so The 
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mean deviation of the Poisson distribution mode was then subsequently rendered by . 
The  CDFs of the Poisson and chi-squared distributions were then related in the eco-
epidemiological, YFV-related, explanatorial, probablistic, clinical, field and remote, geosampled, 
forecasting risk model as  integer k and 

. The Poisson distribution was then expressed in terms of 

whereby, the rate of changes were equal to the equation . The moment-
generating function of the Poisson distribution generated from the geosampled, time series 
dependent, explanatorial, YFV-related, predictor variables was also rendered by 

Given a random variable x and a pdf[e.g., ], if there exists an such 

that , where denotes the expectation value of , then is called the 
moment-generating function(Hazewinkle 2001). Commonly, for a continuous distribution in a 
seasonal, linear, regression-based, time-series dependent, explanatorial, probabilistic,  regression 

model[e.g., ] the equation is used where 
 is the r (i.e., the raw moment)(Hosmer and Lemeshew (2002). For quantifying independent 

X and Y, the moment-generating function in a robust model must satisfy the equation 

and if, the independent variables have 

Poisson distributions with probability parameters and (Haight 1967). This 

was evident since the cumulant-generating function was .  
In the endemic transmission-oriented, YFV-related, forecasting clinical, field and remote-

geosampled, eco-epidemiological, risk model the directed Kullback-Leibler (K-L) divergence 

between Pois(λ) and Pois(λ0) was then provided by . In probability 
theory and information theory, the K-L divergence along with information divergence, 
information gain, relative entropy are a non-symmetric measures of the difference between two 
probability distributions P and Q in a model(Cressie 1993). For remotely quantifying the 
probability distributions P and Q of a geosampled discrete random variable the K–L divergence 

was defined by . The model revealed that the average of the logarithmic 
difference between the probabilities P and Q was the average quantified using the probabilities 

P. The K-L divergence is only defined if P and Q both sum to 1 and if for any i such that 

(Hosmer and Lemeshew 2002).  

In our geo-spatiotemporal, YFV-based, probabilistic, regression-related, forecasting, 
explanatorial, clinical, field or remote geosampled, Ae.aegypti,  eco-epidemiological, risk model, 
if the quantity ln 0 appeared in the formula it was interpreted as zero. For distributions P and Q 
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of the continuous random variable in the geosampled eco-epidemiological YFV-related, 
empirical datasets, K-L divergence was defined to be the integral[i.e., 

where p and q denoted the densities of P and Q. More generally, since P 
and Q were probability measures over the eco-epidemiological, regressed, geosampled dataset X, 
and Q which was absolutely continuous with respect to P, then the K-L divergence from P to Q  

was optimally defined as in the risk model when was the Radon–Nikodym 
derivative of Q with respect to P provided the expression on the right-hand side existed. In 
mathematics, the Radon–Nikodym theorem is a result in measure theory that states that given a 
measurable space (i.e., X,Σ), if a σ-finite is measured on (i.e., X,Σ) then the expression is 
absolutely continuous with respect to a σ-finite measure µon (X,Σ)(Hosmer and Lemeshew 
2002). By employing the derivative, a measurable function f was rendered on X (0,∞), such 

that  for any, operationizable, time series dependent,  measured eco-
epidemiological, clinical, field or remote geosampled value in thye risk model  which then 
subsequently revealed the statistical significance of the geosampled,  YFV-related, explanatorial, 
covariate, parameter estimator,  coefficient values.  

Likewise, since P was absolutely continuous with respect to Q in the time series 
dependent  YFV-related, eco-epidemiological, probablistic,  regression model. The explanatorial, 
predictor, covariate, paramter estimator,  coefficient values were then defined employing: 

which was recognized as the entropy of P relative to Q. We 

found that if was any measure on X in the model, then existed, and the K-L 

divergence from P to Q was given as . The bounds for the tail probabilities of 
the Poisson random variable were then optimally derived in the, eco-epidemiological, regression 

model using a Chernoff bound argument where , for and for  

for .  
 In probability theory, the Chernoff bound, provides exponentially decreasing bounds on 

tail distributions of sums of independent random variables. It is a sharper bound than the known 
first or second moment based tail bounds such as Markov's inequality or Chebyshev inequality, 
which only yield power-law bounds on tail decay. However, in our  geo-spatiotemporal, YFV-
related, eco-epidemiological, explanatorial, clinical, field and remote, geosampled forecasting, 
risk model, the Chernoff bound required that the variates be independent - a condition that 
neither the Markov nor the Chebyshev inequalities commonly  require. In probability theory, 
Markov's inequality renders an upper bound for the probability that a non-negative function of a 
random variable is greater than or equal to some positive constant (Cressie 1993).  

We let X1, ..., Xn be independent Bernoulli random variables, each having probability p > 
1/2. Then the probability of simultaneous occurrence of more than n/2 of the geosampling, time 
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series, YFV-related, probablistic  sampling events that had an exact value S in the model 

when  the Chernoff bound revealed that S had the following lower bound: 

We noticed that if X was any geosampled, eco-epidemiological,  random 

variable and a > 0,then In the language of measure theory, Markov's 
inequality states that if (X, Σ, μ) is a measure space, ƒ is a measurable extended real-valued 

function, and ,then (Cressie 1993). We then used 
Chebyshev's inequality to determine the variance bound to the probability that the geo-
spatiotemporal-seasonal, geosampled, explanatorial, probabilistic random variable deviated far 

from the mean in the model. Specifically we used for any a>0. 
Var(X) was the variance of X, defined as: Chebyshev's inequality 
follows from Markov's inequality by considering the random variable for which 

Markov's inequality also reads (see Cressie 1993). Further, in 
Markov’s inequality if x takes only nonnegative, geosampled, eco-epidemiological, YFV-related 

clinical, field or remote geosampled values, then can be re-written 

= =  However, since  in the eco-epidemiological, 
YFV-related, risk model was a prevalence rate value, the rendered regression residuals were  . 
It should be stipulated that  was renderd from the resdiual YFV regressors so 

= = = In order to determine  
the statistically significant time series dependent, explanatorial, time series dependnet, clinical, 
field or remote explanatorial, covariate, paramter estimator, coefficient values. 

We then considered the Euler product where was the Riemann zeta 

function and was k the prime. . Thereafter, by taking the finite product up to k=n in 
the eco-epidemiological, clinical, field or remote explanatorial, time series dependent,  YFV-
related, probablistic, risk model and pre-multiplying by a factor , we were able to employ 

to render which was equivalent to 1.781072. By  so doing, g became 
the Euler-Mascheroni constant which also represented the limit of the sequence g= 

in the  regressed residuals where was the harmonic number 

which had the form in the forecasted residual derivatives. A harmonic number can be 

expressed analytically as where is the Euler-Mascheroni constant 
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(Hosmer and Lemeshew 2002). Our model revealed that the Euler product attached to the 

Riemann zeta function represented the sum of the geometric series rendered from the geo-
spatiotemporal, geosampled, empirical, probalistic dataset of explanatorial, observational 
predictor,  YFV-related, time series dependent,  covariate, paramter estimator, coefficients as 

. A closely related result was also obtained by 

noting that We also considered the variation of when with the sign changed to a 
sign and the in the model which moved from the denominator to the numerator rendering 

=.0915. 
 

We then tested the model for overdispersion with a likelihood ratio test. This test 
quantified the equality of the mean and the variance imposed by the Poisson distribution against 
the alternative that the variance exceeded the mean. For the negative binomial distribution, the 
variance = mean + k mean2 (k>= 0, the negative binomial distribution reduced to Poisson when 
k=0)(Haight 1967). The null hypothesis was H0: k=0 and the alternative hypothesis was Ha : k>0 
. To carry out the test, we employed the following steps initially and then ran the model using 
negative binomial distribution and a record log-likelihood (LL) value. We then recorded LL for 
the Poisson model. We used the likelihood ratio (LR) test, that is, we computed LR statistic, -
2(LL (Poisson) – LL (negative binomial). The asymptotic distribution of the LR statistic had 
probability mass of one half at zero and one half – chi-sq distribution with 1 d.f. To test the null 
hypothesis further at the significance level , we then used the critical value of chi-sq distribution 
corresponding to significance level 2, that is we rejected H0 if LR statistic >2 

(1-2 , 1 df).  

 
Next, we assumed that our geo-spatiotemporal,geosampled eco-epidemiological, 

forecasting, risk model explanatorial, predictor YFV-related, covariate, paramter estimator,  
coefficient estimates were based on the log of the mean,  which was a linear function of 
independent variables, log() = intercept + b1*X1 +b2*X2 + ....+ b3*Xm. This log-transformation 
implied that was the exponential function of the independent variables, = exp(intercept + b1*X1 
+b2*X2 + ....+ b3*Xm). Instead of assuming as before that the distribution of the seasonal 
geosampled coefficients[i.e., Y], was Poisson, we assumed a negative binomial distribution. That 
meant, relaxing the generalized linear Poisson regression specification assumption about the 
equality of the mean and variance since in our model we found that the variance of negative 
binomial was equal to + k2 , where k>= 0 was a dispersion parameter. The maximum likelihood 
method was then used to estimate k as well as the covariate,  parameter estimators of the YFV-
related, time series dependent, eco-epidemiological, risk-related, probablistic, model for log(). 
Fortunately, the SAS syntax for running negative binomial regression was almost the same as for 
Poisson regression. The only change was the dist option in the MODEL statement was used 
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instead of dist = poisson, dist = nb. The pmf of the negative binomial distribution with a gamma 
distributed mean in the geopredictive, explanatorial, interpolatble, YFV-related, eco-

epidemiological, risk model was then expressed as  using the 
geosampled, explanatorial, covariate, parameter estimator, coefficient estimates (i.e., ). 
In this equation, the quantity in parentheses was the binomial coefficient, which was equal 

to This quantity was also alternatively 

written as for explaining “negative binomialness’ in 
our regression model. Results from both a Poisson and a negative binomial model residual 
forecasts revealed that the geo-spatiotemporal, geosampled, explanatorial, covariate coefficient 
estimates were highly significant, but virtually furnished no predictive power. 

   Thus, instead of assuming that the distribution of the geosampled time series 
explanatorial,  geopredictive,  YFV-related, geo-spatiotemporal estimates (i.e., Y) was Poisson, 
we were able to assume that Y had a negative binomial distribution. We relaxed the assumption 
about equality of mean and variance (i.e., Poisson distribution property), since the variance of 
negative binomial was equal to  + k2, where k>= 0 which represented a dispersion parameter. 
The maximum likelihood method was then used to estimate k, as well as the geosampled time 
series, YFV-related, parameter estimators  of the regression model for log(). Thereafter, we 
noted that for the negative binomial distribution, the variance was equal to the mean + k mean2 
(i.e. k>= 0) as the negative binomial distribution reduced to Poisson when k was 0.  

 
In the risk based, explanatorial, time series, exploratory dependent, YFV-related, 

forecasting, eco-epidemiological, regression analyses, the null hypothesis was: H0: k=0 and the 
alternative hypothesis was: Ha : k>0.    We recorded the log-likelihood (i.e. LL) for the seasonal, 
YFV-related, forecasting, risk  model. We   employed the likelihood ratio (LR) test to compute 
the LR statistic using -2(LL) (Poisson) and the LL (i.e., negative binomial). The asymptotic 
distribution of the LR statistic had probability mass of one half at zero and one half – chi-square 
distribution with 1 df. To test the null hypothesis at the significance level  in our endemic, 
YFV-related, transmission-oriented, geopredictive, eco-epidemiological,  risk model, we 
employed the critical value of chi-square distribution corresponding to significance level 2, that  
was  rejection of  H0 , if LR statistic > 2 

 (1-2 , 1 df).  We generated the log of the mean,, which 
was a linear function of independent variables, log() = intercept + b1*X1 +b2*X2 + ....+ 
b3*Xm,  in the time series explanatorial, clinical, field and remote geosampled,  YFV-related, 
risk model which implied that  was the exponential function of the independent variables when  
 = exp(intercept + b1*X1 +b2*X2 + ....+ b3*Xm). By so doing, LULC change was found to be 
significantly associated to the YFV-related, explanatorial,  covariate, parameter estimatators 
empirically geosampled at the Gulu epidemiological study site. 
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The continuous random geosampled, seasonal, YFV-related, variable x had a chi-square 
probability distribution, with df, and its mathematical function was given by the 
equation

/ 2 1 x / 2
/ 2

1 x e for  x>0
f(x) 2 ( / 2)

0 otherwise

  



  


where  > 0. Mean and variance of a random variable       this  

distribution was then quantitated as E(x) =  =  and Var(x) = 2 = 2. Note  was a 
geosampled, YFV-related, times series parameter estimator. Different shapes of the probability 
distribution resulted from different values of .      
 
Figure 6. Chi-square probability distribution plot  of the regressed time series YFV-related  
endemic, variables geosampled at the Gulu eco-epidemiological study site 

 

 
 
 

For finding the probabilities and quintiles from the time series, YFV-related, chi-square 
distribution we employed P(x < 3.84) with  = 1. For  integration we then employed 
3.84

1/2 1 x/2
1/2

0

1 x e dx
2 (1/ 2)

 




 We also used the pchisq() function: where > pchisq(q = 3.84, df = 

1)[1] 0.94996 To find the 1 – /2 quantile from a chi-square distribution, we then used 
c

1/2 1 x/2
/2

0

11 / 2 x e dx
2 (1/ 2)

 
   


  where we solved for c. We also used dthe qchisq() function:> 

alpha<-0.1> qchisq(p = 1 - alpha/2, df = 1)[1] 3.8415. By so doing, the  dchisq() function then 
allowed us to evaluate f(x) so that we could parsimoniously  plot the seasonal YFV-related 
distribution as:  

 
> curve(expr = dchisq(x = x, df = 1), from = 0, to = 5, col  
    = "red", lwd = 2, main = "Chi-square distribution with  
    1 DF", ylab = "f(x)", xlab = "x", n = 1000) 
> abline(h = 0) 
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For our  population of geo-spatiotemporal, YFV-related, probablistic,  discrete values, the 
th -quantile was  the data value where the CDF crossed That is,  was  a th -quantile 

for a random, geosampled, explanatorial, clinical, field or remote –related, geopredictive, eco-
epidemiological, time series dependent, geopredictive variable if (or 
equivalently, )and (or equivalently, ). For a 
finite population of values indexed 1,...,  from lowest to highest, the th -quantile of the 
eco-epidemiological,  YFV-related, parameter estimatator population  was computed via the 

value rendered from  . If is not an integer, then round up to the next integer to get the 
appropriate index; the corresponding data value is the th -quantile (Hazewinkle 2001). On the 
other hand, we assumed that  if is an integer values in a geo-spatiotemporal, geosampled YFV-
related eco-epidemiological, forecasting, risk model, then any number from the data value can be 
taken as the quantile, and it is conventional (though arbitrary) to determine the average of  any 
two geosampled values.  We instead employed the empirically geosampled, explanatorial, 
clinical, field and remote variable integers  where and , were the “ -quantile”  based on a 
response variable ( prevalance of YFV)  with . By so doing, replaced in the 
YFV, eco-epidemiological, geopredictive, risk model. 

Although the Q-Q plots rendered from the time series dependent, YFV-related 
,geopredictive covariate,parameter estimators coefficients was based on accurately tabulated 
quartiles, the Q-Q plot was  not able  to quantize which georeferenced LULC explanatorial, 
summarized, diagnostic point in the Q-Q plot determined a given quantile. For instance, it was 
not possible to determine the median of the time series plotted distributions. Commonly Q-Q 
plots indicate deciles to make determinations such as this possible. The slope and position of the 
geo-spatiotemporal, YFV-related, probabilistic,  regressors between the quartiles did not render a 
measure of the relative district-level geolocation and relative scale of the samples. If the median 
of the distribution plotted on the horizontal axis is 0, the intercept of a regression line is a 
measure of the geolocation, and the slope is a measure of scale (Cressie 1993). The distance 
between medians of relative LULC geolocation was not reflected in the Q-Q plots. The 
probability plot of error correlation coefficients (i.e., the correlation coefficient between the 
paired sample quartiles) was thus not quantifiable.  

   A major problem is that the “r-squared” statistic for both of the prediction equations is fairly 
small (R^^2= 26% and 4.7% respectively) which suggests that the prediction lines do not fit the 
data very well.  One way to improve the predictive model might be to combine the information 
in both of the images.  The “Normalized Density Vegetation Index (NDVI)” does just that by 
calculating a new value that indicates plant vigor— NDVI= ((NIR – Red) / (NIR + Red). Figure 
&shows the process for calculating NDVI for the sample grid location— ((121-14.7) / (121 + 
14.7))= 106.3 / 135.7= .783 .  The scatter plot on the right shows the yield versus NDVI plot and 
regression line for all of the field locations.   
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the R^^2 value is a higher at 30% indicating that the combined index is a better predictor of 
yield.  
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   Commonly in a seasonal vector entomological-related cluster-based forecasting, regression 
model, the closer the correlation coefficient is to one, the closer the distributions are to being 
shifted, scaled versions of each other(see Jacob et al. 2009d, Jacob et al. 2010a,b). Unfortunately 
for quantitating the seasonal vector distributions with a single shape parameter, the probability 
plot correlation coefficient plot in SAS could not provide a method for estimating , clinical, field 
or remote specified YFV-related shape parameter by computing the correlation coefficient for 
different geosampled, eco-epidemiological, geo-spatiotemporal values of the shape parameter. 
The use of Q-Q plots was not  able to quantitatively assess nor  compare the geo-spatiotemporal, 
explanatorial, eco-epidemiolotgical, clinical, field and/or remote geosampled, distribution of the 
YFR-related samples  to the standard normal distribution [i.e., N(0,1)].  

Figure 7. a plot of the Chi-square distribution, when  = 1 degree of freedom in  the 
seasonal geopredictive  YFV-related endemic transmission-oriented risk model 

 
]  

 

Bootstrapping allows for estimation of statistics through the repeated resampling of data. In this 
page, we will demonstrate several methods of bootstrapping a confidence interval about an R-
squared statistic in SAS. We will be using the hsb2 dataset that can be found here. We will begin 
by running an OLS regression, predicting read with female, math, write, and ses, and saving 
the R-squared value in a dataset called t0. The R-squared value in this regression is 0.5189.   

 
ods output FitStatistics = t0; 
proc reg data = hsb2; 
  model read = female math write ses; 
run; 
quit; 
 
The REG Procedure 
Model: MODEL1 
Dependent Variable: read reading score 
 
Number of Observations Read         200 
Number of Observations Used         200 
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                             Analysis of Variance 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     4          10855     2713.73294      52.58    <.0001 
Error                   195          10064       51.61276 
Corrected Total         199          20919 
 
Root MSE              7.18420    R-Square     0.5189 
Dependent Mean       52.23000    Adj R-Sq     0.5090 
Coeff Var            13.75493 
 
                                 Parameter Estimates 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > |t| 
Intercept    Intercept         1        6.83342        3.27937       2.08      0.0385 
female                         1       -2.45017        1.10152      -2.22      0.0273 
math         math score        1        0.45656        0.07211       6.33      <.0001 
write        writing score     1        0.37936        0.07327       5.18      <.0001 
ses                            1        1.30198        0.74007       1.76      0.0801 
*store the estimated r-square; 
data _null_; 
 set t0; 
 if label2 =  "R-Square" then  
 call symput('r2bar', cvalue2); 
run; 

To bootstrap a confidence interval about this R-squared value, we will first need to resample.  
This step involves sampling with replacement from our original dataset to generate a new dataset 
the same size as our original dataset.  For each of these samples, we will be running the same 
regression as above and saving the R-squared value.  proc surveyselect allows us to do this 
resampling in one step.   

Before carrying out this step, let's outline the assumptions we are making about our data 
when we use this method. We are assuming that the observations in our dataset are independent. 
We are also assuming that the statistic we are estimating is asymptotically normally distributed.  
   

We indicate an output dataset, a seed, a sampling method, and the number of replicates.  
The sampling method indicated, urs, is unrestricted random sampling, or sampling with 
replacement.  The samprate indicates how large each sample should be relative to the input 
dataset.  A samprate of 1 means that the sampled datasets should be of the same size as the input 
dataset.  So in this example, we will generate 500 datasets of 200, so our output dataset 
bootsample will have 100,000 observations.   
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%let rep = 500; 
proc surveyselect data= hsb2 out=bootsample 
     seed = 1347 method = urs 
  samprate = 1 outhits rep = &rep; 
run; 
ods listing close; 
 
The SURVEYSELECT Procedure 
 
Selection Method    Unrestricted Random Sampling 
 
Input Data Set                   HSB2 
Random Number Seed               1347 
Sampling Rate                       1 
Sample Size                       200 
Expected Number of Hits             1 
Sampling Weight                     1 
Number of Replicates              500 
Total Sample Size              100000 
Output Data Set            BOOTSAMPLE 

With this dataset, we ran our regression model, specifying by replicate so that the model will be 
run separately for each of the 500 sample datasets. After that, we use a data step to convert the 
R-squared values to numeric.   

 
ods output  FitStatistics = t (where = (label2 =  "R-Square")); 
proc reg data = bootsample; 
  by replicate; 
  model read = female math write ses; 
run; 
quit; 
* converting character type to numeric type; 
data t1; 
  set t; 
  r2 = cvalue2 + 0; 
run; 

 The explanatorial, geosampled, time series-related,  eco-epidemioligical,  YFV-related, 
geopredictive, clinical, field and remote geosampled covariate, parameter estimator, coefficient 
values  were then input into an eigenfunction decomposition algorithm to quantitate latent 
autocorrelation error coefficients in the linear  geo-spatiotemporally interpolatable,residual 
variance estimates. Results indicated that positive spatial autocorrelation (PSA) (i.e., aggregation 
of like terms in geo-space)  and negative spatial mautocorrelation (NSA)  were detected for the 
geosampled data. Eigenvectors were then extracted from the matrix (I−11′/n) C (I−11′/n), 
employing the eco-entomological geosampled, explanatorial, time series-related, geopredictive 
variables. We noted that denoting the autoregressive parameter captured the latent 
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autocorrelation in the time series –related, YFV,eco-epidemiological, risk model. This 
quantification involved ρ, a conditional autoregressive covariance specification, which involved 
the matrix (I - ρ C), where I was an n-by-n identity matrix. The residual autocorrelation error 
components were then calculated as the matrix C raised to the power 1 Interestingly, only 
adjacent geosampled, time series dependent, explanatorial, geopredictive, clinical, field and 
remote-specified, YFV-related, data were involved in the autoregressive function, which in 
actuality was a first-order specification, with the autoregressive term being CY.  

 
An important matrix was then generated from C1 in  the explanatorial, time series 

dependent, YFV-related, endemic, transmission-oriented, forecasting, eco-epidemiological,  risk 
model which was the vector of the number of geoampled, covariate, parameter estimators 
neighbors in the Gulu eco-epidemiological study site. Next, the inverse of the elements of C1 
were inserted into the diagonal of a diagonal matrix, (i.e., D-1) rendering matrix W = D-1C which 
became a stochastic matrix (i.e., each of its row sums equaled 1). One appealing feature of this 
matrix was that the autoregressive term in the autoregressive model became WY, which 
generated averages, rather than sums, of the neighboring geosampled estimated LULC values. 
Because a covariance matrix for a robust, seasonal, vector, insect –related, probabilistic,  
distribution model must be symmetric (Jacob et al. 2006,Jacob et al. 2005b), we employed  a 
matrix W specification with a conditional autoregressive model by making the individual 
geosampled LULC and other explanatorial variance no constants using  (I - ρ D-1C)D-1 = (D-1 - ρ 
D-1CD-1).  

An appealing feature of this version for our geopredictive, eco-epidemiological, YFV-
related,  distribution model was that it restricted values of the autoregressive parameter to the 
more intuitively interpretable range of 0 ≤ ≤ 1. The model then furnished an alternative 
specification which was also written in terms of matrix W. The spatial covariance was then a 
function of the matrix (I - ρ CD-1)(I - ρD-1C) = (I - ρ WT)(I - ρ W), where T denoted the matrix 
transpose. The resulting matrix was symmetric, and was considered a second-order specification, 
as it included the product of two spatial structure matrices (i.e., WTW), which also restricted 
values of the autoregressive parameter to the more intuitively interpretable range of 0 ≤ ≤ 1in 
the forecasting risk model. 
 

In statistics, Moran's I is a measure of spatial autocorrelation (Moran 1950). We defined 

Moran's I as  where was the number of LULC case units 
indexed by and ; was the other  geosampled, time series-related, explanatorial,  YFV-
related, clinical, field and remote specified variables of ; was the mean of ; and  was an 
element of a matrix of spatial weights. The expected value of Moran's I under the null hypothesis 

of no spatial autocorrelation was then ( see Griffith 2003). We noted that variance 

equaled where 
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Negative (positive) LULC values indicated negative (positive) spatial autocorrelation in 
the eco-epidemiological, YFV-related time series dependent, eco-epidemiological, clinical, field 
and remote specified model. Values ranged from −1 (indicating perfect dispersion) to +1 (perfect 
correlation). A zero value indicated a random time series-related, YFV-oriented, LULC 
geospatial patterns. For statistical hypothesis testing, Moran's I values can be transformed to Z-
scores in which values greater than 1.96 or smaller than −1.96 indicate spatial autocorrelation 
that is significant at the 5% level (see Griffith 2003). 

        Because the Moran’s scatterplot utilizes a standardized variable y (see Anselin, 1995), 
plotting georeferenced, time series-related,  YFV, explanatorial, geopredictor variables 
geosampled in  varying explanatorial,  LULC transitional zones allowed the data to be 
geolocated in one of the four planar graph quadrants centered at (0,0). The slope of the line in the 
scatterplot is equivalent to the MC (Griffith, 2003). Thus, since the geopredictive, YFV-related, 
time series distribution slope-related coefficinets  in the scatterplot was negative, we assumed 
that this would generate a checkerboard pattern, or a sort of spatial competition in which high 
geopredictor  covariate coefficient indicator values geosampled from a georeferenced  
explanatorial, LULC site geolocation would tend to be co-located with lower covariate 
coefficient values in neighboring LULC geolocations [i.e., NSA]. We generated a graph in 
ArcGIS  to depict a standardized variable in the x-axis versus the spatial lag of the standardized 
variables employing a weighted geographical matrix for seasonally quantitating the YFV-related 
explanatorial, clinical, field and remote –specified regressors. The spatial lag in their model was 
a summary of the effects of the neighboring prolific geosampled LULC –related feature data 
attributes which was obtained by means of the weights matrix. 

 
Next, an eigenfunction decomposition algorithm was generated based on the weights 

matrix, for uncovering relationships between the determinant of the matrix and its extreme time 
series dependent, eco-epidemioloigical, YFV-derived eigenvalues. We also quantitated 
regression values and the mininium eigenvalue of the weights matrix and the eigenvectors of a 
row-standardized asymmetric version of the matrix and its symteric similarity matrix counterpart 
components. In addition , a conjecture was posited pertaining to the estimation and subsequent 
quantitation of the largest eigenvalue rendered from the binary geographic weights matrix 
especially when the specified estimate obtained with the matrix powering began to oscillate 
between two tracjectories in its convergence. The decomposition algorithm then outlined the 
extreme, YFV-related, time series, dependent eigenvalues. By so doing, ArcGIS planar graphs 
with the georeferenced, clinical, field or remote geospatiotemporally-geosampled, endemic , 
transmission-oriented,  YFV-related variables were cartographically described.  

 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

359 
Copyright © acascipub.com, all rights reserved.  

We also qunatiated the Geary’C  ratio. Geary’s C is a measure of spatial autorrelation 
(Griifth 2003). Geary C is invcrsely related to the Morans I  but it is not identical. Morans I is a 
measure of global autocorrelation while Geary’s C is more sensitive to local spatial 
autocorrelation . Like temporal correlation , autocorrelation means that adjacent observations of 
the same phenomena are correlated in geographic space. However , temporal autocorrelation is 
about actually only a proximity in time measured while autocorrelation is more in regard to 
proximity to spatialized processes. We defined Gearcy C for geospatially quantizing the 
geosampled, YFV-related, explanatorial, time series, clinical, field and remote specified  
variables  using  

where  was the number of  cases indexed by  and ;  was 
the variables of interest;  was the mean of ;  was a matrix of spatial weights; and  was 
the sum of all .= The value of Geary's C lies between 0 and 2. 1 means no spatial 
autocorrelation. Values lower than 1 demonstrate increasing positive spatial autocorrelation, 
whilst values higher than 1 illustrate increasing negative spatial autocorrelation (Griffith 2003). 

Estimation results, for these models, appear in Table 4. Positive and NSA spatial filter 
component pseudo-R2 values are reported. These values did not exactly sum for the complete 
spatial filter; however, they are very close to their corresponding totals, suggesting that any 
induced multicollinearity was quite small.  
 
Table 4.  Global Spatial analyses of the geosampled  explanatorial geopredictive YFV-
related explanatory covariate coefficient  count data in the Gulu  study site 
 
Study Site n Transformation MC GR 
Gulu  152 LN(count + 1) 0.068 0.791 
 

A generalized linear model (GLM) was extended to account for latent, non-spatial ,YFV-
related,time series, explanatorial covariate correlation effects, which allowed inferences to be 
drawn for a much wider range of geographic sampling configurations generated from the 
geosampled, georefernced,  time series, geopredictive, estimates than those utilized by 
employing a GLMM. The GLMM included a random effect, which was specified as a random 
intercept that was assumed to be normally distributed with a mean of zero, a constant variance, 
and non-zero spatial autocorrelation. This varying intercept term compensated for the non-
constant mean associated with the seasonal, YFV-related, negative binomial model, GLM 
specification. The spatial structuring of random effects was implemented with a conditional 
autoregressive model and was achieved in this research with a spatial filter. The autocorrelation 
components revealed 16% redundant information in the ecologically geosampled datasets. The 
GLMM estimation results appear in Table 5. 
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Table 5. Poisson spatial filtering model results for the sampled YFV-related count data at 
the Gulu study site  
 
Spatial Statistics  Gulu 
SF: # of eigenvectors 3 
SF: MC 0.594 
SF: GR 0.386 
SF pseudo-R2 0.177 
Positive SA SF: # of eigenvectors 4 
Positive SA SF: MC 0.603 
*SF denotes spatial filter 
*SA denotes spatial autocorrelation 
 

Table 6 lists the improvements of fit in the adjusted and unadjusted models for all the 
seasonal, geosampled, YFV-related, model specifications and random error in the geospatial 
analyses. The unadjusted model compared the univariate model to a model containing only the 
intercept term. Interactions were examined, and significant interactions were included.  
Improvement of fit was also calculated for the first-order interaction models to determine 
whether including significant interactions improved fit compared to the full main effects model. 
Convergence problems prevented obtaining results of a saturated model to determine whether the 
presented model fit as well as the saturated model. 
 
Table 6. Comparison of improvement of fit measured by likelihood ratio between 
unadjusted and adjusted effects models 
 

Unadjusted effects Adjusted effects 

Variable Deviance 

Improvement 

χ2 df Deviance 

Improvement 

χ2 df 

Intercept 983.1241       

LULC  983.4208 14.4751 1 901.432 20.748 1 

RFALL 983.5936 12.1098 1 885.169 3.7497 1 

NDVI 982.6438 14.1147 1 896.257 19.397 1 

HPOP 986.3168 8.00961 1 890.007 8.6375 1 

ELEV 986.5872 9.96053 1 901.328 20.632 1 

Full Main Effects        

Generalized autoregressive moving average (GARMA) models were then extended to 
generalized, seasonal, autoregressive, integrated moving average (GSARIMA) models for 
robustly quantiating observation-driven, YFV-related, non-Gaussian, non-stationary and/or 
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explanatorial, georeferenced, time series count data. The models were applied to monthly YFR 
case time series in the Gulu eco-epidemiological, study site. 

Bayesian negative binomial versions of SARIMA models and two ARIMA models, with 
second order harmonics were identified in the preliminary analysis, in SAS employing 
untransformed YFV-related data, using a logarithmic link function and ZQ1 transformation. 
Since there were only three observations with counts in the geopredictive, YFV-related,  
endemic, transmission-oriented, eco-epidemiological, risk model (rainfall, LULC and human 
population), the results would not have been  sensitive to the choice of the transformation 
constant for ZQ1 which was set at c = 1. Also, versions with identity link were considered. 
Models were evaluated based on two criteria. The first was the deviance information criterion 
(DIC), which was calculated as the mean of the posterior distribution of the deviance conditional 
on the first, time series geosampled, YFV-related observations where   was equal to the 
maximum w of the models compared which were then augmented with the number of effective 
estimated parameters as penalty to prevent over fitting. Models with lower DIC were considered 
to have a better fit. A second criterion was  then defined as the mean absolute relative error of 

fitted values (MARE): MARE = , where  was the fitted number of previous 
yellow fever cases at discrete time interval t, and f and l were the first and last discrete time 
intervals, respectively, of the time period under consideration. The MARE was calculated for 
both the entire series (except for the first YFV-related observations), where models were fitted 
to the entire time series using f = +1, l = n . 

We noticed that the posterior, geopredictive, seasonal-geosampled, explanatorial, YFV-
related  distributions estimated at each fitted data point were skewed and  the median of the 
posterior distribution was taken for . The MARE is similar to the mean absolute percentage 
error (MAPE), which is applicable to series for which the variance is dependent on the mean 
(Anselin 1995). However, since the denominator was equal to or larger than one in our seasonal, 
explanatorial, geopredictive, time series-related, YFV-related, endemic, transmission-oriented, 
risk model, this prevented problems with large geosampled, LULC, explanatorial covariate 
coefficients. The MARE statistic does not have a built-in penalty to prevent over fitting, but 
among models with similar value of MARE, the model with the least number of parameters is 
preferred (Cressie 1993). The MARE estimates were comparable across models with different 
distributional assumptions, in contrast to the DIC. Models were run with three Markov chains of 
11,000 iterations each including a burn-in of 1,000 iterations. Convergence was assessed by 
studying the time series YFV-related plots of the Gelman-Rubin convergence statistic on the 
estimated endemic, transmission-oriented, parameters geosampled at the Gulu eco-
epidemiolgical, study site.  

Gelman and Rubin convergence statistics proposed a general approach to monitoring 
convergence of MCMC output in which m > 1 parallel chains were updated with initial 
geosampled YFV-related covariate coefficient values that were overdispersed relative to each 
target distribution, which had to be normally distributed. Convergence was diagnosed when the 
chains had ‘forgotten’ their initial, seasonal, explanatorial,  geopredictive, time series dependent, 
YFV-related, endemic, transmission-oriented, eco-epidemiological, risk model covariate 
coefficient values, and the output from all chains is indistinguishable. The Gelman Diagnostic 
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function made a comparison of within-chain and between-chain variances, and is similar to a 
classical analysis of variance. A large deviation between these two variances indicates non-
convergence 

Since the Gelman Diagnostic function relies heavily on overdispersion with respect to the 
target distribution (Gilks 1996) we considered using MCMC twice, first to estimate the target 
distributions, and secondly to overdisperse initial seasonal, explanatorial, geopredictive, time 
series dependent, YFV-related, endemic, transmission-oriented, risk model, covariate, coefficient 
values  with respect to them. This helped identify multimodal YFV-related  target distributions. 
If multiple modes are found, it remains possible that more modes exist(Cressie 1993). When 
multiple modes are found, and if chains are combined with the Combine functionin PROC 
MCMC, each mode may be probably represented in a proportion correct to the distribution 
(ww.sas.edu).  

PROC MCMC used a random walk Metropolis algorithm to obtain posterior samples 
from the empirical geosampled dataset of clinical, field and remote, geo-spatiotemporal, 
covariate coefficients .We wanted want to obtain samples (i.e., T)  from a univariate distribution 
with pdf . In our YFV-related eco-epidemiological, forecasting, risk model  was the th 
sample from . To use the Metropolis algorithm, we needed to have an initial value and a 
symmetric proposal density . For the th iteration, the algorithm generated a 
sample from based on the current sample , and it made a decision to either accept or reject 
the new sample. If the new sampled accepted, the algorithm repeated itself by starting at the new 
sample. If the new sample is rejected, the algorithm starts at the current point and 
repeats(http://support.sas.com/)  

    We noticed that  in the time series dependent,  YFV-related, eco-
epidemiological, forecasting, risk model was a symmetric distribution. The proposal distribution 
was then an easily quantiated distribution from which to sample where , 
meaning that the likelihood of from  was  the same as the likelihood of jumping back to 

from . The most common choice of the proposal distribution is the normal distribution 
with a fixed (Cressie 1993). The Metropolis algorithm for qualitatively quntitating the 

empirical  geosampled dataset of geo-spatiotemporally, explanatorial, clinical, field or remote 
specified, YFV-related  geopredictive variables was summarized as follows. We set t=0 .We 
chose  a starting point . This was an arbitrary point as long as  .We generated a new 
sample, , by using the proposal distribution .We calculated the following 

quantity .We then geosampled  from the uniform distribution . We 
set  if or   otherwise. Then we set . Note that the number of 
iterations kept increasing regardless of whether a proposed explanatorial, time series sample was 
acceptedor not.  This algorithm defined a chain of random variates whose distribution converged 
to the desired distribution[i.e.,  }, and so from some point forward, the chain of samples 
was  a sample from the distribution of  the georfernced YFV-related regressors. In Markov chain 
terminology, this distribution is called the stationary distribution of the chain, and in Bayesian 
statistics, it is the posterior distribution of the model parameter estimators (Cressie 1993). The 
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reason that the Metropolis algorithm works is beyond the scope of this documentation. More 
detailed descriptions and proofs are present  in many standard textbooks, including Roberts 
(1996) and Liu (2001).  

We employed the random-walk Metropolis algorithm in PROC MCMC.By default , 
PROC MCMC assumed that all the geo-spatiotemporally-geosampled YFV-related clinical, field 
and remote –geosampled,time series covariate coefficients in the empirical datset were 
independent. The logarithm of the posterior density was calculated as 

follows  where  was  a vector of parameters. The term 
 was the sum of the prior densities in the  PRIOR and the HYPERPRIOR statements. 

The term  was the log-likelihood specified in the MODEL statement. The statement 
specified the log likelihood for a single geo-spatiotemporally geosampled, YFV-related,  
explanatorial, clinical, field or remote-specified observation in the parameter estimator dataset.  

PROC MCMC evaluated every statement for each  explanatorial, time series dependent, 
geosampled YFV-related explanatorial, operationizable, observation. The procedure 
cumulatively added the log-likelihood for each geopredictor. Stements between the 
BEGINNODATA and ENDODATA were then invasively evaluated. We noted  that at the last 
YFV- related LULC explanatorial, covariate, the log of the prior and hyperprior distributions 
were added to the sum of the log-likelihood as to render a robustified log of the posterior 
distribution. 

PROC MCMC updated each block of geosampled, georefernced, YFV-related paarmter 
while holding all the other covariates constant during iteration. The procedure used mutliple 
steps to calculate the logs of the posterior distribution. By so doing, all outputs converged 
parsimoniously. All parameter estimators were then updated.  In other words, the procedure did 
not calculate the conditional probability distribution explicitly for each empirically divided block 
of geosampled, explanatorial, clinical, field or remote specified explanatorial covariate 
coefficient value, but instead employed the full joint distribution in the Metropolis algorithm for 
every block update. Since in our explanatorial, time series dependent forecasting eco-
epidemiological risk model we determined dependency based on a step-wise analyses, [i.e., 

], we used the PROC option JOINTMODEL. 

In our YFV-related geo-spatiotemrpoal forecasting risk model, we assumed that the 
inputs were independent and that the joint log likelihood was the sum of individual log-
likelihood functions. We specified the log-likelihood of one geosampled, explanatorial, time 
series dependent,  clinical, field and remote-specified variable of one observation in the MODEL 
statement. PROC MCMC evaluated that function for each, YFV-related, observational predictor 
in the paramter estimator  dataset  and cumulatively summed them up. If observations are not 
independent of each other, this summation produces the incorrect log-likelihood (Hosmer and 
Lemeshew 2002).  

 The following statementrs fit a simple, YFV-related model with an unknown mean (mu) 
in PROC MCMC where the variance in the likelihood was deemed to be known.  
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proc mcmc data=exi yfv=7 outpost=p1; 
      parm mu; 
      prior mu ~ normal(0, sd=10); 
      model y ~ normal(mu, sd=1); 
   run 
 The following statements then specified the log-likelihood for the entire geosampled 
emepirical datawseet of YFV-related regressors 
     
   proc mcmc data=a outpost=p2 jointmodel; 
      array data[1] / nosymbols; 
      begincnst; 
         rc = read_array("exi", data, "y"); 
         n = dim(data, 1); 
      endcnst; 
     
      parm mu; 
      prior mu ~ normal(0, sd=10); 
      ll = 0; 

The MODEL statement indicated a normal likihood for each explanatorial, time series 
dependent, clinical, field  or remote, YFV-related explanatorial varaible y.The ‘potential scale 
reduction factor’ (PSRF) was then  estimated employing a factor by which the scale of the 
current distribution for the target distribution  was reduced if the simulations were continued for 
an infinite number of iterations. Each PSRF declined to 1 as the number of iterations approached 
infinity in the regressed dataset of YFV-related endemic transmission-oriented risk model 
covariate coefficient values. PSRF is also often represented as R-hat(Cressie 1993). PSRF was 
calculated for each marginal posterior distribution in x, together with upper and lower confidence 
limits. Approximate convergence was then diagnosed when the upper limit was close to 1. The 
recommended proximity of each PSRF to 1 varies(Cressei 1993). Our goal was to achieve PSRF 
< 1.1. PSRF is an estimate of how much narrower the posterior might become with an infinite 
number of iterations(Griffith 2003). By so doing, when PSRF = 1.1, for example, was revealed 
in the regressed seasonal, explanatorial, geopredictive, time series-related, YFV-related, endemic 
transmission-oriented, risk-related,  model, covariatem coefficient values,  it was then interpreted 
as a potential reduction of 10% in posterior interval width, given infinite iterations. The 
multivariate form bounds above the potential scale reduction factor for any linear combination of 
the sampled variables were then quantitated.  

The confidence limits  in the regressed, seasonal ,explanatorial, geopredictive ,time series 
–related,YFV-oriented, endemic, transmission-oriented, risk model, covariate coefficient 
indicator values were  based on the assumption that the target distribution is stationary and 
normally distributed. The transform argument  was used to improve the normal approximation.  
A large PSRF indicates that the between-chain variance is substantially greater than the within-
chain variance, so that longer simulation is normally needed for proper quantitation (Hosmer and 
Lemeshew 2000). If a PSRF is close to 1, then the associated chains are likely to have converged 
to one target distribution. A large PSRF (perhaps generally when a PSRF > 1.2) indicates 
convergence failure, and can indicate the presence of a multimodal marginal posterior 
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distribution in which different chains may have converged to different local modes or the need to 
update the associated chains longer, because burn-in has yet to be completed (Gilks 1996). 

We then used Gelman Diagnostics to quantitate the program as to work with the 
geospatial objects in the eco-epidemiological, forecasting risk model. We employed the 
gelman.diag function in the coda package . We used two methodologies to estimate the variance 
of the stationary distribution and cartographically described the time series YFV-related 
regressors. This estimation was conducted by determining the variance of the stationary 
distribution. By so doing, the mean of the empirical variance within each chain, W, and the 
empirical variance from all chains combined was robustly quantized .The resdiual forecasts were 
expressed as sigma.hat^2 = (n-1)W/n + B/n where n is the number of iterations and B/n is the 
empirical between-chain variance 

The Gelman Diagnostic was programmed to work with objects of class demonoid.  Since 
the chains converged,the seasonal explanatorial, geopredictive, time series-related, YFV, 
endemic, transmission-oriented, eco-epidemiological, risk model, covariate coefficient,estimates 
were deemed  unbiased. We noted that the first method underestimated the variance, since the 
individual chains had no time to range all over the stationary distribution, and the second method 
overestimated the variance, since the initial values were chosen to be overdispersed.  Regardless, 
our convergence diagnostic was  based on the assumption that each target distribution is normal. 
A Bayesian  estimation probability interval was then constructed using a t-distribution with mean 
mu.hat = Sample mean of all  the chains were combined with the  variance using  V.hat = 
sigma.hat2 + B/(mn),and degrees of freedom estimated by the method of moments d = 
2*V.hat^2 / Var(V.hat).Use of the t-distribution accounted for the fact that the mean and variance 
of the posterior distribution estimated. The convergence diagnostic itself was R=sqrt((d+3) V.hat 
/((d+1)W).Values substantially above 1 indicate lack of convergence (Gilks 1996). If the chains 
have not converged, then Bayesian probability intervals based on the t-distribution were deemed  
too wide, and thus had the potential to shrink by this factor if the MCMC run is continued.  

The multivariate version of Gelman and Rubin's diagnostic was also performed. Unlike 
the univariate proportional scale reduction factor, the multivariate version did not include an 
adjustment for the estimated number of degrees of freedom. A list is returned with the following 
components: PSRF (a list containing the YFV-related explanatorial, geo-spatiotemporal point-
estimates of the potential scale reduction factor (labeled Point Est.) and the associated upper 
confidence limits (e.g., labeled Upper C.I.) and MPSRF (e.g.,point-estimate of the multivariate 
potential scale reduction factor). 
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Figure 8. Posterior predictive distributions for the 12 months in 2006 of the yellow fever 
case count series in Gulu Uganda. 
 

 
 

The seasonal YFV-related time series revealed long-term changes in the mean, unstable 
variance and seasonality of the sampled covariates. A negative binomial Bayesian was then 
modeled in SAS. When estimating time serie dependent, YFV-related  parameter estimators of a 
negative binomial distribution for describing seasonal vector entomological -related count data, 
the MCMC chain can become extremely autocorrelated because the parameters are highly 
correlated (Jacob et al. 2009d, Jacob et al. 2012) 

We employed a lognormal and gamma mixed negative binomial (NB) regression model 
for the geosampled, time series-related, YFV-related counts, and presented efficient closed-form 
Bayesian inferences. Unlike conventional Poisson models, the proposed approach had two free 
parameters to include two different kinds of random effects which  allowed the incorporation of 
prior information, such as sparsity in the YFV-related clinical, field and remote-specified time 
series, regression coefficients. By placing a gamma distribution prior on the negative binomial  
dispersion parameter r, and connecting a lognormal distribution prior with the logic of the 
negative binomial probability parameter p, efficient Gibbs sampling and vibrational Bayes 
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inference were both developed. The closed-form updates were obtained by exploiting conditional 
conjugacy via both a compound Poisson representation and a Poly-Gamma distribution based 
data augmentation approach.  

 After fitting  the seasonal YFV-related  negative-binomial Bayesian models, both a 
GSARIMA and a GARIMA deterministic seasonality models were selected based on different 
criteria. Posterior geopredictive distributions indicated that our YFV-related negative-binomial 
models provided better geopredictions than Gaussian models, especially when counts were low. 
The GSARIMA models were able to capture the autocorrelation in the series. We then let 

be a TFV-related time series of count data of length n arising from a 

negative binomial distribution with and . The 
limiting form of the negative binomial distribution, that is , was the Poisson distribution. 
The YFV-related seasonal explanatory geopredictive model was then 
written:   where  was a link 
function, , and .  was a backshift 

operator with  .Note that in this research  ). 
 was a vector of coefficients for which included  

an intercept multiplier taken as  when  was the time dependent covariates. In the 
GARMA framework, seasonal-sampled YFV-related count data was then modeled via a 
logarithmic and an identity link function. To avoid the problem of taking the logarithm of the 
YFV-related observations with value zero under the logarithmic link, we employed a 
transformation of  where  . This time series explanatory 
geopredictive YFV-related autoregressive model then was translated into 

 

The time series YFV-related explanatory geopredictive   models were  then extended to   

analogues  by including seasonality (S) and differencing (I)  

components as follows:   where  was the length of the 
period (i.e.,  for monthly rainfall data with an annual cycle), 

, , , ,  and  which 
was then quantiated employing . binomial and  models  
with log link function and ZQ1 transformation . 

Thereafter , a seasonal YFV  explanatory  geopredictive endemic transmission-oriented  
Bayesian model risk model was  In Bayesian inference, prior distributions need to be assigned to 
all model parameters(Cressie 1993). A weakly stationary YFV-related time series model was 
assumed and, therefore, the auto correlation and moving average parameters  were constrained 
using an algorithm provided by Jones (1987]. For this purpose, the autoregressive and moving 
average parameters in the likelihood in the  explanatory geopredictive YFV-related risk model 
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were re-parameterized and prior distributions were adopted based  on the new parameterization. 
For instance , the non -seasonal YFV-related autoregressive parameters were re-
parameterized in terms of , , where and 

. The following prior distributions were 

then assumed: , where denoted the integer part of . Further 
priors chosen were and . 

For the first  seasonal YFV –related observations, we employed the residuals on the 
geopredictor scale (e.g.,   were  a case of a logarithmic link function was set to 
zero in a seasonal YFV-related explanatory geopredictive endemic transmission-oriented risk 
model. A restriction was thereafter put on the mean itself, that is when the identity link 
was  used for parameter estimator quantitation in the risk model . The GSARIMA YFV-related 
time series models were then estimated using SAS which employed MCMC simulation methods.  
 

      For the purpose of Gaussian SARIMA model identification, a Box-Cox transformation was 
additionally identified by fitting to the seasonal explanatory geopredictive endemic transmission 
oriented YFV –related case count time series. The fitted Box-Cox parameters  revealed a power 
of 0.271 and, given that the series contained observations with zero counts, a constant of 0.0219 
was added to each seasonal YFV-related observation prior  for transformation. As observed for 
the original series, the presence of long-term change in the mean level was apparent in the 
transformed time series data .  

     The augmented Dickey–Fuller test supported the presence of a unit-root (p = 0.17) in the 
Box-Cox transformed series and the series was then differenced. In this research the 
autoregressive YFV-related risk model  was  in SAS where yt  was the 
seasonal sampled  variable of interest (e.g., time series LULC change from forested canopy to 
rice-village complex) , t  was the time index, ρ was a coefficient, and ut  was the error term. A 
unit root is present if ρ = 1 ( Box and Jenkins 1985). The  time series explanatory geopredictive 
regression model was then  written as  where ∇ was the 
first difference operator. 

A finite difference is a mathematical expression of the form f(x + b) − f(x + a). If a finite 
difference is divided by b − a, one gets a difference quotient (Marsden 1985) . The 
approximation of derivatives by finite differences plays a central role in finite difference 
methods for the numerical solution of differential equations, especially boundary value 
problems(Ross 2007). The function difference divided by the point difference is known as the 
difference quotient (also known as Newton's quotient): 

 If ΔP is infinitesimal, then the difference quotient is a 

derivative, otherwise it is a difference: thus,  
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 We then defined the point range in the seasaonl YFV-related explanatory geopredictive 
endemic trsnmission-oriented risk model Since ΔP was finite in our model, there is (at least—in 
the case of the derivative—theoretically) a point range, where the boundaries are P ± (0.5) ΔP 
(depending on the orientation—ΔF(P), δF(P) or ∇F(P)): LB = Lower Boundary;   UB = Upper 
Boundary( Marsden 1985)Then  LB =  P0  = P0 + 0Δ1P     = Pń − (Ń-0)Δ1P; 
        P1  = P0 + 1Δ1P     = Pń − (Ń-1)Δ1P; 
        P2  = P0 + 2Δ1P     = Pń − (Ń-2)Δ1P; 
        P3  = P0 + 3Δ1P     = Pń − (Ń-3)Δ1P; 
            ↓      ↓        ↓       ↓ 
       Pń-3 = P0 + (Ń-3)Δ1P = Pń − 3Δ1P; 
       Pń-2 = P0 + (Ń-2)Δ1P = Pń − 2Δ1P; 
       Pń-1 = P0 + (Ń-1)Δ1P = Pń − 1Δ1P; 
  UB = Pń-0 = P0 + (Ń-0)Δ1P = Pń − 0Δ1P = Pń; 
  ΔP = Δ1P = P1 − P0 = P2 − P1 = P3 − P2 = ... = Pń − Pń-1; 
  ΔB = UB − LB = Pń − P0 = ΔńP = ŃΔ1P. 

  In this research derivatives in the seasonal YFV-related risk model were regarded as 
functions themselves, harboring their own derivatives. Thus each function is home to sequential 
degrees ("higher orders") of derivation, or differentiation. This property can be generalized to all 
difference quotients. As this sequencing requires a corresponding boundary splintering, it is 
practical to break up the point range into smaller, equi-sized sections, with each section being 
marked by an intermediary point (Pi), where LB = P0 and UB = Pń, the nth point, equaling the 
degree/order. Recurrence relations can be written as difference equations by replacing iteration 
notation with finite difference(Jacob et al. 2013). 

In this research the primary difference quotient (Ń = 1) 

was  A  derivative was then generated 
using the seasonal YFV-related explanatory covariate coefficients. The difference quotient as a 
derivative needs no explanation, other than to point out that, since P0 essentially equals P1 = P2 = 
... = Pń (as the differences are infinitesimal), the Leibniz notation and derivative expressions do 

not distinguish P to P0 or Pń:  There are other derivative 
notations, but these are the most recognized, standard designations. 

In calculus, Leibniz's notation, uses the symbols dx and dy to represent "infinitely small" 
(or infinitesimal) increments of x and y, just as Δx and Δy represent finite increments of x and 
y[Marsden 1985]. For y as a function of x, or the derivative of y with respect to x, which 

later came to be viewed as was, according to Leibniz, the quotient 

of an infinitesimal increment of y by an infinitesimal increment of x, or where the 
right hand side is Lagrange's notation for the derivative of f at x. From the point of view of 
modern infinitesimal theory, is an infinitesimal x-increment, is the corresponding y-

increment, and the derivative is the standard part of the infinitesimal ratio: Then 
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one sets , , so that by definition, is the ratio of dy by dx. Similarly, 

although mathematicians sometimes now view an integral as a 

limit where Δx is an interval containing xi, Leibniz viewed it as the sum (the 
integral sign denoting summation) of infinitely many infinitesimal quantities f(x) dx. From the 
modern viewpoint, it is more correct to view the integral as the standard part of an infinite sum 
of such quantities 

In order to quantitate a divided difference  for our , however, did require further 
elucidation, as it equals the average derivative between and including LB and UB: 

 

In this interpretation, Pã represents a function 
extracted, average value of P (midrange, but usually not exactly midpoint), the particular 
valuation depending on the function averaging it is extracted from. More formally, Pã is found in 
the mean value theorem of calculus, which says: For any function that is continuous on [LB,UB] 
and differentiable on (LB,UB) there exists some Pã in the interval (LB,UB) such that the secant 
joining the endpoints of the interval [LB,UB] is parallel to the tangent at Pã. Essentially, Pã 
denotes some value of P between LB and UB—hence  
 

 which links the mean value result with the divided 
difference? 

 

          As there is, by its very definition, a tangible difference between LB/P0 and UB/Pń, the 
Leibniz and derivative expressions do require divarication of the function argument. Higher 
order quotients were then derived for the seasonal YFV-related risk model  using :  
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Thereafter, a third order YFV-related quotient was derived using: 
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Finally an Ńth order for the seasonal YFV-related risk model was generated: 
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The quintessential application of the divided difference was then employed as  
presentation of  a definite integral, which  in this research was nothing more than  generating a 
finite difference for the risk model using:: 

 

Given that the mean value, derivative expression form provides all of the same seasonal 
YFV-related information as the classical integral notation, the mean value may was then the 
expression, that only supported  standard ASCII text, or in cases that only required the average 
derivative (such as when finding the average radius in an elliptic integral). This is especially true 
for definite integrals that technically have (e.g.) 0 and either or as boundaries, with the 
same divided difference found as that with boundaries of 0 and (thus requiring less averaging 
effort): 
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This also become when dealing with iterated and multiple integrals (ΔA = AU − AL, ΔB = BU − 
BL, ΔC = CU − CL): 

 

Hence, and

 

  This model was estimated and testing for a unit root is equivalent to testing δ = 0 (where 
δ = ρ − 1). Since the test is done over the residual term rather than raw seasonal YFV data, it was 
not possible to use standard t-distribution to provide critical values. Therefore this statistic τ has 
a specific distribution simply known as the table. There are three main versions of the test:1. test 
for a unit root[ ];2. test for a unit root with 
drift: ;and,3. Test for a unit root with drift and deterministic time 
trend: Each version of the test has its own critical value 
which depends on the size of the sample. For our explanatory geopredictive YFV-related 
endemic transmission-oriented risk model , the null hypothesis was that there was a linear 
relationship with case distribution and changes in LULC from forested canopy to rice-village 
complex [i.e., unit root, δ = 0]  . To test the statistical power of our seasonal YFV-related model 
we attempted to distinguish between true unit-root processes (δ = 0)and near unit-root processes 
[i.e., δ is close to zero ("near observation equivalence" problem)]. 

Our intuition behind the test for the seasonal, YFV-related, explanatory, predictive, 
endemic, transmission-oriented, risk model   was as follows. If the series y was stationary or 
trend stationary in the YFV-related model, then we assumed the residual derivatives would have 
a tendency to return to a constant or deterministically trending mean. Therefore, large 
geosampled values(e.g., forested canopy to agro-village complex LULC change over 10 years) 
will tend to be followed by smaller values( monthly mean rainfall  during the dry season) 
(negative changes), and small values by larger values (positive changes). Accordingly, the level 
of the series in the seasonal, YFV-related, endemic transmission-oriented, eco-epidemiological, 
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geopredictive, risk model  would then  be a significant observational predictor of next period's 
change, and will have a negative coefficient. If, on the other hand, the series is integrated in the 
YFV model then positive changes and negative changes will occur in the residual risk-related  
derivatives with probabilities that do not depend on any current level of the series; (e.g., in a 
random walk).It is notable to mention that the regression-based YFV-related, probablistic, 

explanatorial, equation:  was rewritten as  as to quantify  
any time series dependent, explanatorial deterministic trends coming from  for quantitating a 

stochastic intercept term coming from . 

Thereafter, P=plots of the LULC autocorrelation function (ACF) and the partial auto 
correlation function (PACF) of the differenced series showed significant auto correlation at lags 
of three and twelve months. Based on the preliminary analysis of the Box-Cox transformed 
series, four Gaussian SARIMA models and two Gaussian ARIMA models with second order 
harmonics (SOH) were initially selected, based on AIC (see Table 1).  

Table 7. Akaike’s information criterion (AIC) for selected (Gaussian) models on Box-Cox 
transformed seasonal YFV-related data sampled at the Gulu study site 
 

Model  Excluding 
Rainfall 

Including 
Rainfall 

SARIMA(3',1,0)Х(1,0,0)12 1725.52 1729.58 
SARIMA(3',1,0)Х(0,0,1)12 1726.86 1729.42 
SARIMA(0,1,3')Х(1,0,0)12 1725.71 1729.28 
SARIMA(0,1,3')Х(0,0,1)12 1726.91 1729.41 
ARIMA(3',1,0)-SOH 1722.75 1719.11 
ARIMA(3',1,0)-SOH 1721.63 1719.62 

 
Legend: SOH: second order harmonics. For all these models, where applicable, the 
autoregressive (ϕ1 and ϕ2) or moving average parameters (θ1 and θ2) corresponding to the first 
two lags were omitted. 

  SARIMA parameters, p, d, q, P, D, and Q, was constructed employing standard 
(frequentist) tools developed for time series with Gaussian marginal errors, rather than through 
fitting many possible MCMC models in SAS. A visual analysis of the  explanatorial, YFV-
related time series moderl ouput  revealed the presence of a long-term (inter annual) change in 
the mean level, an unstable variance which appeared to increase with the mean and 
multiplicative seasonality.  The size of the seasonal effect in the geosampled  eco-
epidemiological dataset of clinical, field or remote-specified, YFV-related, time series 
dependnet,  explanatorial endemic, transmission-oriented, covariate paramter estimators  was 
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proportional to the mean. Thus, for the preliminary Gaussian analysis, the geosampled YFR-
related, reference  data was transformed using a fitted Box-Cox transformation in order to 
stabilize the variance and to make the seasonal effect additive for  approximating a normal 
distribution. The trend in the Box-Cox transformed series was treated as a stochastic trend, which 
was (first order) difference stationary. The augmented Dickey – Fuller test on a lag order of 15 
was used to detect the presence of a unit root, to assess whether the series needed to be integrated 
(i.e., differenced). Gaussian SARIMA models and ARIMA models with a second order harmonic 
seasonal component, both with d = 1 because of the presence of a unit root, were fitted with a 
frequentist framework.  The SAS ‘models were then evaluated based on Akaike’s information 
criterion (AIC). The covariate matrix for the seasonal effect using second order harmonics (i.e., 
two sine and cosine pairs) was given by . A 
time independent intercept was not included because the intercept dropped out of the equation 
after first order differencing. 
  

  We found that the ARIMA-SOH, sub-meter resolution, Ae. egypti , oviposition, eco-
georferenecable, eco-epidemiological , forecast, vulnerability, geospectrotemporal,YFV-related 
models had the lower (better) AIC compared to SARIMA models. A SARIMA model is usually  

 
Time series analysis and forecasting is an efficient versatile tool in diverse applications 

such as in economics and finance, hydrology and environmental management fields just to 
mention a few. Among the most effective approaches for analyzing time series data, the method 
propounded by Box and Jenkins, the Autoregressive Integrated Moving Average (ARIMA) was 
employed in this study. In this paper, we used Box-Jenkins methodology to build ARIMA model 
for Nigeria’s monthly inflation rates for the period November 2003 to October 2013 with a total 
of 120 data points. In this research, ARIMA (1, 1, 1) (0, 0, 1)12 model was developed, and 

obtained as 0.3587yt+0.6413yt-1-0.8840et-11 -0.7308912et-12+0.8268et 
 
ARIMA-SOH models including rainfall as a covariate parameter estimator had a slightly 

lower AIC than ARIMA-SOH models without rainfall. However, for the SARIMA models, the 
inverse was true. Bayesian negative binomial variants of these selected, probablistically 
regressed, YFV-related, time series models were built. In order to establish , the model with 
the largest lag required, w, needed to be identified for comparison of the DIC of these Bayesian 
models. This was the model with w = 18 Models with logarithmic 
link function performed better than models with identity link. 
 

 
 Based on the DIC, the best negative binomial model was the negative binomial 

model with parameters for the first two lags (  and ) omitted (fixed to zero), 
with deterministic harmonic seasonality and with rainfall preceding malaria with two months 
(Table 2). However, based on the MARE on the out of sample predictions for the second half of 
the time series, when the model was fitted to the first half, the negative binomial 

model (the ‘prime’ in the “ ” indicating that also here the 
parameters for the first two lags were fixed to zero) without rainfall as covariate, was preferred. 
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This model also had the best overall MARE. The parameter and deviance estimates for this 
model, henceforth “ ”, are detailed in Table 3.  

 
Table 8. Parameter estimates (mean and 95% credible interval) of selected seasonal 

YFV- related negative binomial models  fitted to the entire time series 
 

 
 

 GARIMA(3',1,0)-SOH-RF = GARIMA(3,1,0) model with parameters for the first two 
lags (ϕ1 and ϕ2) omitted, second order harmonics and rainfall lagged at 2 months (in m); 
GSARIMA(3',1,0)x(1,0,0)12 =  GSARIMA(3,1,0)x(1,0,0)12 model with parameters for the first 
two lags (ϕ1 and ϕ2) fixed to zero; AH = annual harmonic, SAH = semi-annual harmonic; $ = 
derived parameter, phase shift = phase shift of the cosine function expressed in months. 

Despite the model having a higher (worse) DIC than the 
 model, the out of sample MARE of the 

model was 5.7 per cent better than the out of sample MARE of 
the  model, and required less than half the number of fitted 
parameters. This indicates that the  model was probably over-fitting 
the data, describing the random error rather than the underlying process. The 

 model was selected for further analysis. posterior predictive 
distributions for the last 12 months of the series by the model and 
those by a (Bayesian) Gaussian  model on Box-Cox transformed data, 
when fitted to the entire data set. Differences in the posterior predictive distributions between the 
two models are apparent with the Gaussian model predictive distributions having longer right 
tails. 

Parameter       GARIMA(3',1,0)-SOH-
RF   GSARIMA(3',1,0) Х(1,0,0)12 

βrain                      -0.23(-0.54, -
0.03)   

βsin(2πt/12)         -0.09(-0.45,-0.03)   
βcos(2πt/12)          -0.14 (-0.48,-0.3)   
βsin(2πt/6)           0.17(0.03,0.22)   
βcos(2πt/6)            0.19(0.04,0.28)   
ϕ3           -0.10(-0.26, 0.01)    -0.11(-0.21,-0.05) 

ϕ1* 
  

   
                                                     
0.14(0.04.0.26) 

ψ   
                                                        
5.33(4.71.6.04) 

Amplitude AH$ 13(3.17, 6.33)   
Amplitude SAH$ 0.17(0.11,0.39)   
Phase shift AH$ 5.83(2.37,7.11)   
Phase shift SAH$ -0.57(-1.16,-0.31)   
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        The C-R plot of the negative binomial model fit was 
compared to that of a (Bayesian) Gaussian on Box-Cox transformed 
data in Figure 3. The C-R plot on the entire series is not entirely satisfactory for either model. 
For the Gaussian , the posterior predictive distribution appears to be 
platykurtic (for values of the residual probability below 0.5, there are too few observations, and 
for values above 0.5, there are too many). For the negative binomial 

model, for randomized residual probability values below about 0.5, 
cumulatively fewer observations had these values than the posterior density distributions had 
indicated. Therefore, on average, the part of the posterior density distributions below the median 
was spread out too much to the left. The lower boundaries of credibility intervals of the 
distributions were thus on average too low. For the values above 0.5, the cumulative distribution 
function followed the diagonal.  We then compared both models for the last 50 months of the 
series only, where numbers of monthly cases were smaller than 35. For these low numbers, the 
negative binomial model was much more appropriate 
 

We then generated the normal Q-Q plot for the normalized, randomized, probablistic, 
quantile residuals of the model, for which the distribution was slightly 
leptokurtic. A plot of these quantile residuals against time appeared as a random scatter at first 
sight, but upon closer inspection, extreme residuals occurred more often during periods with 
stronger relative changes. This was because the residuals, , were positively correlated with a 

relative change in YFV cases, with linear regression line ,  
 
 
 Initially rainfall and an  LULC column represent  rainfall for specific year and interface 
distance between human population and forest regions respectively were entered into C++ 
model. TheYFV-related cases represented the number of yellow fever cases reported for a 
particular year. From these input table, we created a formula of form as below,Z = a0 + a1*X + 
a2*Y and YFV cases = a0 + a1*Rainfall + a2*LULC. We then determine the values of constants 
a0 a1 and a2.  We predicted the value of YFV-related cases without considering effect of human 
population in initial stage and then later we add the effect of population over yellow fever 
prevalence. 
 
 To determine a relationship between our YFV-related explanatorial, endemic, 
transmission-oriented, seasonal data, we need tr 3-D regression.  We also used Least square 
regression plane of the form Z = a0 + a1*X + a2*Y that provided the best fit for the input data 
points sampled at the Gulu study site. It should be noted here, there can be multiple solutions of 
these equations but values of interests are those, which provides the best fit to the input data. For 
this purpose, only those values were used which minimized the following least square value 
function: F(a0, a1, a2) = ∑(Zi - a0 - a1*X - a2*Y)².  The solution of this formula was found with 
the matrices as the system ∂F/∂a0 = 0 , ∂F/∂a1 = 0 , ∂F/∂a2 = 0  is a linear system of equation. 
The matrix can be used to solve the constants is as follows: 
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Σ Xi² Σ XiYi Σ Xi
Σ XiYi ΣYi² ΣYi
Σ Xi ΣYi N

a 0

a 1

a 2

=
Σ XiZi
ΣYiZi
ΣZi

 
 
 Solving these equation will provide with the unique values of constants. In our case these 
values were as follows:  a0 = 60.9239,  a1 = 0.1957 a2= -65.4218. So the formula can be written 
as follows: 
YFCases =  60.9239 + 0.1957 * Rainfall - 65.4218 * LULCThese YFCases values predicted does 
not consider effect of population on it. So to consider population data on this prediction, we can 
re-write the formula as below: 
 
YFCases = (1+PI_Factor) * [60.9239 + 0.1957 * Rainfall - 65.4218 * LULC] 
  
where, (Population of Prediction Year – Population of Last Available Year) 
PI_Factor =Population of Last Available Year. 
 
Table 9 Values generated by a formula for quantitating the effect of rainfall, LULC and 
population yellow  
fever cases.  
 
 
Table 10. The table of geopredictor YFR-related cases at the Gulu study site 
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Year
  Rainfall LULC Population Yellow 

fever Cases 
2002 1449.00 5.30 2406.7200 0 
2003 1456.00 5.22 2508.9400 11 
2004 1482.00 5.14 2585.9700 0 
2005 1253.00 5.07 2674.1300 0 
2006 1374.00 4.99 2762.9300 0 
2007 1477.90 4.92 2858.1300 0 
2008 1320.20 4.84 2959,2600 0 
2009 1311.20 4.77 30661300 0 
2010 1702.10 4.70 31784600 106 
2011 1635.17 4.63 32909229 78 
2012 1235.17 4.56 34073651 4 
2013 1223.17 4.49 35279273 6 
2014 1353.17 4.43 36527553 36 
2015 1239.17 4.36 37820002 18 
   
It should be noted that rainfall data is predicted randomly using the current mean and variance of 
the rainfall data. 
 

Figure 9: 3-D representation of our C++ YFV-related geopredictive risk model  
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Discussion 
 

A landscape approach using remote sensing SAS and ArcGIS technologies was 
developed to discriminate between the agro-villages at the Gulu eco-epidemiological study site 
for determining high and low risk areas of endemic, ecohydrologic, ecogeographic, YFV-related 
transmission variables.  QuickBird visible and NIR data were digitally processed to generate a 
cartographic model of risk-related landscape elements in Geospatial AnalystTM. The landscape 
elements surrounding the agro-village complexes and the geoclassified canopied forest LULC 
where defined using a robust NDVI map. The relationships between specific landscape 
morphological elements were probabilistically regressively quantitated using stepwise 
discriminant analysis and previous prevalence rates as the respone (dependent ) variable in 
PROC STEPDISC.  The BSSCP and TSSCP options displayed the LULC between-class SSCP 
matrix and the total-sample corrected SSCP matrix. By default, the significance level of an test 
from the analysis covariance was used as the selection criterion. The variable under 
consideration was the dependent variable, and the geo-spectrotemporal, ecogeorfeerenceable 
YFV , explicative diagnostic clinical, field and remote geosampled Ae. egypti , oviposition 
LULC variables already chosen act as covariates The analyses indicated that the most important 
elements in terms of explaining LULC abundance at the Gulu eco-epidemiological study site was 
the proportion of seasonal change between quantitated, forest, canopied LULC and agro-village 
complexes at the Gulu study site. 

 
In the explanatorial, time series, YFV-related, endemic, transmission-oriented,3-D, DEM 

, the Flow direction operation determined if natural water flow influenced a forest, canopied, 
LULC mixel and/or a neighboring rice complex, agro-village, LULC mixel. Flow direction was 
calculated for every central mixel employing input blocks of various level of mixels (e.g., 3x3). 
During each geosample frame the value of the central mixel with the value of its neighbors was 
calculated. The output map contained flow directions as N (to the North), NE (to the North East), 
etc. For determining the steepest slope, a method for each input block of LULC mixels was 
performed in an ArcGIS operation. In so doing, the procedure calculated the height difference 
between the forest canopied LULC mixels and each of the neighboring, riceland, LULC mixels 
in the scene.  If, for a neighboring seasonal, endemic, transmission-oriented, sub-mter resolution, 
Ae. egypti , oviposition, YFV-related, LULC mixel, the difference was  positive (i.e. central 
mixel had larger spectral value than the specified neighbor), then for the corner neighbors, the 
spectral covariate parameterizable estimator, differences were divided by Euclidean distance 
measurements from forest canopied, LULC  and agro-village complex boundaries  to the 
georefernced village-complex centroids. Meanwhile for geo-spatiotemporally quantitating 
horizontal neighbor mixel ovisposition values in the seasonal, ecohydrologic, ecogeographic, 
YFV-related, explanatorial LULC, covariate, parameter estimator, mixel differences were 
divided by Euclidean distance measurements. By so doing, the steepness between the forest 
canopy LULC mixel and its neighboring agro-village complex LULC were determined.   

Conversely, to geospectrally validate the lowest reflectance wavelenght emissivities in 
the multitemporal, QuickBird, seasonal, ecohydrologic, YFV-related, LULCs, we employed each 
input block of mixels. Thereafter, the ArcGIS operation calculated the difference between the 
central mixel and each of the neighbor mixels in an explanatorial, geopredictive, time series, 
LULC, eco-epidemiological, forecasting, risk map format. We noted that from all neighbors with 
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a positive height difference, (i.e. when central LULC mixel had larger value than a specific 
neighbor), the position of the neighbor with largest positive height difference was the output flow 
direction for the central mixel. Further, LULC, sub-resolution Ae. egypti , oviposition pixels 
along the edges of the input forecast canopy inhomogebeosu map (i.e., margins and corners) 
were defined in the output map.  

Interestingly, diagnostically if all neighboring LULC mixels of a central rice-village 
complex had a large explanatorial, clinical, field and remote, YFV-related, covariate, parameter 
estimator, coefficient mesurement value  than the central mixel itself (i.e. a sink or pit), the 
undefined value was displayed in the output, geopredictive, endemic, transmission-oriented, 
ecohydrologic, ecogeographic, vulnerability, eco-georeferenceable, time series, LULC map. 
When a central LULC mixel had an undefined value, it was displayed in the output map.  
Neighbor mixels that had the undefined LULC values were ignored during the calculation.  If 
then fdata from neighboring agro-village complex LULC pixels were considered, three adjacent 
neighbor mixels from a canopied, forested, explanatorial LULC in a single row or column were 
identified in SAS/GIS and then parsimoniously robustly quantitated to determine slope and 
height values. Conversely, if neighboring canopied, agro-forested, LULC pixels were considered, 
three neighboring agro-village complex LULC mixels were remotely   identified and their slope 
and height value thereafter qualitatively quantitated. 
 

We then constructed a Poisson regression model in PROC NL MIXED from the multiple 
explanatorial, empirically geosampled, geopredictive, time series dependent, YFV-related, 
covariate, parameter estimator coefficient values. A Poisson process is a commonly employed 
starting point for analyzing seasonal, explanatorial, geopredictive, vector, arthropod-related, 
endemic, transmission-oriented, ecohydrologic, ecogeographic, eco-epidemiological, risk models 
of stochastically interpreted, entomological count, data variation when quantitating regressively 
qualitatively a theoretical expectation (see Jacob et al. 2005b).The statistical analysis of 
continuous data that is non-negative is a common task in quantitative ecology (McDonald 2008). 
In our seasonal, Poissonized probabilty paradigm both the number of gamma variates, and their 
average size, was regressed separately. The model had a composite link that varied within the 
probabilistically geosampled, geospectrotemporal or geo-spatiotemporal, wavelength, frequency, 
signature, YFV-related, clinical, field and remote-specified, time series dependent, geoclassified, 
LULC, covariate, parameterizable, regression estimators. Unlike a normal distribution, the 
Poisson is a natural distribution for count data (Neter et al., 1990), but overdispersion in our 
regression coefficients suggested that the eco-epidemiological, YFV-related, probabilistic, Ae. 
aegypti risk model was inappropriate for differentiating the geo-spatiotemporal, explanatorial, 
geopredictive variables, seasonally geosampled at the Gulu eco-epidemiological study site.  
 

Overdispersion in explanatorial, seasonal, geopredictive, entomological-related, eco-
epidemiological, probabilistic, risk-related, data analyses is often accounted for by using models 
with different assumptions about how the variance changes with the expectation (Jacob et al. 
2014, Jacob et al. 2009). The choice of these assumptions can naturally have apparent 
consequences for statistical inference generated from probabilistic, sylvatic YFV-related, 
geoclassified LULC-related, geo-spatiotemporal or geo-spectrotemporal,  regression based 
models. For instance, we proposed a parameterization of the negative binomial distribution, 
where two overdispersed-related, seasonal, endmember, LULC, sub-meter resolution YFR-
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related, probabilsitic geo-spectrotemporally geosampled, syla Ae. egypti , oviposition 
explanatorial, covariate, parameter estimators (i.e., LULC changes from forested canopy and 
rainfall) were introduced into an endemic, transmission-oriented, eco-epidemiological, 
forecasting, regression-related, probablistic, ecohydrologic, ecogeographic, geo-spatiotemporal, 
risk model. The model   then regressively qualitatively quantitated the various quadratic mean–
variance relationships. Taking the Poisson mean as a gamma distributed random variable lead to 
regression model we subsequently employed to obtain various forms of mean-variance 
relationship, in particular both linear and quadratic.This chose was dependent  on assumptions 
about the gamma mixing distribution parameters (Hosmer and Lemeshew 2000). A eco-
epidemiological, linear mean-variance, sylvatic YFV, forecasting, vulnerability model was 
obtained by allowing the gamma shape parameter to vary across the explanatorial, diagnostic, 
clinical, field or remote geosampled, time series observations and keeping the scale parameter 
constant, whereas the quadratic form  arose  from taking the shape parameter as  a constant  by 
letting the scale vary. However, the regression residuals indicated that an inappropriate model fit 
existed due to overdispersion caused by spatial outliers.  

 
Outliers in seasonal, geopredictive, explanatorial, mosquito, risk-based, endemic, 

transmission-oriented, forecasting, sylvatic, risk  models can occur by chance in any distribution, 
but they are often indicative either of measurement error or that the geosampled population has a 
heavy-tailed distribution (i.e., probability distributions whose tails are not exponentially 
bounded) (see Jacob et al., 2005b Jacob et al. 2009d). Assuming that the distribution of the 
geopredictive, explanatorial, disganostic, clinical, field and remote-specified, time series 
dependent, geo-spectrotemporal, YFV-related, ecogeographic endemic, transmission-oriented, 
Ae. egypti, oviposition data geosampled at the Gulu eco-epidemiological study site was in fact 
Poisson, the square root transformation may have tended to homogenize the variance of the eco-
epidemiological, probabilistically  regressed, geoclassified,  LULC ecohydrologic, variables 
and/or the logarithmic transformation may have not stabilized the positive variance-mean 
relationships in the residually forecasted derivatives. Failure of the Poisson assumption of 
equidispersion in the endemic, YFV-related, forecasting, eco-epidemiological, risk model may 
then have been then due to the failure of the assumption of homoscedasticity associated with  a 
normalized distribution for “Poissionizing” the empirical geosampled, time series-related, 
probablistic, eco-epidemiological  dataset of explanatorial, clinical, field and remote-
geosampled, geopredictive, ecogeographical, YFV-related geocalssified LULC  variables. 

 
Fortunately, we found that the negative binomial regression with a non-homogenous 

gamma-distributed mean in PROC NL MIXED could handle the overdispersion in the time 
series-related, geo-spectrotemporally geosampled explanatorial, geopredictive, YFV-related, 
endemic, transmission-oriented, probabilistic, dataset of operationizable, endmember, sylvatic, 
Ae. aegypti LULC, sub-meter resolution ,vulnerability  model, explicatively diagnostic clinical, 
field and remote, covariate paramter estimator coefficients. The parameterized, time series-
related, explanatorial, probablistic, negative binomial distribution converged with the Poisson 
distribution and controlled the deviation from the Poisson in the risk model. This made the 
negative binomial distribution suitable as a robust alternative to the Poissonian for regressively 
qualitatively quantitating the seasonal, geo-spectrotemporal or geo-spatiotemporal, geosampled, 
YFV-related, empirically predictive, Ae. egypt, oviposition endemic, transmission-oriented, 
parameterized, eco-epidemiological, clinical, field or remote covariate, parameter estimator 
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coefficient values. Further, since the negative binomial distribution has one more parameter than 
the Poisson (Neter et al., 1990), the second parameter adjusted the variance independently of the 
mean in the, time series, YFV, linear, probabilistically regressed, geoclassified, LULC  risk 
model.  

The negative binomial distribution in PROC NL MIXED especially in its alternative 
parameterization, was efficiently employed as an alternative to the Poissonian distribution when 
regressively qualitatively quantitating an empirical geosampled dataset of explanatorial, clinical, 
field and remote–specified, YFV-related, geosampled, geoclassified LULC, georeferenceable 
variables. This statistical distribution is useful for evaluating whether discrete ,explicative time 
series dependent, explanatorial, geopredictive, YFV-related, uncoalesced LULC, Ae. egypti, 
oviposition, endember,  data  feature attributes over an unbounded positive range sample 
variance exceeds the sample mean. In such cases, the geo-spectrotemporal or geo-
spatiotemporal,  geosampled observational, explanatorial prognosticators with respect to a time 
series dependent Poissonian, seasonal, YFV-related, explanatorial distribution, for which the 
mean is equal to the variance ( see Haight 1967), will be  qualitatively, probabilistically, 
regressively  quantitated even if the geosampled, LULC  data  are overdispersed. Hence, 
although a Poisson distribution is not an appropriate. sylvatic ,YFV African riceland, capture 
point, geo-spectrotemrpoal or geo-spatiotemporal, forecast-oriented, sub-meter resolution, 
vulnerability, model for regressively quantitating an geo-spatiotemporal, empirically, 
probabilistically, regressable dataset of eco-epidemiological, seasonal, ecogeorefencable, 
geopredictive, diagnostic, time series, clinical, field and remote specified variables and 
explanatorial, LULC covariate, parameterizable  estimator coefficients, a negative binomial with 
a non-homogenous gamma distributed mean is.  

Further, since the negative binomial distribution has one more parameter than the 
Poisson, the second parameter can be employed to adjust the variance independently of the mean 
in any robust explanatorial, seasonal, geopredictive, sylvatic YFV-related, linear, endemic, 
transmission-oriented, eco-epidemiological, probablistic, riceland African agro-irrgation, 
prognosticative, risk model. Forexample, if an arbovirologist medical entomologist or other YF 
experimenter considers a sequence of negative binomial distributions from a probabilstically  
regressed dataset of seasonal geo-spatiotemporally or geo-spectrotemporally geosampled, time 
series dependent, clinical, field and remote-geospecified, YFV-related, geopredictive, LULC-
related, time series, covariate, Ae. egypti parameterizable, oviposition,specified,  estimators  
where the stopping parameter r goes to infinity,  the probability of success in each trial, p, would 
go to zero in such a way as to keep the mean of the distribution constant. In the YF , predictive, 
eco-epidemiological, sub-mter resolution, grid-stratified, orthogonal vulnerability, oviposition 
model Denoting this mean λ in the explanatorial, seasonal, empirically regressed, YFV-related, 
eco-epidemiological, probabilty, geoclassified, endmember, sub-meter resolution, LULC, risk 
model, observational, explanatorial  predictors thereafter, the parameter p   was validated using 

...p=r/(lambda+r) . Under this parameterization of the mass 
function the geopredictive, explanatorial, parameter estimators were efficiently quantitated by 

. 
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We successfully employed PROC NL MIXED to fit all of the time series-related, 
explanatorial, predictive, YFV-related, endemic, transmission-oriented, clinical, field and remote 
geospecified, empirical, Poissonized and negative binomial regression model, LULC-related, 
covariate, Ae. egypti, oviposition, parameterized estimators. The syntax structure and progression 
across the models constructed allowed us to clearly demonstrate the differences, and similarities, 
between these models. PROC NL MIXED is a highly flexible procedure that can be used to run 
and qualitatively quantitate a large variety of seasonally geopredictive, explanatorial, 
geosampled, endemic, transmission-oriented, time series, clinical, field and remote geosampled, 
forecasting, eco-epidemiological, geoclassified, sub-meter resolution, sylvatic LULC, risk 
models. PROC NLMIXED fits specified nonlinear, mixed, time series dependent, explanatorial, 
probabilistic, YFV-related, endemic, transmission-oriented, endmember, clinical, field and 
remote geo-specified, eco-epidemiological, eco-georferenceable, estimators by maximizing an 
approximation to the likelihood integrated over the random effects. 

 
Fortunately, different approximations to the integral are available in PROC NLMIXED, 

.For our endmember, LULC, sub-meter resolution YFV-related explanatorial, time series 
dependent, explanatorial, eco-epidemiological--related risk model we employed  the adaptive 
Gaussian quadrature and a first-order Taylor series approximation. The default method in PROC 
NLMIXED computed  an integral in  the adaptive Gaussian quadrature as described in Pinheiro 
and Bates (1995). Another approximation method  we employed was the first-order method of 
Beal and Sheiner (1982, 1988). We quantitated the approximation  as normal—that is, 

and where  was the 
dimension of , was a diagonal variance matrix, and is the conditional mean vector of .  
Here, the first-order approximation for our  explanatorial,  eco-epidemiological, geopredictive, 
YFV-related forecasting, LULC-related, Ae. egypti, oviposition,  risk model  was obtained by 

with a one-term Taylor series expansion about , resulting in the 
approximation , and

where was the Jacobian matrix [i.e., ]evaluated at 
.  

The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued 
function  for any paridym (e.g., a explanatorial,  geopredictive, clinical, field and remote-
geosampled, sylvatic, YFV-related time series dependent, eco-epidemiological, forecasting, risk 
model) (Griffith 2003). Specifically, in the model f : ℝn → ℝm was a function which took as 
input the vector x ∈ ℝn and rendered an output t vector f(x) ∈ ℝm. Then the YFV Jacobian matrix 
J of f was an m×n matrix, which was defined and arranged as follows: 

or, component-wise: in AUTOREG. This matrix, whose 
entries were functions of x, was also denoted by Df, Jf, and ∂(f1,...,fm)/∂(x1,...,xn). The Jacobian 
matrix was  important because if the function f was differentiable at a geo-spatiotemrpoally 
geosampled, eco-geoefernced, YFV-related, explanatorial, sylvatic,LULC point x (e.g., 
georeferenced, forest canopy, LULC, eco-epidemiological, explanatorial, clinical, field or remote 
forecastable regressor)  then there would exist  a slightly stronger condition in the matrix than 
that which could be quantiated merely by all existing partial derivatives. The Jacobian matrix 
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defined a robust , geospatial optimal, geopredictive, explanatorial, clinical, field and remote-
geosampled, Ae. egypti , oviposition, YFV-related, time series dependent, eco-epidemiological, 
forecasting, vulnearbility, risk map ℝn → ℝm, which was the best linear approximation of the 
function f near an LULC agroecoystem and forest canopied, georefernced, geopredictive, 
variable point x in the matrix. This YFV linear map was thus the generalization of the usual 
notion of derivative, and was the derivative or the differential of f at x. 

If m = n, the Jacobian matrix is a square matrix, and its determinant, a function of x1, …, 
xn, is the Jacobian determinant of f (Griffth 2003).Thus, optimal, geospatially geopredictive, 
explanatorial, diagnostic, geo-spectrotemporal, endmember, LULC, sub-meter resolution 
clinical, field and remote-geosampled, YFV-related, time series dependent, eco-epidemiological, 
forecasting, LULC-related, vulnearbility specified, probabilistically weighted, Jacobian matrices 
could carry important information about the local behavior of f. In particular, the function f can 
be regressively  qualitatively quantitated locally in the neighborhood of a point x where  an 
inverse function is differentiable if and only if the Jacobian determinant is nonzero at x (i.e., 
Jacobian conjecture).  

The Jacobian conjecture in the plane, first stated by Keller (1939), states that given a ring 
map  of (e.g., the polynomial ring in two georferenceable, clinical, field or remote 
specified, geo-spatiotemporal, YFV-related, probablistic, geopredictive variables over the 
complex geosampled discrete, explanatorial, geoclassified, ovispoition, sylvatic, LULC,integer 
values ) to itself that fixes and sends , to , respectively, where is an automorphism if the 
Jacobian is a nonzero element of . The condition can easily be shown to be 
necessary, but proving sufficiency has been an open problem since Keller (1939). The Jacobian 
conjecture is one of Smale's problems. Smale's problems are a list of 18 challenging problems for 
the twenty-first century proposed by Field medalist Steven Smale  who was inspired in part by 
Hilbert's famous list of problems presented in 1900 (Hilbert's problems) in part in response to a 
suggestion by V. I. Arnold on behalf of the International Mathematical Union (Hochster 2004).  

Regardless, suppose N > 1 is  a fixed, geosampled seasonal, ecogeoreferncable, 
explanatorial, probablistically regressable, clincial, field or remote specified, time series 
dependent  integer  where the polynomials f1, ..., fN with forecasting, eco-epidemiological, risk 
model  variables X1, ..., XN  and their measurement predictor indicator values  in an algebraically 
closed field k. It then suffices to assume k = C in any  probabilsitically empirically, regressed 
dataset of an probabilistic, eco-epidemiological, sylvatic, YFV-related, geosampled, forecasting, 
georeferncable,LULC  risk model derivatives.  A ecologist, entomologist or other experimenter 
could optimally define a vector-valued function F: kN → kN by setting:F(c1, ..., cN) = (f1(c1, 
...,cN),..., fN(c1,...,cN))  in AUTOREG. By so doing, the Jacobian determinant would occur when 
changing the, geo-spatiotemporally, geosampled, explanatorial, endmember, LULC, sub-meter 
resolution, YFV-related, time series dependent, Ae. egypti , ovipositionm forecast, vulnerability, 
variables in the operationizable datset of multi-variable integrals (see substitution rule for 
multiple variables).If m = 1 in the probablistic,  explanatorial, YFV-related, time series 
dependent, eco-epidemiological,clinical, field or remote geosampled, georeferenced, forecasting, 
risk model,  f , for instance, would be  a scalar field and the Jacobian matrix would be reduced to 
a row vector of partial derivatives of f—(i.e. the gradient of f). 
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Assuming that is normal with mean and the variance matrix , is the first-order 
integral approximation,  a robust  dataset of empirically probablistically regressed, time series 
dependnet, endemic, eco-epidemiological, explanatorial, YFV-related, forecasting, clinical, field 
or remote-geosampled, risk model, covariate, parameter estimator, coefficient values may be  
probabilistically qualiatively derived in closed form after completing the square: 

where 
. The resulting approximation for  would then be 

optimally heuristically minimized over to obtain the first-order estimates. PROC 
NLMIXED uses finite-difference derivatives of the first-order integral approximation when 
carrying out the default dual quasi-Newton optimization (www. 
http://support.sas.com/documentation/).  

          NLPQN sub-routine uses dual quasi-Newton optimization techniques, and it is one of the 
two sub-routines available that can solve problems with nonlinear constraints in SAS. These 
techniques would work well for medium to moderately large explanatorial, optimization 
problems in an empiricially regressable, operationizable, endemic, datset of geo-spatiotemporally 
geosampled, geopredictive, Ae. egypti , oviposition, YFV-related time series dependent, eco-
epidemiological, forecasting, geoclassified LULC, eco-epidemiological  risk model covariate, 
paramter estimators where the objective function and the gradient would be much faster to 
clinical, field and remote-geosampled compute than the Hessian matrix. In mathematics, the 
Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-
valued function, or scalar field which  describes the local curvature of a function of many 
geopredictive variables (Cressie 1993). The NLPQN sub-routine does not need to compute 
second-order derivatives, but it generally requires more iterations than the techniques that 
compute second-order derivatives. The two categories of problems solved by the NLPQN 
subroutine are unconstrained or linearly constrained problems and explanatorily nonlinearly 
constrained problems(www.sas.edu). Traditionally unconstrained or linearly constrained 
problems do not use the "nlc" or "jacnlc" module arguments, but the nonlinearly constrained 
problems  in the e Ae. egypti, oviposition, xplanatorial, eco-epidemiological, eco-
georeferenceable, clinical, field and remote-geosampled, YFV-related, time series dependent, 
eco-epidemiological, endmember, LULC, sub-meter resolution model may employ  the 
arguments to specify the explanatorial, nonlinear constraints and the probabilsitically 
geopredictive,  heuristically optimaizable,  Jacobian matrix, for instance,  of their first-order 
derivatives, respectively. 
 
 
           The type of optimization problem specified in SAS determines the algorithm that the 
subroutine invokes(www.sas.edu). The algorithms are very different, and they use different sets 
of termination criteria. Here the PROC NL MIXED was employed to fit the time series 
dependent, explicative, diagnostic, clinical, field or remote, geo-spectrotemrpoally  geosampled, 
YFV-related, geopredictive, eco-epidemiological, forecasting, probabilistic, eco-epidemiological, 
risk model, covariate, parameter  estimators. Of all the SAS/STAT procedures that perform at 
least one type of regression analysis (e.g., CATMOD, GENMOD, GLM, LOGISTIC, PROC 
REG NLIN, ORTHOREG, PROBIT, RSREG, and TRANSREG procedure) PROC NL MIXED 
models fit are viewed as generalizations of the geosampled random coefficient models fit. 
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SAS/ETS procedures have been updated for specialized applications in time-series or 
simultaneous systems by the NL MIXED procedure. (www.sas.edu). This generalization allowed 
the geo-spectrotemporal, geosampled, YFV-related, explanatorial, clinical, field or remote 
specified random coefficients to enter the model nonlinearly. Within  PROC MIXED a 
maximum likelihood and restricted maximum likelihood (REML) estimation was performed on 
the explanatorial,clinical, field and remote –specified, regressors. In the risk model, the analog to 
the REML method in PROC NLMIXED involved a high-dimensional integral over all of the 
fixed-effects, YFV-related explanatorial, endmember, LULC, sub-meter resolution, Ae. egypti , 
oviposition geo-spatiotemrpoal, geosampled, probabilistically geoclassifed, covariate parameter 
estimators, but this integral was not available in closed form. PROC NLMIXED enables analyze 
data that are normal, binomial, or Poisson or that have any likelihood programmable with SAS 
statements(www.sas.edu).  

PROC NLMIXED did not implement the same probabilsitic estimation techniques 
available with the NLINMIX macro or the default estimation method of the GLIMMIX 
procedure. Instead these techniques  were based on the estimation methods of Lindstrom and 
Bates (1990), Breslow and Clayton (1993), and Wolfinger and O’Connell (1993). The time series 
dependent, eco-epidmeiological, probabilistically regressed, endmember, LULC, sub-meter 
resolution, YFV residually forecasted derivatives iteratively fit a set of generalized estimating 
equations. PROC NLMIXED directly maximized an approximate integrated likelihood We 
proposed the following logistic nonlinear mixed model for the YFV-related geoclassified LULC 

data:  Here,  was represented by the th measurement on the th 
tree ( ; ),  was  the correspondingseasonal  covariate , paramter estimators , 

 where  the fixed-effects parameters, were the random-effect parameters assumed to be 
independnetly distributed  [i.e., ], and were the residual errors assumed to be  

and independent of the . This model had a logistic form, and the random-effect 
clinical, field and remote geosampled  YFV-related LUC covariate parameter estimators [e.g., ] 

enter the model linearly.  The statements to fit this nonlinear mixed model  was follows:  

 
   proc nlmixed data=tree; 
      parms b1=160 b2=70 b3=35 s2u=100 s2e=6; 
      num = b1+u1; 
      ex  = exp(-(seasonal-b2)/b3); 
      den = 1 + ex; 
      model y ~ normal(num/den,s2e); 
      random u1 ~ normal(0,s2u) subject=tree; 
   run; 
 

The PROC NLMIXED statement then invoked the procedure and inputs the tree data set. The 
PARMS statement identifies the unknown parameters and their starting values. Here there were 
three fixed-effects YFV-related LULC geoclassified  Ae. egypti , oviposition, parameters (b1, b2, 
b3) and two variance components (s2u, s2e).  
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The next SAS programming statements  for specifying an explicative diagnostic clinical, 
field or remote geosampled, time series,  logistic mixed model was a  new geopredictive variable 
u1  which included identification of the random effect. These statements were evaluated for 
every probabilsitically regressed, time series dependent, empiricial YFV-related, geoclassified, 
explanatorial,  LULC observation in the dataset. The NLMIXED procedure computed the log 
likelihood function and its derivatives. The MODEL statement then defined the dependent 
variable (e.g., YFV-related prevalance) and its conditional distribution given the random effects 
at the ecoepidemioloigcal, riceland agro-ecosystem study site. Here a normal (Gaussian) 
conditional distribution was specified with mean num/den and variance s2e. Meanwhile,the 
RANDOM statement defined the single random effect to be u1, and then specified that it 
followed a normal distribution with mean 0 and variance s2u. The SUBJECT= argument in the 
RANDOM statement defined a single YFV-related explanatorial, clinical, field or remote geo-
spatiotemporally, geosampled, geopredictive, risk-related endmeic, transmission-oriented, eco-
epidemioloigcal  variable for  indicating when the random effect obtained new realizations; in 
this case, it changes according to the values of the tree variable. PROC NLMIXED assumed that 
the input data set was clustered according to the levels of the tree variable; that is, all 
explanatorial, clinical, field or remote-related Ae. egypti , oviposition,YFV-oriented geoclassified 
LULC, eco-georferenceable,  observations from the same tree occured sequentially in the input 
dataset.  

The GLIMMIX procedure also fit a mixed model for quantiating the  non-normal data 
with nonlinearity in the conditional mean function in our YFV-related LULC, endmeic , 
transmission-oriented risk-oriented, eco-epidemiological,  analyses. The GLIMMIX procedure 
by default probabilistically estimated the geosampled, LULC, sub-meter resolution YFV-risk-
related, endmember, predicor variables in a generalized linear mixed model framework by  
pseudo-likelihood techniques. Given the probabilsitically regressable, random geosampled, 
YFV-related, geopredictive, LULC, eco-epidemiological, risk variables and a 
set of dependencies between these random variables, where implies  was  
conditionally independent of given 's  neighbors, the pseudolikelihood of 

 was where 
was  a vector of the geosampled variables,  was  a vector of the covariate paramter estimator 

coefficient values. above meant that each geo-spatiotemrpoally, geosampled variable 
in the vector had a corresponding value in the vector . The expression 

was the probability that the vector of variables had coefficient values equal to 
the vector . Because situations can often be described using state variables ranging over a set of 
possible empiricallly regressable,vector arthropod-related clinical, field or remote geo-
spatiotemrpoally geosampled forecastable, covariate paramter estimator coefficient values(Jacob 
et al 2011), the expression may robustly  represent the probability of a certain state 
among all possible YFV-related,  Ae. egypti , oviposition, seasonal LULC change states allowed 
by the state variables. 

The GLIMMIX procedure by default estimated the probabilsitically geosampled YFV-
related, explanatorial, clincial, field or remote geo-spatiotemrpoal, geosampled LULC values in  
a generalized linear mixed model framework by pseudo-likelihood techniques. Alternatively  
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PROC NLMIXED by default performs maximum likelihood estimation by adaptive Gauss-
Hermite quadrature. Hermite-Gauss quadrature, also called Hermite quadrature, is a Gaussian 
quadrature over the interval with weighting function (Abramowitz and Stegun 
1972,). The abscissas for quadrature order n  may be then  given by the roots of the Hermite 
polynomials , which occur symmetrically about 0. The YFV-related, geoclassified, time 

series dependent, LULC weights would be - = where 

is the coefficient of in . For Hermite polynomials, so Additionally, 
so 

= = = = = where it would 
follow the recurrence relation[e.g.,  ] to 
obtain  (Abramowitz and Stegun 1972 p. 890). In a The error 

term woulod be .Thus, if  h is a function in a seasonal,  geo-spatiotemporally 
geosampled, clinical, field or remote, endmember, LULC, sub-meter resolution, Ae. egypti , 
oviposition, YFV-related,  observational explanatorial, geopredictive, ecogeoreferenceable, 
observational  variable y is normally distributed , the expectation of h would correspond 

to the following integral: However as this does not  
exactly correspond to the Hermite polynomial, an ecologist, entomologist, or experimenter may 

need a change of variable to  Coupled with an  integration by 
substitution method then the geo-spatiotemporal, YFV-related, eco-epidemiological, forecatsing, 
Ae. egypti , oviposition, vulnerability model would be expressed as 

leading to:  

Let I ⊆ ℝ be an interval and φ : [a,b] → I be a continuously differentiable function in an 
explanatorial, probabilistically, clinical, field or remote geosampled, YFV-related, eco-
epidemiological, forecasting, risk model. Suppose that ƒ : I → ℝ is then a continuous function in 

the model. Then In other notation: the substitution x = φ(t) would 
yield dx/dt = φ′(t)  in the eco-epidemiological,  endmember, LULC, sub-meter resolution 
sylvatic, YFV-related,  forecasting, geoclassified, ovispoition, eco-epidemiological, risk model 
and thus, formally, dx = φ′(t) dt, which would be the required substitution for dx in the forecasted 
derivatives.A ecologist, entomologist or experimenter could view the method of integration by 
substitution as a major justification of Leibniz's notation for integrals and derivatives for 
efficiently qualitatively quantitating an empirically probabilistically regressable. For example, 
consider y as a function of an georeferencable, clinical, field or remote geosampled,YFV-related, 
geoclassified  LULC variable x, or y = f(x). If this is the case, then the derivative of y with 
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respect to x, may be viewed as the limit which according to Leibniz 
would be the quotient of an infinitesimal increment of y by an infinitesmal increment of x where 

 where the right hand side is Langrange’s notation for the derivative of f at x in the 
eco-epidemioloigcal, risk model. From the point of view of modern infinitesimal theory the 
quotient of an infinitesimal increment of y by an infinitesimal increment of x may be empolyed 
for constructing a robust, forecasting, probabilistic, time series dependent, risk model 
geopredictors, from a  probabilistically regressed resdiualized dataset (e.g., explanatorial, 
clinical, field or remote specified endemic, transmission-oriented, YFV-related, eco-
epidemiological LULC-related, covariate paramter estimator datasets), on the right hand side 
using  Lagrange's notation for the derivative of f at x (see Cressie 1993). From the point of view 
of modern infinitesimal theory, Δx then would be an infinitesimal x-increment, Δy the 
corresponding y-increment, and the derivative would be the standard part of the infinitesimal 

ratio:  in the YFV, endmember, LULC, sub-meter resolution, Ae. egypti , oviposition, 
risk model. 

Lagrange multiplier, or score, time series, probabilistic, YFV-related, explanatorial  
statistics may be computed in eco-epidemiological,  forecasting, risk  modeling  cases using the  
NOINT or NOSCALE option where  restrictions are placed on the intercept or scale parameters. 
These statistics may assess the validity of the restrictions, which may be computed as 

where  is the component of the score vector evaluated at the restricted maximum 
corresponding to the restricted parameter and . The matrix  is the information 
matrix (1 refers to the restricted parameter, and 2 refers to the rest of the parameters) in 
SAS(www.sas.edu). Under regularity conditions, this statistic may have an aympototic, chi-
square distribution with one degree of freedom when for example, YFV-related LULC -values 
are computed based on a limiting distribution. If  a  ecologist, entomologist or experimenter sets 

in a negative binomial, sylvatic YFV-related, geoclassified, LULC, eco-epidmeioloigcal, 
risk  model,  then the score statistic of Cameron and Trivedi (1998) for testing for 
overdispersion in a Poissonian probability model against alternatives of the form would be 

.  

PROC NLMIXED used a subset of the optimization code underlying PROC NLP to 
qualiatively regressively quantaite the empirically probabilistically, time series regressed geo-
spatiotemrpoal geosampled, eco-epidemiological, endmember, sub-meter resolution clinical, 
field and remote-specified LULC covariate parameter estimator dataset. The programming 
statement functionality employed by PROC NL MIXED had a subset of the optimization code 
underlying PROC NLP which had many optimization-based options for robustly regressing the 
geosampled coefficients values. PROC NLMIXED has close ties with the NLP procedure in 
SAS/OR software (www.sas.edu). Also, the programming statement functionality used by PROC 
NLMIXED is the same as that used by PROC NLP and the MODEL procedure in SAS/ETS 
software.  

 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

392 
Copyright © acascipub.com, all rights reserved.  

Interestingly, the GLIMMIX procedure generalized. The GLIMMIX procedure can fit 
time series dependent, entomological-related, regressive, prognosticative, explanatorial, 
endemic, transmission-oriented, YFV-related, probablistic, eco-epidemiological, Ae. egypti , 
oviposition vulnerability models to other vital data (seasonally meterological, geomorphological 
etc.) in other modules (e.g., the NL MIXED and GENMOD) when the derivatives render 
quantitated correlations and no constant variability. As such, the model response will not be 
necessarily normally distributed [i.e., generalized linear mixed models (GLMM)] (See Jacob et 
al. 2009d. Jacob et al. 2008b).  

GLMMs, like linear mixed models, assume normality (Gaussianism), probablistic, 
randomized effects. Conditional on these probabilsitic, random effects, seasonal explanatorial, 
operationizable, geosampled, geopredictive, probabilistically regressable,  time series dependent, 
sylvatic, YFV-related endemic, transmission-oriented, geoclassified sub-meter resolution, LULC, 
risk-related covariate, parameter estimators can have any distribution in the exponential family. 
Importantly, the exponential family comprises many of the elementary discrete and continuous 
distributions. The binary, binomial, Poisson, and negative binomial distributions, for example, 
are discrete members of this family. The normal, beta, gamma, and chi-square distributions are 
representatives of the continuous distributions in this family. In the absence of random effects, 
the GLIMMIX procedure can fit empiricially regressable, seasonal, geosampled, explanatorial, 
generalizable, clinical, field and remote, Ae. egypti, oviposition endemic, endmember, 
transmission-oriented, geopredictive, LULC risk-related, explanatorial, probabilistic, 
regressonable, linearized model, covariate paramter estimator coefficients by the NL MIXED 
GENMOD procedure. GLMMs may be useful for probablistically estimating trends in endemic, 
YFV-related, count data models and for designing  randomly selected treatments or randomly 
selected blocks for geopredicting the uncertainity probabilities of explanatorily regressed, 
geosampled, interpolatable, covariate parameter estimator, coefficient, skewed forecasts. 

For continuous geo-spectrotemporal, risk-related empirically probabilistically regressed, 
clincial, field or remote specified, outcomes in geo-spatiotemporal, geosampled,  YFV-related, 
forecasting,LULC-related,  eco-epidemiological, time series,  risk  models, the most commonly 
used statistical technique in literature is multiple regression analysis. The least squares procedure 
gives minimum-variance unbiased estimators of the regression coefficients when the variance of 
the error term is assumed to be the same regardless of the values of the covariate paramter 
estimator (i.e., homoscedasticity) (Hosmer and Lemeshew 2002). Further, the usual testing and 
confidence interval procedures for YFV-related model cuurently  make the additional 
assumption that the errors are normally distributed. Because these assumptions are rarely 
satisfied in time series, YFV-model LULC construction practice, certain adjustments must be 
made to improve the validity of the results. An arbovirologist, medical entomologist, or YF 
experimenter may describe some of these adjustments, including retransformation of outcome 
variables employing the smear factor, accounting for missing cases using multiple imputation 
and attrition weights and improving statistical inference with bootstrap methods.For robust, 
optimal, explanatorial, clinical, field or remote geosampled,  count outcomes, common methods 
of analysis  for an explanatorial, dataset of clinical, field or remote geosampled, YFV-related, 
geoclassified  LULC-related are the  Poisson and negative-binomial regressions. However, in 
many situations the probability of a zero occurrence (e.g., dry deason sampling of Ae. egypti 
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immature habitats on forest canopied and/or ricleand agroecosystem LULCs) may exceed that 
assumed by the model. An arbovirologist, medical entomologist, or YF experimenter may 
choose to describe some methods that aim to overcome this problem, namely zero-inflated and 
two-part models. Further, analyzing joint modeling of multivariate, multitemporal, explanatorial, 
clincial, field and remote-related, sylvatic YFV-related, operationizable, regressed outcomes may 
display correlations among some or all hyperendemic, seasonal, ovispoition, observational 
geoclassified, eco-georferenceable, LULC predictors as well as their non-normal values. The 
correlations can arise from repeated observations of the same geosampling units and/or shared 
probabilistically tabulated random effects in an experimental design, involving geo-
spatiotemporal, geosampled proximity-oriented, multivariate, multitemporal, YFV-related,, Ae. 
egypti , oviposition eco-epidemiological, forecast, vulnerability related,explanatorial, sub-mter 
resolution,  LULC observations.  

Unfortunately, the GLIMMIX procedure does not fit hierarchical, seasonal, 
entomological-related, eco-epidemiological, LULC risk models such as an YFV-related, eco-
epidemiological, risk-related,explanatorial  model with non-normal, probabilistically regressed,  
random effects.As such, a simple structural model may not then be considered  for 
parsimoniously qualitatively quantitating random geosampled, explanatorial, clincial,  field and 
remote geo-specified,  endemic, transmission-oriented, sub-meter resolution, seasonal, risk-
related probablistic predictors represented between and within-group, YFV-related, explanatorial, 
LULC variations. Methods for eco-epidemiologically estimating the cumulates of the two 
explanatorial, time series, dependent YFV-related model components of variation may be then 
proposed, based on homogeneous polynomials in the geosampled seasonal, eco-epidemiological 
data. Emphasis may be placed on situations in which the number of seasonal, hierarchical, 
vector, probablistic, risk model, explanatorial, interpolatable, clinical, field and remote 
geosampled, sylvatic, YFV-related ricland or forest canopied, inhomogeneous, observations per  
geoclassified LULC group are quite small. In some cases an essentially unique probablistic 
covariate, parameter estimator may be available, whereas in others there is a family of possible 
consistent estimators(see Fotheringham 2002). By so doing, the choice of the polynomial may 
then be considered for qualitatively regressively probabilsitically quantitating the geo-
spatiotemporal, geosampled, Ae. egypti , oviposition YFV-related, geoclassified LULC 
explanatorial, operationizable, covariate, parameter estimator  coefficients. 

Importantly, the GLIMMIX procedure in NL MIXED employing a distribution of the 
response variable conditional on normally distributed probablistic, randomized effects in the 
probablistically empirically regressable dataset of  explanatorial, time series dependent, clinical, 
field and remote-geosampled, YFV-related, endemic, transmission-oriented, explanatorial, 
geoclassified, LULC covariate, parameter estimator, coefficient values may render robust 
residually forecastable, derivatives. Frequently in seasonal, vector, arthropod-related, 
observational, eco-epidemiologcal, risk models, the responses (e.g., forecasted, optimal, 
unbiased, asymptotical, stochastic/deterministic, interpolatable, residual, covariate parameter 
estimators) can have a non-normal distribution. Normally distributed  entomological, data is 
needed to use a number of statistical tools, such as individually seasonally geosampled  habitat 
control charts, Cp/Cpk analysis, t-tests and the analysis of variance (ANOVA)(see Jacob et al. 
2005b). The MIXED procedure will then assume then that the entomological responses are 
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normally (i.e., Gaussian) distributed. By so doing, the GLIMMIX procedure in NL MIXED will 
incorporate probablistic, random effects in a frequentist, endemic transmission-oriented, risk-
related paridym which can allow for subject-specific (i.e., conditional) and population-averaged 
(i.e., marginal) inferences. Further, the procedure would allow only for marginal inferences in an 
explanatorial, geo-spatiotemporal or geo-spatiotemporal, eco-epidemiological, endmember, 
LULC, sub-meter resolution, clinical, field or remote-geosampled, YFV-related, forecast, time 
series eco-epidemiological, vulnerability model to be probabilistically regressively, qualitatively 
quantitated for heuristically optimally,optimizing and  geospatially targeting important endemic, 
transmission-oriented, clinical, field and remote –specified  geopredictive variables.  

Importantly, the GENMOD procedure would fit certain empirically, geosampled, 
probablistically regressable, explanatorial, diagnostic, clinical, field and remote-specified, 
seasonal, endemic, transmission-oriented, YFV-related, GLMs for independent probabilistic, 
risk-related, data analyses by maximum likelihood. The procedure could also handle 
probablistically correlated, explanatorial, time series, YFV-related regressors  through the 
marginal GEE approach of Liang and Zeger (1986) and Zeger and Liang (1986). The GEE 
implementation, however, in the GENMOD procedure is a marginal method that does not 
incorporate random effects. The GEE estimation in the GENMOD procedure relies on R-side 
covariance only, and, as such, the unknown seasonal, geosampled, YFV-related, explanatorial, 
geopredictive, parameterized, explanatorial, clinical, field or remote geosampled, eco-
georeferencable, Ae. egypti, oviposition, parameterizable, covariate estimator coefficient values 
would not be estimated by the method of moments. For optimal quantization of explanatorily 
georeferenced, time series dependent, empirically regressable, endmember, LULC, sub-meter 
resolution, YFV-related, parasitological indicators, the GLIMMIX procedure in NL MIXED 
would  allow G-side random effects and R-side covariances to be robustly probablistically 
estimated when constructing the forecasting, eco-epidemiological, explanatorial, 
georefernceable, clinical, field or remote specified, risk model Ae. egypti , oviposition LULC 
sub-mter resolution,  predictors. Thereafter, PROC GLIMMIX can fit, marginal, time series 
dependent, probablistic, GEE-type, Y sylvatic, FV-related, explanatorial, geopredictive, endemic, 
transmission-oriented, risk-related, sub- models, but the covariance parameters would have to be 
estimated by the method of moments.  

In an empirically explanative, regressable dataset of robustifiable, seasonal,  YFV-related 
geopredictive, forecastable, eco-epidemiological, risk model, georefernceable, geo-
spectrotemporally geosampled, clinical, field and remote specified covariate, parameter 
estimators, the method of moments could be optimally defined as a method of probability 
estimation. The experimenter would start by deriving optimizable regression equations that  are 
related  to the population moments (i.e., the expected, explicatvely geosampled, ArcGIS-derived, 
sylvatic, YFV-related, LULC, geoclassified,  endemic transmission-oriented, Ae. egypti , 
oviposition, time series, covariate, parameterizable estimator,  coefficient values of powers of the 
random variable under consideration) to the geolocations of interest ( e.g.,  productive, 
geosampled, georeferenced,  Ae.egypti, aquatic, larval habitat geosampled in a , rice-village 
complex tillering habitat LULC polygon). Then a sample may be drawn and the population 
moments may be probablistically regressively estimated from the sample. The equations may 
then be solved for the explanatorial, clinical, field or remote, geosampled, regressable parameter 
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estimators of interest in a seasonal, empirical, YFV-related,, endmember, LULC, sub-meter 
resolution. probablistically, geopredictive, eco-epidemiological, SAS risk model using the 
sample moments in place of the unknown population moments. In so doing,  system reliability 
moments may be robustly generated by expanding the system function in a multivariable, 
multitemporal, explanatorial, clinical,  field and remote-specified, time series dependent, 
endemic, YFV-related, transmission-oriented, eco-epidemiological, probablistic, risk model 
employing  Taylor series expansion about the geo-statistically expected values of each of the 
component reliabilities. 
 

Interestingly, the method of moments is an approximate, rather than an exact, method, 
because of the omission of higher order terms in the Taylor series expansion. Further, traditional 
mathematical approaches to fitting nonlinear, orthogonizable, eco-epidemiological, explanatorial, 
clinical, field or remote geosampled, probabilistically regressable, geo-spatiotemporally, 
geosampled, YFV-related, mixed model, covariate, parameter estimator coefficients would 
involve the Taylor series expansions, around either zero or the empirical, best, linear, unbiased 
predictions of the random effects which  may be defined in PROC NL MIXED. In so doing, the 
first-order method of Beal and Sheiner (1982) and Sheiner and Beal (1985), may be implemented 
in PROC NLMIXED for probabilistically regressively quantitating time series specified, 
explanatorial datasets of operationizable, endemic, transmission-oriented, empricially 
regressable, clinical,  field  and remote geosampled covariate, parameter estimator, coefficient 
values. Although the basis for the estimation method of Lindstrom and Bates (1990), is presently 
not available in PROC NLMIXED, the closely related Laplacian approximation is available; it is 
equivalent to adaptive Gaussian quadrature with only one quadrature point. The Laplacian 
approximation and its relationship to the Lindstrom-Bates method are discussed by Beal and 
Sheiner (1992), Wolfinger (1993), Vonesh (1992,1996), and Wolfinger and Lin (1997). 
 

Further, parallel literature exists in the area of GLMMs, in which probabilistically 
tabulated random effects appears a part of the explanatorial, linear probabilsic predictors inside 
of a link function. Taylor-series methods that are similar to  those just described are discussed in 
articles such as Harville and Mee (1984), Stiratelli, Laird, and Ware (1984), Gilmour, Anderson, 
and Rae (1985), Goldstein (1991), Schall (1991), Engel and Keen (1992), Breslow and Clayton 
(1993), Wolfinger and O’Connell (1993), and McGilchrist (1994), but such methods have not 
been implemented in PROC NLMIXED  for regressively qualitatively quantitating YFV-related, 
explanatorial, clinical,  field and remote-specified, geo-spatiotemporally, geosampled,endemic, 
transmission –oriented, endmember, ovipsoition, sub-meter resolution, LULC covariate, 
parameter estimator,  explanatorial coefficients because they can produce biased results in certain 
binary data situations (see Rodriguez and Goldman 1995, Lin and Breslow 1996).  

 
Instead, a numerical quadrature approach is available in PROC NLMIXED, for robustly 

regressively quantitating an emprically probabilistically regressable dataset of explanatorial, 
clinical, field or remote geosampled, time series dependent, eco-epidemiological geopredictors 
as discussed in Pierce and Sands (1975), Anderson and Aitkin (1985), Crouch and Spiegelman 
(1990), Hedeker and Gibbons (1994), Longford (1994), McCulloch (1994), Liu and Pierce 
(1994),and Diggle, Liang, and Zeger (1994). The models fit by PROC NLMIXED may 
qualitatively quantitate an empirical, geosampled, georeferncable dataset of explanatorial, 
clinical, field and remote-specified, YFV-related endemic,transmission-oriented, covariate, 
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parameter estimators which  can be viewed as generalizations of the random coefficient models 
fit by the MIXED procedure. This generalization can allow the random coefficients to enter a 
geopredictive, explanatorial, time series dependent, eco-epidemiological, YFV-related, 
probablistic, risk model framework to qualitatively regressively quantitate the geosampled data 
linearly.  
 

Importantly, because of generalized nonlinear formulations in an empirically 
probablistically, time series dependent, explanatorily regressable dataset of YFV-related, clinical, 
field and remote-geosampled, eco-epidemiological,  covariate, parameter estimator coefficients, 
no direct analog to the REML method is available in PROC NLMIXED; only standard maximum 
likelihood may be  used. Also, PROC MIXED will assume the data to be normally distributed, 
whereas PROC NLMIXED enables data analyses that are normal, binomial, or Poisson or that 
has any likelihood programmable with SAS statements. PROC NLMIXED does not implement 
the same estimation techniques that are available with the NLINMIX and GLIMMIX macros. 
These macros are based on the estimation methods of Lindstrom and Bates (1990), Breslow and 
Clayton (1993), and Wolfinger and O’Connell (1993), and they iteratively can fit a set of 
generalized estimating equations (refer to Chapters 11 and 12 of Littell et al. 1996 and to 
Wolfinger 1997). In contrast, PROC NLMIXED directly maximizes an approximate integrated 
likelihood. PROC NLMIXED has close ties with the NLP procedure in SAS/OR® software. 
PROC NLMIXED employs a subset of the optimization code underlying PROC NLP and has 
many of the same optimization based options. Also, the programming statement functionality 
that is used by NLMIXED is the same as that used by PROC NLP and the MODEL procedure in 
SAS/ETS® software. 

Interestingly, if an experimenter consider the limit as r → ∞, the second factor will 
thereafter converge to one in NLMIXED and the third to the exponent function: 

 in a robust, explanatorial, geopredictive, eco-epidemiological,   time 
series dependent,  YFV-related, regression-related,  probablistic, risk model. This tabulation 
could be performed employing the mass function of any explanatorial, geopredictive Poisson-
distributed, time series-related, sylvatic, YFV-related, randomized variable(e.g., LULC change 
from forest canopy to agro-village complex over 10 years) with expected value λ. In other words, 
the alternatively parameterized negative binomial distribution would converge to the Poissonian 
distribution in the endemic, transmission-oriented, eco-epidemiological, probabilistic, risk 
model. By doing so, r would control the deviation from the Poissonian in the residually 
forecasted probabilistic derivatives. Thus, this processing makes the negative binomial 
distribution suitable as a robust alternative to the Poissonian for seasonal, eco-epidemiological, 
probablistic, eco-epidemiological, risk modeling time series dependent,  geopredictive, 
explanatorial, YFV-related, endemic, transmission-oriented, geo-spatiotemporally, geosampled, 
clinical, field and remote variables which approach the Poisson for large r, but which has larger 

variance than the Poisson for small r[e.g.,  ]in GEN MOD. 

        Interestingly, the negative binomial distribution with size = n and prob = p in an 
explanatorial, geopredictive, robust, time series-related, YFV-related, eco-epidemiological, 
endemic, transmission-oriented, risk model  may have the  density Γ(x+n)/(Γ(n) x!) p^n (1-p)^x 
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for x = 0, 1, 2, …, n > 0 and 0 < p ≤ 1 in R. R is a free software environment for statistical 
computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows 
and Marcos. The R language is widely used among statisticians and data miners for developing 
statistical software and risk-related, eco-epidemiological, forecasting, data analysis. R is an 
implementation of the S programming language combined with lexical scoping semantics 
inspired by Scheme (Ihaka, 1998).  

S was created by John Chambers while at Bell Labs. R was created by Ross Ihaka and 
Robert Gentlemanat the University of Auckland, New Zealand, and is currently developed by the 
R Development Core Team, of which Chambers is a member. R is a GNU project. The source 
code for the R software environment is written primarily in C, Fortran, and R. R is freely 
available under the GNU General Public License, and pre-compiled binary versions are provided 
for various operating systems. R uses a command line interface; however, several graphical user 
interfaces are available for use with R. To download R, CRAN mirror is commonly employed 
(http://www.r-project.org/). Importantly, in R the explanatorial, seasonal, clinical, field, and 
remote specified, probabilistic, geo-spatiotemporally, geosampled, YFV-related, endemic, 
transmission-oriented, eco-epidemiological, covariate, parameter estimator, coefficient values 
would represent the number of failures  in the geoprediction of a seasonal, probabilistic, 
georeferencable, stochastically/deterministically explanatorily iteratively interpolatable, YFV-
related variables (e.g., case distribution, geoclassified ArcGIS-derived riceland LULCs). This 
representation would occur in a sequence of Bernoulli trials before a target number of successes 
is reached. The mean in the time series dependent,  explanatively probabilistic, YFV-related, 
endemic, transmission-oriented, risk model would then be  n(1-p)/p and variance n(1-p)/p^2.  

Importantly, a negative binomial distribution can also arise as a mixture of Poisson 
distributions with mean distributed as a gamma distribution (i.e., pgamma explanatorial, YFV-
related, diagnostic, clinical, field or remote-specified,   geo-spatiotemporally geosampled 
probabilistic, LULC  regression variable) with scale parameter (1 - prob)/prob and shape 
parameter size) (seeHosmer and Lemeshew 2002).This definition would allow all the seasonal, 
geosampled,predictive, explanatorial, sylvatic YFV-related, eco-epidemiological, endemic, 
transmission-oriented, non-integer values from   an empirical frican expanding agro-irrigated 
village dataset  size to be  employed in the model construction process where  dgamma(x, shape, 
rate = 1, scale = 1/rate, log = FALSE) pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = 
TRUE, log.p = FALSE)qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = 
FALSE) may be parsimoniously, robustly estimated. Possible arguments then  could be resolved 
in  a robust, probabilsitic,  empirical dataset of seasonally empirically regressable, time series 
dependent, geopredictive, YFV-related, endemic, transmission-oriented,  explanatorial, risk 
model, residually forecasted  derivatives in R   which would be x, q (i.e., vector of YFV-related 
quintiles) p (vector of probabilities), n (number of geosampled, clinical, field and remote-
specified, time series-related, YFV-related observations), rate for devising an alternative way to 
specify the scale of an eco-georefernceable, capture point, seasonal, Ae egypti, aquatic, larval 
habitat on an agro-village complex LULC geolocation. In R commonly shape for positive, scale 
strictly log, log.p[logical; occurs  if TRUE, probabilities/densities p are returned as log(p)] log or 
log.p logical; if TRUE, probabilities/densities p are returned as log(p) (http://www.r-
project.org/). Further, if scale is omitted in an operationizable, empirical dataset of  heurstically 
optimizable seasonal, explanatorial, probabilistically geo-spatiotempoally, geosampled, YFV-
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related, eco-epidemiological, endemic, transmission-oriented, grid-startified, LULC, rforecast, 
vulnerability mordel, derivatives would assume the default value of 1.  

Interestingly, the Gamma distribution with probabilistically regressed seasonal 
geosampled, explanatorial, geopredictive, YFV-related parameters shape = a and scale = s would 
have  the density f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)for x ≥ 0, a > 0 and s > 0. Here 
Gamma(a) in  the time series dependent, explanatorial, geopredictive, YFV-related, probabilistic, 
endemic, transmission-oriented, eco-epidemiological, sub-mter resolution, LULC, risk model, 
residually forecasted derivatives would be  the function implemented by R's gamma( Cressie 
1993).Thereafter, a=0 would correspond to the trivial distribution with all mass (e.g., 
explanatorial, parameterizable , sub-mtrer resolution LULC, covariate, Ae. egypti , oviposition 
parameterizable estimator coefficients) at every geo-spatiotemporally geosampled time series 
dependent, endemic points in the YFV-related, eco-epidemiological, probabilistic,  risk model. 
The mean and variance in the seasonal, endemic, transmission-oriented, YFV-related, 
probabilistic, eco-epidemiological, risk model could then be regressively qualitatively 
quantitated E(X) = a*s and Var(X) = a*s^2. By so doing, the cumulative hazard H(t) = - log(1 - 
F(t)) in the risk model, residual, forecasted Ae. egypti , oviposition LUCsub-mter resolution, 
derivatives  would then be  -pgamma(t, ..., lower = FALSE, log = TRUE.  

Note that for a small explanatorial dataset of geopredictive, time series-related, eco-
epidemiological, endmember YFV-related, probabilistic, Ae. egypti, oviposition Poissonized, 
covariate coefficient, regressed LULC value of shape and moderate scale and  large parts of the 
mass, the Gamma distribution could be represented as seasonal, geosampled values of x in 
computer arithmetic. As such, rgamma  may return  a probabilistically regressable,  empirically, 
geosampled dataset of  eco-georefernced, time series-related, explanatorial, predictive, 
diagnostic, clinical, field or remote geosampled,  sylvatic,YFV-related, endemic, transmission-
oriented, covariate, parameter estimator, coefficient values ( e.g., seasonal change in LULC from 
forested canopy to agro-village complex) which  may be then be eco-epidemiologically 
represented in a  time series, risk model, SAS framework efficiently. This could also happen 
during the regressive covariate, parameter estimation process for a  very large geosampled, 
empirically eco-epidemiological dataset of geopredictive, explanatorial,  probablistic, YFV-
related, endemic, transmission-oriented, diagnostic,clinical, field or remote, covariate, 
parameterizable,covariate estimator, coefficient values of scale since the actual generation would 
be  done for scale = 1.   

In so doing, dgamma would t render the density, pgamma which could then provide the 
distribution function, qgamma which in turn would render the quantile function while rgamma 
would generate random deviates in the probablistic forecasted, clinical, field or remote-specified, 
sylvatic YFV-related, risk model derivatives.  Interestingly, probabilistic, invalid arguments in a 
seasonal explanatorial, geopredictive, YFV-related, endemic, transmission-oriented, 
probabilsitic, eco-epidemiological,sub-mter resolution , grid-stratieid, oviposition, risk model, 
parameter estimation process would result in a return value NaN, with a warning in SAS.  The 
length of the result in the covariate, parameter estimation process may be then determined by n 
for rgamma, which would be the maximum of the lengths of the seasonal geosampled, 
explanatorial, geopredictive, sylvatic YFV-related, numerical Ae. egypti, oviposition 
parameterizable copvariate estimators for the other functions.  The numerical estimators other 
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than n would then be recycled to the length of the result. Only the first elements of the logical 
parameter estimators could be employed in a dataset of empirically regressable, probabilsitic, 
explanatorial, YFV-related, endemic transmission-oriented, risk model covariate, parameter 
estimator coefficients.  

Interestingly, the pgamma in a seasonal, YFV-related, explanatorial, geo-spatiotemporally 
geosampled, probabilistically regressable, eco-epidemiological, forecasting, eco-georferenceable, 
LULC, risk model may be closely related to the incomplete gamma function. As defined by 
Abramowitz and Stegun (1972) this is P(a,x) = 1/Gamma(a) integral_0^x t^(a-1) exp(-t) dtP(a, x)  
may be  regressively probabilistically qualitatively quantitated as  pgamma(x, a) in an empirical  
dataset of unbiased residually forecastable, seasonal, YFV-related, explanatorial, 
stochastically/deterministically iteratively interpolatable, Ae. egypti, oviposition derivatives. 
Other authors for example Karl Pearson in his 1922 tables omitted the normalizing factor for 
defining the incomplete gamma function γ(a,x) as gamma(a,x) = integral_0^x t^(a-1) exp(-t) dt, 
[i.e., pgamma(x, a) * gamma(a)]. Alternatively, the ‘upper’ incomplete gamma function, 
Gamma(a,x) = integral_x^Inf t^(a-1) exp(-t) dt may be employed for computing pgamma 
employing x, a, lower = FALSE * gamma(a) in an eco-epidemiological, YFV-related, 
probabilsitic, diagnostic, risk model. Note, however that pgamma(x, a, ..) for  generating a 
robust, explanatorial, geopredictive, seasonal, sylvatic YFV-related, endemic, transmission-
oriented, probabilistic, eco-epidemiological, ovispoition, capture point, risk model would require 
a > 0, whereas the incomplete gamma function  may be defined for negative a. In that case, an 
experimenter may use gamma_inc(a,x)  instead (for Γ(a,x)) from package gsl. 
(http://dlmf.nist.gov/8.2#i).Importantly, dgamma may be computed via the Poisson density, using 
code dbinom for generating a robust, linearized,  seasonal,  explanatorial, YFV-related ,endemic, 
transmission-oriented, probabilistic, eco-epidemiological, risk model.  

    However, in seasonal, sylvatic, YFV-related, endemic, transmission-oriented, 
explanatorial, geopredictive,  probabilistic, risk model, the normalized binomial distribution with 
size = n and prob = p would have a  heurstically  optimizable,explanatively probabilsically 
regressable, geosampled, eco-epidemiological, operationizable, interpolatable, covariate, 
parameterizable, geo-spectrotemporal,  estimator, explanatorial, Ae. egypti , oviposition, sub-
mter resolution, geoclassifiable, LULC coefficients may still  be computed in R or any other 
sophisticated statistical program and then exported into a ArcGIS cyberenvironment for  
generataing a geo-spatially robustifible, vulnerabity-oriented, eco-epidemiological, probabilistic, 
risk map. If an element of x is not an integer in a  seasonal explanatorial,  geopredictive, YFV-
related, endemic, transmission-oriented, probabilsitic, geo-spectrotemporal, eco-
epiudemiological, risk model, the result of dbinom would be zero, with a warning. In so doing, 
p(x) could then be  ideally computated using Loader's algorithm in R (http://www.r-project.org/), 
if so desired.   The quantile  for a robustifiable, explanative, time series-related,  explanatorial,  
geopredictive, seasonal, robustifiable, YFV-related, forecasting, eco-epidemiological, 
probabilistic,geospectrotemrpoal, geospatial,  risk model may then be also defined as the 
smallest geosampled  explanatorial,  endemic, transmission-oriented, covariate, parameterizable, 
elucidative, estimator, coefficient value x such that F(x) ≥ p, where F is the distribution function 
in GEN MOD. By so doing, dbinom would render  the density, pbinom which would provide  the 
distribution function, qbinom which in turn would render the quantile function in an 
explanatorial, clinical, field or remote-specified, probabilistically regressed dataset of, diagnostic 
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georferenecable, clinical, field or remote geosampled, YFV-related, eco-epidemiological, risk 
model estimators. In R this could occur employing rbinom  which then would generate random 
deviates from the empirically geosampled dataset of explanatorial, time series-related, geo-
spectrotemporally geosampled, endemic, transmission-oriented, risk-related geopredictors. If 
size is not an integer, NaN would also be  returned in the residually forecasted explanative 
derivatives in GEN MOD. The length of the result could then be  determined by n for rbinom in 
the R derived,eco-epidmeiological, forecastable, risk model, and  the maximum of the lengths of 
the numerical parameters for the other functions.  

Importantly, for generating a robust, seasonal, YFV-related dbinom in SAS a saddle-point 
expansion may be used( see Catherine Loader (2000)].  In so doing, pbinom can use pbeta while  
qbinom  which would employ the Cornish–Fisher Expansion to include a skewness correction 
for normal approximation, followed by a robust search. For a continuous, YFV-related, time 
series-related, geopredictive, explanatorial, regressed when robustly quantitating a 
georferenceable datatste of eco-epidemiological, diagnostic, geo-spectrotemporally geosampled, 
space-time,  distributions (like the normal) in as endemic, transmission-oriented, geoclassifiable 
LULC, eco-epidemiological, risk model, the most useful functions for doing problems may 
involve solving probability calculations such as the "p" and "q" functions (c. d. f. and inverse 
c. d. f.), because the probabilty densities calculated by the "d" function can only be used to 
calculate probabilities via integrals ( see Jacob et al. 2012). Unfortunately, R does not compute 
integrals.  For a discrete, explanative, seasonal, probabilistic, YFV-related, regressive distribution 
like the binomial, the "d" function would however, calculate the density (e.g., pdf), which in this 
case would be  a probability f(x) = P(X = x) and, thus would be  useful in calculating 
probabilities in the forecasted eco-epidemi9ological YFV-related derivatives.  R has functions to 
handle many probability distributions (https://www.r-project.org/). 

The Cornish–Fisher expansion is a mathematical expression used to approximate the 
quintiles of a random explanative variable based only on its first few cumulates .For instance, 
suppose  an experimenter  lets x be a random geo-spectrotemporally geosampled, time series 
dependent, probabilistic, explanatorial, diagnostic, clinical,  field and/or remote-derived, YFV-
related, geopredictive, linearized variable with a density function f(x) with a mean of zero and a 
variance of 1. By letting β1 be the skewness of this distribution and then letting β2 be its kurtosis, 
all the geosampled explanatorial, time series dependent, clinical, field or remote-specified, YFV-
related, geopredictive variables may be regressively qualitatively quantitated. Further, if a 
experimenter lets z be a normally distributed random variable and lets zα be the  possible, 
probablistic, geosampled, explanatorial, diagnostic, clinical, field or remote, YFV-related,  
covariate, parameterizable, Ae. egypti , prolific, oviposition , sub-mter resolution decomposable, 
estimator coefficient values of z  in the risk model at the αth percentile, an illustration of this last 
definition when α = 0.95, zα = 1.96 may be optimally heuristically derived In so doing, 

where ωα is the 
corresponding value for f(x) in the dataset of endemic, probabilistic, transmission-oriented, YFV-
related, eco-epidemiological, geo-predictive, risk model, optimally residually forecasted 
derivatives. Kachitvichyanukul, and Schmeiser (1988) commutated distributions for standard 
distributions, including dnbinom for the negative binomial, and dpois for the Poisson 
distribution.  
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 Herewith, a hypothetical, seasonal, sylvatic YFV-related,explanatorial, ovispoition, 
capture point, forecast, vulnerability,, eco-epidemiolgical, probabilsitic, time series dependent, 
robustifiable, explicative, Ae. egypti , oviposition,sub-meter resolution,LULC model graphics are 
provided for constructing a robust, endemic, transmission-oriented, risk model in R: 
 
# Compute P() for X Binomial(100,0.5) 
sum(dbinom(100, 0.5)) 
## Using "log = TRUE" for an extended lulc, rainfall, and human population range : 
n <- 100 
k <- seq(0, n, by = 20/per season) 
plot (k, dbinom(k, n, pi/10, log = TRUE), type = "l", ylab = "log lulc change forest canopy to 
agro-village density", 
      main = "dbinom(*, log=TRUE) is better than  log(dbinom(*))")lines(k, log(dbinom(k, n, 
pi/10)), col = "rainfall", lwd = 2) 
mtext("dbinom(k, log=TRUE)", adj = 0) 
mtext("extended anthropogenic population range"), adj = 0, line = -1, font = 4) 
mtext("log(dbinom(k))", col = " adj = 1) 
 
 In the R-derived seasonal, explanatorial, YFV-related, operationizable, eco-
epidemiological, clinical, field or remote-specified, geopredictive, forecasting, risk model 
uncertainty-oriented, extreme points  (i.e.,geospatial, outliers)would be omitted by making 
dbinom render 0.  
 

An alternative optimaizable parameterization for constructing a robustiifable explanative, 
seasonal, sylvatic YFV-related, endemic, transmission-oriented, probabilistic, eco-
epidemiological, forecasting, regression-related, time series, risk model  would be by employing 
the mane ( mu), and size, (i.e., the dispersion parameter) where prob = size/(size+mu) in R or 
SAS. The variance in the eco-epidemiological, ovipsotion, hypeproductive, explanatorial, 
diagnostic, clinical, field or remote geosampled, time series dependent, risk model then would be 
mu + mu^2/size which would be regressively, qualitatively quantitatable during the endmember 
parameterization process. If an element of x is not a time series dependent, explicatively 
represented YFV-related, diagnostic, endemic, transmission-oriented, parameterizable, covariate, 
coefficient, geosampled, discrete integer value, the result of dnbinom would be zero, with a 
warning. The quantile would then could be defined as the smallest explanatorial, geosampled, 
time series-related, YFV-related, eco-epidemiological, forecasting value x such that F(x) ≥ p, 
where F is the distribution function. In so doing, Dnbinom could then render the density, 
pnbinom which would in turn render the distribution function in the risk model, eco-
epidemiological, residual,  forecasted  Ae. egypti , oviposition, sub-mter resolution decomposed 
derivatives. 

Thereafter, qnbinom could render the quantile function, in SAS for optimally regressively 
qualitatively quantitating endemic, transmission-oriented, parameterizable, covariate, coefficient, 
estimator levels of significance in the probabilistic, Ae. egypti , oviposition, YFV-related, eco-
epidemiological, geopredictive, risk model outputs or rnbinom would generate random deviates 
to conduct the same task in R. Invalid size or prob would result in return value NaN, with a 
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warning regardless of which program is employed for the estimator quantitation process. 
Importantly, dnbinom would compute elucidative, binomial probabilities in R using codes 
contributed by Catherine Loader.  Alternatively, Pnbinom would use pbeta whilest qnbinom 
would   employ the Cornish–Fisher Expansion in SAS to include a skewness correction to a 
normalized approximation, followed by a search.  Interestingly, rnbinom could be intrinsically 
ideally employable for qualitatively regressively quantitating the explanative, georferenceable, 
YFV-related derivation as a gamma mixture of Poissons. The normalized negative binomial 
distribution, in its alternative parameterization form, however in SAS and/or R can be used as an 
alternative to the Poisson distribution for a quantifying geo-spatiotemporal, geosampled 
explanatorial, geopredictive, YFV-related, overdispersed parameterizable,  covariate, estimators 
over an unbounded positive range whose sample variance exceeds the sample mean.  

        An overdispersed exponential family of  generalizable, seasonal explanatorial, 
geopredictive, YFV-related, explanative, vulnerability, linear model distributions was employed  
to quantitate exponential family in PROC GEN MOD and dispersion model of distributions 
which also included those probability distributions, parameterized by and , whose density 

functions was expressed in the form . Importantly, the 
dispersion parameter, typically is known and is usually related to the variance of the 
distribution(seeCressie 1993). For qualitatively probabilistically regressively quantitating a pmf 
for the seasonal geo-spectrotemrpoally geosampled, YFV-related, seasonal, eco-epidmeiolgical, 
normalized, Ae. egypti , oviposition-related, seasonal,  discrete distribution  the functions 

, , , , and  were employed . For determining the scalar and  in the 
probabilsitic, negative binomial, YFV-related, endemic, transmission-oriented, eco-
epidemiological, optimized, risk model, these functions  reduced 

to  and  was  related to the mean of the distribution . If 
is the identity function, then the distribution is said to be in canonical form (or natural form) 

(Hosmer and Lemeshew 2000).  

Note that any distribution in our seasonal, predictive, YFV-related, explanatorial, 
endemic, transmission-oriented, probabilistic, eco-epidemiological, risk model was converted to 
canonical form by rewriting as and then applying the transformation . Interestingly, 
we noted that it was possible to convert in terms of the new parameterization, even if 

was not a one-to-one function in the eco-epidemiological, explanatorial, YFV-related, 
forecasting, probabilisitic, risk model. Further,  was an additional identity since in our 
model  was known, and as such the canonical parameter or natural parameter in the model was 
efficiently regressively quantitated. We then optimally determined whether the canonical 
parameter could be or not to be related to the mean through   For scalar and 

 in a robustifiable empirical dataset of  endmember, sub-meter resolution, explanatorial, 
predictive seasonal, YFV-related,   endemic, transmission-oriented,  risk model, georferenceable,  
parameterizable covariate estimators  may reduce to  ( see Jacob et al. 2013). 
In so doing, the variance of our seasonal geosampled, explanatorial, geopredictive explanatorial,  
YFV-related, noramlized distribution were shown to be . For optimally 
regressively qualitatively quantitating scalar and , in the probabilistic, forecasting, YFV-
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related, risk model, residually forecasted derivatives,  this was further reduced 
to  .Thereafter, all the seasonal geosampled, sylvatic ,YFV-related, endemic, 
transmission-oriented, probabilistic, eco-epidemiological, risk variables were specialized in a 
ecogeographically, spatially, weighted matrix. 

     The probabilistically estimation of the spatial filter equation employing the  
ecogeographically weighted, SAS/GIS-derived, transitional matrix accounted for substantial 
variation in our geosampled, explanatorial, geopredictive, YVR-related, time series dependent,  
explanatorial, diagnostic, geospatialized, clinical, field and remote geo-spectrotemporally, 
geosampled, parameterized covariate, estimator, with the regressed data exhibiting both a PSA 
and NSA spatial filters that were roughly of equal importance. Approximately 50 percent of the 
variance accounted for by the relative pseudo-R2 values was probabilistically attributable to each 
spatial filter component. This finding made sense because, on the one hand, common factors may 
dictate which portions of geoclassified, riceland agro-cosystem, and forecast sparsely canopied 
LULCs are suitable for seasonal, sylvatic YFV-related mosquitoes in Gulu. Based on PSA 
configurations in the geospatial, agro-village riceland LULC explanatorial distributions,the field-
geosampled, time series dependent, count data aggregated based on similar traits ( sparsely 
shaded, discontinuous canopied geolocations). On the other hand, expansion of agro-urban 
territories into forested canopy LULC resulted in NSA being generated in the normalized 
distribution of the empirically  geo-spectrotemrpoally geosampled, diagnostic, clinical, field or 
remote, YFV-related, geo-spatiotemporal, data feature, ecogeorferenceable hyperproductive Ae. 
egypti, oviposition attributes  at the  eco-epidemiological, study site. Interestingly, these two 
components tended to be of equal importance in the overall spatial autocorrelation mixture in the 
explanatorial, autoregressive seasonal, YFV-related, geopredictive, endemic, transmission-
oriented, forecasting,probabilistic,eco-epidemiological,  risk model. 

 Importantly, in the Gulu, eco-epidemiological study site, geo-specific,time series 
dependent, geoclassifiable, LULC changes  of  forest canopy LULC to agro-village complex 
LULC may have contained inconspicious NSA that was masked by PSA. Generally,  positive 
autocorrelation occurs in explanatorial,  geo-spectrotemporal, eco-epidemiolgical, seasonal, 
geopredictive, entomological-related, geoclassifiable,  LULC, endemic transmission-oriented, 
eco-epidemiological, forecasting, risk model where similar seasonally explanative, immature 
count data values from geo-spatiotemporal geosampled  clinical, field or remote georferenceable 
clusters occur  in geospace on a specific LULC, while negative autocorrelation occurs where 
unlike data geosampled attribute values cluster in geospace on an LULC  (see Jacob et. al. 2008, 
Jacob et al. 2005). Negative spatial autocorrelation, however, was encountered in the empirical 
data analyses of the geo-spectrotemrpoal, geo-spatiotemporal, eco-epidemiological, geosampled 
georeferenced, explanatorial, sylvatic YFV-related, endmember uncoalesced, ovispoition, 
capture point, LULC, time serioes, predictor variables less frequently than PSA.  

 
Because the MC is asymptotically normally distributed (Griffith, 2003), MC may 

sometimes fail to detect hidden NSA in highly heterogeneous seasonal, explanatorily  
probabilistically regressed, diagnostic, geo-spectrotemrpoal, geospatialized, diagnostic, 
normalized, YFV-related clinical, field or remote geosampled, parameterizable, covariate 
coefficient, estimator datasets, although all of the geo-visual and conventional numerical 
evidence suggests the presence of PSA. The reason for this omission in  a geo-spatiotemporal, 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

404 
Copyright © acascipub.com, all rights reserved.  

probabilistically regressedable, explicative, YFV-related eco-epidemiological, risk model can 
include the continuity in geospace and time of the sampleding of the georeferenceable, forested, 
sparsely  canopied, agro-village complex LULCs and their explanatorily quantative, LULC 
geopredictive, time series, dependent,  change variables for instance. Nevertheless, a series of 
circumstances in empirical situations can have deleterious affects on the seasonal geospatial 
distribution of an explanatorial dataset of explicative diagnostic, YFV-related, seasonal, endemic 
transmission-oriented, geopredictive, regressed variables displaying NSA. The models we 
generated commonly by capturing the negatively geospatially autocorrelated phenomena in ta   
probabilistically geo-spectrotemrpoally/geospatiotemporally geosampled, diagnostic datatste of 
georferenceable, clinical, field and remote-specified, YFV-related, explanatorial parameterizable,  
covariate, Ae. egypti, oviposition estimator coefficients, which may be attributable to the 
geospatial competition for land surface by the immature Aedes at a riceland agro-ecosystem, eco-
epidemiological, village, study site. No mosquito species exhibit globally dispersed offspring and 
the density of propagules and progeny usually decrease with distance in the urban environments 
(Walker and Lynch, 2007); hence, the observed geospatialization and  explanatorial, distributions 
of a regressed dataset of  geosampled georeferencable, immature, geopredictive diagnsotci YFV-
related, clinical, field or remote geopredictive variables may be the result of dispersal and 
competition of adult Aedes. Indeed, ecogeographically competitive phenomena can provide 
sound conceptual examples of NSA in a geopredictive, seasonal, explanatorial, medical 
entomological-related immature habitat, probablistic explicative distribution as the manifestation 
of the geosampeld immature georferenceable habitats with high productivity, based on field 
geosampled larval/pupal count, may be due to the influence of neighboring immature habitats. 
Negative geospatial autocorrelation naturally materializes with competitive geolocational 
processes in an empirical dataset of a georferenced, geospectrotemrpoal/geospatiotemporal, 
explanative dataset of vector, arthropod-related, larval habitat, explanatorial, probablistically, 
endemic, transmission-oriented, orthogonally decomposeable, parameterizable, covariate 
estimator, coefficient values   especially those geosampled in urbanizing environments (see 
Jacob et al. 2012, Griffith, 2006). 
 
        Apart from qualitatively probabilistically regressively quantitating latent autocorrelation 
coefficients, understanding the presence of NSA in geo-spectrotemporally, geo-spatialized, 
robustifiiable,  geosampled, georeferenced, forested, sparsely shaded- canopied discontinuous 
LULC to agro-village complex LULC change-related explanatorial, geopredictive riceland 
variables is of interest for many other reasons for implementing IVM for yellow fever control. 
Foremost, is that the amount of quanatizable residual autocorrelation being dealt with in an 
ArcGIS-related, LULC change quantitation procedure while more than a trace, is rather small. 
This means that any elucidative,  ArcGIS-related, endemic,  transmission-oriented, forecasting, 
risk model seasonal, diagnostic, YFV-related, ovipsoition, hypeproductive, explanative, time 
series dependent, clinical, field and/ or remote-geosampled explanatorial, endemic transmission 
oriented, geopredictive, regression-based, normalized distribution generated in an ArcGIS 
cyberenvironment   would be robust. As such, subsets of the elements of the transitional weights 
matrix constructed from forested canopy to agro-village complex LULC uncoalesced 
explanatorial parameter estimators, for example, might be optimally heuristically determined to 
be associated with different seasonal environmental, geosampled, geopredictive, risk-related, 
probabilistically geo-classified, parameterizable covariate  estimator coefficients. This then 
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would enable determining optimal time frames for implementing IVM in an eco-
epidemiological, riseland agro-ecosystem, study site.  

 
Importantly, a seasonal, robust, explanatorial, geopredictive, YFV–related, probablistic,  

SAR, eco-epidemiological, risk-related, risk  model may also  account for a sizeable amount of 
the detected PSA in a specific, SAS/GIS geo-classified LULC, endemic transmission-oriented,  
thus allowing field teams to detect important geo-spectrotemrpoally, geospatiotemrpoally  
geosampled geolocations (e.g., a geospatial aggregation of prolific, georeferenceable,Aedes 
larval habitats in a riceland agro-village ecosystem based on immature field geosampled count 
data). Loss of information from geospatial aggregation in the presence of PSA in some 
environments may tend to not be severe in seasonal, YFV-related, data analyses because, perhaps 
on average, locally geospatially, probabilistically aggregated, regressed coefficient, time series 
values are similar. In contrast, loss of seasonal Aedes mosquito’s habitat geospatial aggregation 
suitability in an agro-riceland eco-epidemiological, village complex, geoclassifiable LULC in the 
presence of NSA may result in a dramatic loss of information reflecting a sharp decline in 
variance for any seasonal SAS/GIS constructed, endemic, transmission-oriented, risk model 
estimator. For example, as candidate eigenvectors increase, the percentage of variance accounted 
for in a seasonal, forecast, vulnerability, explanatorial, YFV, endemic, transmission-oriented, 
probabilistic, diagnostic, eco-epidemiological, geo-predictiev, risk model with their respective,  
regression coefficient values may decrease while latent autocorrelation coefficient estimates 
increase. This model feature is particularly relevant for identifying NSA for optimally 
geospatially adjusting georeferenced, explanatorial, diagnostic, georferenceable, clinical, field or 
remote-geo-spectrotemrpoally, geo-spatiotemrpoally geosampled, YFV-related, time series-
related, eco-epidemiological, Ae. egypti , oviposition geopredictive,LULC, sub-meter resolution,  
variables for implementing IVM as geolocations of prolific endemic, transmission-oriented 
activities may be regressively qualitatively quantitated geo-spatiotemporally. Intensively 
quantifying geo-spatiotemporal, geosampled geolocations in SAS/GIS cyberenvironments can 
distinguish geopredictive variables that influence vector mosquito larval/pupal productivity 
(Jacob al. 2009, Jacob et al., 2008, Jacob et al. 2007,). 

 
Additionally, determining seasonal NSA in a seasonal explanatorial, forecast, 

vulnerability, sylvatic YFV-related, explicative, diagnostic, eco-epidemiological, 
georeferenceable, endemic, transmission-oriented, probablistic, heuristically optimizable, 
African expnding, ricland agro-irrigated , village,  risk model can index the nature and degree to 
which a fundamental statistical assumption is violated which, in turn, can indicate the extent to 
which conventional inferences are compromised when non-zero spatial autocorrelation is 
overlooked. Autocorrelation may complicate statistical analysis of geo-spatiotemporal, 
geosampled, Aedes aquatic larval habitats, eco-georeferenced, explanatorial, geopredictive 
variables on specific georeferenced LULC forest canopied change sites to agro-village complex 
sites for instance, by altering the variance of the geosampled geopredictive variables, thereby 
changing the uncertainty probabilities commonly associated with making incorrect statistical 
decisions (Jacob et al., 2005).Also, regressively quantifying time series dependent, latent 
autocorrelation, probabilistic, uncertainty components can signify the presence extent of 
redundant information in georeferenced seasonal-geosampled, eco-epidemiological, YFV-related, 
diagnostic, time series depemndnet, geospectrotemrpoal, geospatialized, clinical, field or 
remote,time series dependent data. 
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 Because it is redundant information, spatial autocorrelation represents duplicate 
information contained within georeferenced data, linking it to missing values estimation as well 
as to notions of effective sample size and degrees of freedom (Griffith, 2003). For 
probabilistically,  normally distributed seasonal, Ae. egypti , oviposition, sub-mter resolution, 
sylvatic YFV-related, explanatorial, transmission-oriented, geopredictive, eco-epidemiological, 
endemic Ae. egypti, oviposition , sub-meter esolution LULC ariables these latter two quantities 
could establish a correspondence between geo-spectrotemporally  geospatially autocorrelated 
and zero spatial autocorrelation, independent-geosampled, quantizable, explicative, seasonal, 
explanatorial, forecast, vulnerability, YFV-related observations. Richardson and Hémon (1981) 
promote this view for correlation coefficients computed for pairs of geospatially explanatorily 
distributed variables. Haining (1991) demonstrates an equivalency between their findings and the 
results obtained by removing spatial dependency effects with filters analogous to those employed 
in constructing robust time series impulse-response functions. 
 
       Accordingly, more spatially autocorrelated than independent, YFV-related, probabilistically, 
explanatorial, endemic observations are needed in calculations involving geo-spatiotemporal, 
geosampled, LULC variables to attain a valid informative statistic. Conventional regression 
model protocols offer a guide for regressive qualitatively quantitating local spatial 
autocorrelation as part of a battery of  seasonal, time series dependent,  YFV-related, endemic, 
transmission-oriented, eco-epidemiological, georeferenced risk model residual diagnostics, 
because both the Moran’s scatterplot and the MC link directly to the analyses of the 
georeferenced geo-spectrotemporal, geosampled, explanatorial, geopredictor variables. The 
measurement of latent autocorrelation explanatorial,  LULC components in a seasonally, 
autoregressive, sylvatic, YFV-related, endemic, transmission-oriented, eco-
epidemiological,forecast, vulnerability model therefore, can describe the overall topographic risk 
pattern across a agro-village landscape, supporting geo-spatiotemporal geopredictions  for any 
empirical geosampled, probablistically regressed dataset while regressive qualitatively 
quantitating striking deviations in the covariate, parameter estimator coefficients for 
compensating for unknown variables missing from any model specification. 
 
      Further, through qualitatively time series, regressive quantitation of higher-order geospatial 
interdependences, autoregressive disturbances, a seasonal, ArcGIS-derived, YFV-related, 
explanatorial, LULC-oriented, geopredictive, risk model could generate more seasonal robust 
inferences. We assumed a higher-order, geospatial statistical, probabilistic framework may derive 
generalized moments (GM) estimators for the autoregressive parameters of the disturbance 
process and the variances of the error components in a eco-epidemiological, clinical, field or 
remote geosampled, seasonal, YFV-related, endemic, transmission-oriented, probabilistic, 
forecast, vulnerabity model, while defining a feasible generalized two-stage least squares 
estimator for the regression parameters. Geo-spatiotemporal, autoregressive, YFV-related,  
explanatorial, clinical, field or remote-specified, geopredictive, endemic, transmission-oriented, 
forecasting, regression-related, probabilistic, risk-based analyses of georeferenced variables 
frequently employ risk model–based statistical inferences, the dependability of which is 
commonly based on the correctness of posited assumptions about the residual, time series 
dependent, LULC variance error estimates (see Jacob et al., 2007a; Jacob et al., 2006b, 2008c). 
Thereafter, the joint asymptotic distribution of the GM and the explanatorial, time series 
dependent, LULC, probabilistic geopredictive estimators can easily be attained, enabling 
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specification tests and proper interpolation of multi-dimensional, geospatial, probabilsitic, error 
component models with dependent observations in a time series,  robust explanatorial, endemic, 
transmission-oriented, YFV-related, LULC, risk model format. Generation of an improved GM 
estimator for regressively qualitatively quantitating a autoregressive parameter from a spatial 
error model constructed in ArcGIS from a datset of  empirically probabilistically regressable,  
eco-epidemiological clinical, field and remote georeferencable, YFV-related, meteorological and 
NDVI-related, geopredictor, time series dependent, explanatorial, variables, may also reveal 
differentiating unobservable regression disturbances and observable regression residuals.  

Unfortunately, we were not able to quantitate a geo-spatiotemporally, geosampled, YFV-
related clinical, field or remote,SASGIS-derived derived variable within a Q-Q plot. The 
standard error of a geosampled, quantile, sylvatic YFV-related, explanatorial estimate may be 
estimated via the bootstrap. In statistics, bootstrapping can refer to any test or metric that relies 
on random sampling with replacement (Hosmer and Lemeshew 2002).Bootstrapping allows 
assigning measures of accuracy (defined in terms of bias, variance, confidence intervals, 
prediction error or some other such measure) to sample estimates (Hazewinkle 2001).This 
technique may allow estimation of the geosampling distribution of almost any statistic using 
random sampling methods for constructing a robust, time series dependent, LULC, forecasting, 
YFV-related, eco-epidemiological, risk model. In practice this model would fall into a broader 
class of resampling methods. Bootstrapping is the pratice of estimating properties of an estimator 
(e.g., tabulated LULC explanatorial, geo-spatiotemporally georeferenced, YFV-related, 
geopredictive, parameter variance) by measuring those properties when geosampling from an 
approimating distribution. 

 One standardized choice for parsimoniously regressively qualitatively quantitating an 
empirical geosampled dataset of observed, YFV-related, clinical, field or remote–specified, geo-
spatiotemporal Ae. egypti , oviposition data would be empirical distribution function. In 
statistics, the empirical distribution function, or empirical cdf, is associated with the empirical 
measure of the sample(Hosmer and Lemeshew 2000). This cdf is a step function that jumps up 
by 1/n at each of the n data points (Hazewinkle 2001). The empirical distribution function may 
estimate the true underlying cdf of the geosample points in a empirically probabilistically 
regressed dataset of clinical, field or remote geosampled, time series dependent observational, 
explanatorial predictors while converging  with probability 1 according to the Glivenko–Cantelli 
theorem 

The theory of probability, the Glivenko–Cantelli theorem determines the asymptotic 
behaviour of the empirical distribution function as the number of independent and identically 
distributed observations grows (see Hazewinkle 2001). The uniform convergence of more 
generalizable empirical measures becomes an important property of the Glivenko–Cantelli 
classes of functions or sets. The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, 
with applications to machine learning. related to statistical learning theory and to empirical 
processes (Fotheringham 2002). Applications for robustly, qualitatively, regressively quantiating 
an empiricial geosampled dataset of explanatorial, time series dependent, clinical, field or remote 
specified, LULC,  covariate parameter estimator coefficients values may be be found by making 
use of M-estimators. 
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Let  be randomized, YFV-related, probabilistic, regressable, clinical, field or 
remote specified, LULC, time series dependent elements defined on a measurable space . 

Then for a measure Q set: in the residual derivaties rendered.  Measurability issues 
will be ignored here. Therafter, if a ecologist, entomologist, or experimenter lets be a class of 
measurable functions and defines an empirical 

measure may be robustly defined where δ here stands for the Dirac measure. A 
Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given 

x ∈ X and any (measurable) set A ⊆ X by where is the 
indicator function of  (Hazewinkle 2001).The Dirac measure is a probability measure, and in 
terms of probability it represents the almost sure outcome x in the sample space X (Griffith 
2003).  

We may also quantitate a single measured value  at x; however, treating the Dirac Mesure 
in a geo-spatiotemporally, geosampled, Ae. egypti, oviposition eco-epidemiological, YFV-related 
clinical, field or remote, geoclassified,  LULC,  forecasting, risk model would not render robust 
optimally mappable  residual derivatives  when attempting to quantiate a sequential Diarac Delta 
predictor as a limit of a delta sequence. The Dirac measures are the extreme points (e.g., 
regressed outliers) of a convex set of probability measures plotted against x. The output would 
then be a back-formation from the Delta-function (Schwartz distribution (please see Griffith 
2003). Treating the Dirac measure as an atomic measure is not correct when we consider the 
sequential definition of Dirac delta, as the limit of a delta sequence in an eco-epidemiological, 
YFV-related, probabilistic, risk model. The Dirac measures are the extreme points of the convex 
set of probability measures on X.The name is a back-formation from the Dirac delta function, 
considered as a Schwartz distribution, for example on the real line; measures can be taken to be a 

special kind of distribution. The identity which, in the 

form is often taken to be part of the definition of the "delta function", 
holds as a theorem of Lebesgue integration. 

The empirical measure may induce constructing a robust, geopredictive, time series-
related, sylvatic, YFV-related, eco-epidemiological, geo-spatiotemporally geosampled, risk  map 

given by: . Now suppose P in the underlying true distribution based on the 
regression exercise. Then the probabilsically residualized, forecasted, explanatorial, clinical, 
field or remote-specified, geo-spatiotemrpoally geosampled oviposition, LULC variables would 
be unknown.  However, if we utilize Empirical Process Theory in the model construction 
process, then identifying classes not for F  would hold only if: uniform large integers values are 
employed in the forecasting, risk model[e.g., ] and/or a uniform central limit 
theory is frameworked [e.g., }. In probability theory, an 
empirical process is a stochastic process that describes the proportion of objects in a system in a 
given state(Cressie 1993). In mean field theory, limit theorems (as the number of objects 
becomes large) are considered and generalise the central limit theorem for empirical measures 
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(Hazewinkle 2001). Applications of the theory of empirical processes arise in non-parametric 
statistics  (Griffith 2003).Thus,  for X1, X2, ... Xn independent and identically-distributed 
randomly geo-spatiotemporally geosampled, endemic, transmission-oriented, geopredictive 
variables in R with common cumulative distribution function F(x), the empirical distribution 

function my be defined by where IC is the indicator function of the set 
C.For every (fixed) x, Fn(x) is a sequence of random variables which converge to F(x) almost 
surely by the strong law of large numbers. That is, Fn converges to F pointwise. Glivenko and 
Cantelli strengthened this result by proving uniform convergence of Fn to F by the Glivenko–
Cantelli theoreumA class is called a Glivenko–Cantelli class (or GC class) with respect to a 
probability measure P if any of the following equivalent statements is true.1. 

almost surely as .2. in probability as .3. 
, as (convergence in mean).A class is called uniformly Glivenko–

Cantelli if the convergence occurs uniformly over all probability measures P on 

(S,A): and  (Cressie 1993). In the former 
case  F would be considered a Glinvenko-Cantelli class variable and in the latter case the 
regressors would be conmsidered  Donsker variable [i.e., ]. In 
the former case is called Glivenko-Cantelli class, and in the latter case (under the assumption) 
the class is called Donsker or P-Donsker. A Donsker class is Glivenko-Cantelli in probability 
by an application of Slutsky's theorem (see Hosmer and Lemeshew 2002).  

Let {Xn}, {Yn} be sequences of scalar/vector/matrix, empirically, probablistically 
geosampled, YFV-related, geo-spatiotemporally, geosampled, explanatorial, LULC-related,  
random habitat, capture point, seasoal hyperproductive elements.If Xn converges in distribution 
to a random element X;and Yn converges in probability to a constant c, 

then   provided that c is invertible,where 
denotes convergence in distribution.This theorem follows from the fact that if Xn converges in 

distribution to X and Yn converges in probability to a constant c, then the joint vector (Xn, Yn) 
converges in distribution to (X, c).  Next, an ecologist, entomologist or other experimenter can 
apply the continuous mapping theorem for recognizing the explanatorial, regressionable, YFV-
related,  functions g(x,y)=x+y, g(x,y)=xy, and g(x,y)=x−1y as continuous (for the last function to 
be continuous, x has to be invertible).These statements would be true for a single , by standard 
LLN, CLT arguments under regularity conditions, and the difficulty in the Empirical Processes 
comes in because joint statements are being made for all . Intuitively then, the set 

cannot be too large, and as it turns out that the geometry of plays a very important role. 

One way of measuring how big the function set for probabilistic, eco-epidemiological,  
risk modeling, time series dependent, Ae. egypti, oviposition YFV-related, clinical, field and 
remote-specified data is to use the so-called covering numbers. The covering 
number is the minimal number of balls needed to cover the set  
assuming that there is an underlying norm on . The entropy is the logarithm of the covering 
number (Cressie 1993).Two sufficient conditions may be  provided under which it can be proved 
that the set is Glivenko-Cantelli or Donsker. A class is P-Glivenko-Cantelli if it is P-
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measurable with envelope F such that and satisfies: 
The next condition is a version of the celebrated 

Dudley's theorem. If is a class of functions such that  
then is P-Donsker for every probability measure P such that . In the last integral, 

the notation means . 

  Let (x1, …, xn) be the independently explanatorial, geosampled, dataset of eco-
epidemiological, time series dependent, clinical, field or remote geosampled, geo-spatiotemporal,  
YFV-related, randomized geopredictive variables with the common cdf F(t). Then the empirical 
distribution function maye be  defined 

as where 1{A} would be  the 
indicator of event A(e.g., climatic regressor) . For a fixed t, the indicator 1{xi ≤ t} would then be  
a Bernoulli random variable with parameter p = F(t), hence would be  a binomial random 
variable with mean nF(t) and variance nF(t)(1 − F(t)) in the YFV, forecasting, eco-
epidemiological, time series dependent risk model.  The Bernoulli distribution is a discrete 
distribution having two possible outcomes labelled by and in which ("success") 
occurs with probability and ("failure") occurs with probability , where . It 

therefore has probability density function which can also be written 

The corresponding distribution function is  This 
implies that would be  an unbiased forecast, Ae. egypti , oviposition,YFV-related, LULC, 
clinical, field or remote-specified , sub-meter resolution, LULC estimator for F(t). 

By the strong law of large numbers, the probabilsitic, clincial, field or remote, YFV –
related, LULC  parameter  estimators converges to F(t) as n → ∞ almost surely, for every 
value of t: thus the estimator is consistent. This expression asserts the point-
wise convergence of the empirical distribution function to the true cdf. There is a stronger result, 
called the Glivenko–Cantelli theorem, which states that the convergence in fact happens 

uniformly over t: [3] The sup-norm in this 
expression is called the Kolmogorov–Smirnov statistic for testing the goodness-of-fit between 
the empirical distribution and the assumed true cdf F. Other norm functions may be 
reasonably employed here instead of the sup-norm for qualitatively probalistically regressively 
quantitating an empirical dataset of explanatorial, clinical, field or remote-specified, geo-
spatiotemporal, sylvatic YFV-related, sub-meter resolution, ovispoition,  LULC,  geosampled 
variables. For example, the L²-norm gives rise to the Cramér–von Mises statistic. 

The Cramér–von Mises statsitic is based on a   non-parametric test for testing a 
hypothesis  which states that independent and identically-distributed, random variables 

 (e.g., an empirical dataset of geo-spatiotemporal, LULC, explanatorial, clinical, field 
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or remote geosampled, YFV-related,predictors variables have a given continuous distribution 
function . The Cramér–von Mises test is 

where is the empirical distribution 
function constructed from the sample and is a certain non-negative function 
defined on the interval such that , and are integrable on . Tests of 
this type, based on the "square metric" , were first considered by H. Cramér [C] and R. von 
Mises [M]. N.V. Smirnov proposed putting , and showed that in that case, if the 
hypothesis  is valid and , the statistic  would then have  the limit of an 
"omega-squared" distribution, independent of the hypothetical distribution function . A 
statistical test for testing   in a geo-spatiotemporally, geosampled, probabilsitic, YFV-related ,  
forecasting, LULC, clinical, field or remote-specified, ,ecoepidemiological, endemic, 
transmission-oriented,risk model based on the statistic , would be  an (i.e., Cramér–von 
Mises–Smirnov) test, where  the explanatorial, interpolatable,  geosampled numerical value of 

 may be  found using the following representation: where 
 would be  the variational series based on the sample . According to the 

test with significance level , the hypothesis is rejected whenever , where is 
the upper -quantile of the distribution of , (i.e. .) A similar 
constructed test, based on the statistic .may also render powerful 
explanatorial, clinical, field or remote specified , time series depnndent, YFV-related predictors. 

The asymptotic distribution can be further characterized in several different ways in an 
explanatorial, endemic, transmission-oriented,geo-spatiotemporal, geosampled, eco-
epidemiological, forecasting, clinical, field or remote-specified, LULC, YFV-related, risk model. 
First, the central limit theorem states that pointwise, has asymptotically normal distribution 

with the standard rate of convergence This result is 
extended by the Donsker’s theorem, which asserts that the empirical process , viewed 
as a function indexed by , converges in distribution in the Skorokhod space to the 
mean-zero Gaussian process , where B is the standard Brownian bridge where the 
covariance structure of this Gaussian process is  

Brownian bridge is a continuous-time stochastic process B(t) whose probability 
distribution is the conditional probability distribution of a Wiener process W(t) (a mathematical 
model of Brownian motion) given the condition that B(1) = 0. A Brownian bridge is the result of 
Donsker's theorem. More precisely:  in a robust, eco-
epidemiological, time series dependent, sylvatic, YFV-related, LULC, explanatorial, clinical, 
field or remote, geosampled, probabilistic, forecast, vulnerability, ovispoition, capture point, 
regression model The expected value of the bridge would then be  zero, with variance t(1 − t), 
implying that the most uncertainty probabilities is in the middle of the bridge, with zero 
uncertainty at the nodes. The covariance of B(s) and B(t)would then be  s(1 − t) if s < t  The 
increments in a Brownian bridge are not independent (Griffith 2003).If W(t) is a standard Wiener 



International Journal of Advanced Mathematics                                                                                   
Vol. 1, No. 1, April 2017, pp. 1-448                                                                                                   
Available Online at http://acascipub.com/Journals.php 
  
 

412 
Copyright © acascipub.com, all rights reserved.  

process (i.e., for t ≥ 0, W(t) would then be normally distributed with expected value 0 and 
variance t, and the increments would be  stationary and independent). As such, 

 would be  a Brownian bridge for t ∈ [0, 1] in the model 
derivatives.Conversely, if B(t) is a Brownian bridge and Z is a standard normal random  clinical, 
field or remote geosampled explanatorial, sylvatic YFV-related probabilsitically regressable 
variable, then the process  would be  a Wiener process for t ∈ [0, 1]. 

The Wiener process Wt is characterised by three properties: 1)W0 = 0, 2) The function t 
→ Wt is almost surely everywhere continuous and 3) Wt has independent increments with Wt−Ws 
~ N(0, t−s) (for 0 ≤ s < t), where N(μ, σ2)   would  denote  a empirically regressed geo-
spatiotemporal, clincial, field or remote geosampled,  YFV-related normal distribution with 
expected value μ and variance σ2.The last condition means that if 0 ≤ s1 < t1 ≤ s2 < t2 then 
Wt1−Ws1 and Wt2−Ws2 are independent geosampled, LULC, sub-meter resolution, Ae. egypti , 
oviposition, -specified, probabilistic, random variables, and the similar condition holds for n 
increments.An alternative characterisation of the Wiener process is the so-called Lévy 
characterisation that says that the Wiener process is an almost surely continuous martingale with 
W0 = 0 and quadratic variation [Wt, Wt] = t (which means that Wt

2−t is also a martingale) (Cressie 
1993).A third characterisation is that the Wiener process has a spectral representation as a sine 
series whose coefficients are independent N(0, 1) random variables. This representation can be 
obtained using the Karhunen–Loève theorem. 

An arbovirologist, entomologist or YF experimenter may  consider a square, integrable, 
zero-mean, randomized, explanatorial, empirically regressable, probabilistic  process Xt defined 
over a probability space (Ω, F, P) in a geo-spectrotemrpoally geosampled, YFV-related, 
forecasting eco-epidemiological, LULC, probablistic, Ae. egypti , oviposition, risk model and 
indexed over a closed interval [a, b], with covariance function KX(s, t).  By so doing, the geo-
spatiotemporal or geo-spectrotemporal, ovispoition, sub-meter resolution, covariate paramter 
estimators would be orgainized As and 

 Therefater KX  and a linear operator TKX  may be defined in 

the following way: Since TKX is a linear operator, it makes sense to 
talk about its eigenvalues λk and eigenfunctions ek, which are found solving the homogeneous 

Fredholm integral equation of the second kind  Fredholm 
Equation is an Integral Equation in which the term containing the Kernel Function has constants 
as integration limits (Hazewinkle 2001). 

A closely related form to the Fredholm Equation is the Volterra integral equation which 
has variable integral limits. A linear Volterra equation of the first kind for probabilisitically 
regressing an operationizable , geo-spatiotemporally, geosampled probablistic, YFV-related, eco-
epidemiological, clinical, field or remote dataset of time series covariate,paramter estimators. In 
operator theory, and in Fredholm theory, the corresponding equations are called the Volterra 
operator(Hosmer  and Lemeshew 2002), eco-epidemiological, dataset of   explanatorial, clinical, 

field or remote-specified, LULC-related variables  could be where ƒ is a 
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given function and x is an unknown function to be solved for. A linear Volterra equation of the 
second kind  for the empirical geosampled datset then could then be written 

A linear Volterra integral equation is a convolution equation 

if (Cressie 1993).An inhomogeneous Fredholm equation of the first 

kind then could  written as: and the problem is, given the continuous kernel 
function , and the function , to find the function  (Hazewinkle 2001). If the 
kernel is a function only of the difference of its arguments, namely  in the 
endemic, transmission-oriented, probilistically regressable, explanatorial, clinical, field or remote 
geosampled, forecast, vulnerability, Ae. egypti , oviposition sub-mter resolution LULC model  
and the limits of integration are , then the right hand side of the equation can be rewritten as 
a convolution of the functions K and f and therefore the solution mey be 

givenby where and are the direct and 
inverse Fourier transforms respectively. 

Let Xt be a zero-mean square integrable explanatorial, time series dependent, stochastic 
process defined over a probability space (Ω, F, P) and indexed over a closed and bounded 
interval [a, b], with continuous covariance function KX(s, t) in a geo-spatiotemporally, 
geosampled, explanatorial, clinical, field or remote, geo-spectrotemporal or geo-spatiotemrporal, 
ecoe-pidemiological, geosampled, sylvatic YFV-related eco-epidemiological, endemic, 
transmission-oriented, forecasting, regression-related, African riceland, risk model. By so doing, 
KX(s,t) would be a Mercer kernel. To explain Mercer's theorem, for empirically regressable, risk 
modeling geo-spatiotemporal, geosampled,  an ecologist, entomologist or experimenter must first 
consider an important special. The covariance function KX satisfies the definition of a Mercer 
kernel. By Mercer's theorem, there consequently exists a set {λk, ek(t)} of eigenvalues and 
eigenfunctions of TKX forming an orthonormal basis of L2([a,b]), and KX can be expressed 

as .The process Xt can be expanded in terms of the eigenfunctions ek as: 

where the covariate paramter estimator coefficients ( e.g., random variables) Zk are 

given by the projection of Xt on the respective eigenfunctions .A kernel, in this 
context, would be  a symmetric continuous function that maps where 
symmetric means that K(x, s) = K(s, x).K is said to be non-negative definite (or positive 

semidefinite) if and only if for all finite  explanatorial, georeferenced, 
clincial, field or remote –related sequences of  geosampled sub-mter resolution LULC sample 
points x1, ..., xn of [a, b] and all choices of  covariate  parameter estimators c1, ..., cn (cf. positive 
definite kernel). 

 More generally, a Wiener process W(t) for t ∈ [0, T] can be decomposed 

into Another representation of the Brownian bridge based on the 
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Brownian motion is, for t ∈ [0, 1] Conversely, for 

t ∈ [0, ∞] The Brownian bridge may also be represented as a Fourier 

series with stochastic coefficients, as where are independent 
identically distributed standard normal random variables (see the Karhunen–Loève theorem). 

In the theory of stochastic processes, the Karhunen–Loève theorem is a representation of 
a stochastic process as an infinite linear combination of orthogonal functions, analogous to a 
Fourier series representation of a function on a bounded interval. Stochastic processes given by 
infinite series of this form may be condered for seasonal qualitatively regressively quantitating 
probabilistically of an operationizable datset of clinical, field or remote-specified, geo-
spatiotemporally geosampled, YFV-related parameterizable,  Ae. egypti , oviposition covariate, 
estimator datasets. There exist many such expansions of a stochastic process that may be viable 
for regression-related, geopredictive, probabilistic, eco-epidemiological, risk, modeling if the 
process is indexed over [a, b]. As such, any geopredictive, eco-epidemiological, explanatorial, 
probabilistic, YFV-related, risk model may render an orthonormal basis of L2([a, b]) when 
regressively qualiatively quantaitaing an expansion thereof in that form. The importance of the 
Karhunen–Loève theorem is that it would yield  an optimal residually forecasted derivative since 
during the probabilistic tabulation  exercise employing the theorem would  yield the optimal 
unbiased covariate paramter estimator dataset since the output would  minimize the total mean 
squared error. 

Moreover, if the probabilsitically regression-related, sylvatic YFV-related process is 
Gaussian, then the explanatorial, clinical, field or remote geo-spatiotemporally geosampled 
explanatorial, random variables Zk would be Gaussian and stochastically independent. This result 
would generalize the Karhunen–Loève transform. By so doin, an  important example of a 
centered real stochastic process on [0, 1] in a YFV-related eco-epidemiological, time series 
dependent model output would be   the Wiener process.The  continuous-time stochastic process 

for with and such that the increment is Gaussian with mean 0 and 
variance for any , and increments for nonoverlapping time intervals are independent. 
Brownian motion (i.e., random walk with random step sizes) is the most common example of a 
Wiener process.  The Karhunen–Loève theorem can be used to provide a canonical orthogonal 
representation of the forecasted, geo-spatially interpolated, explanatorial, clinical, field or remote 
geosampled variables. By so doing, the expansion would consist of sinusoidal functions. In 
contrast to a Fourier series where the coefficients are fixed numbers and the expansion basis that 
consists of sinusoidal functions (that is, sine and cosine YFV-related functions), the coefficients 
in the Karhunen–Loève theorem are random variables and the expansion basis depends on the 
process. In fact, the orthogonal basis functions used in this representation are determined by the 
covariance function of the process. One can think that the Karhunen–Loève transform adapts to 
the process in order to produce the best possible basis for its expansion. 

In the case of a centered stochastic process {Xt}t ∈ [a, b] (centered means E[Xt] = 0 for all t 
∈ [a, b]) satisfying a technical continuity condition, Xt admits a 
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decomposition where Zk are pairwise, uncorrelated, random variables and the 
functions ek are continuous real-valued functions on [a, b] that are pairwise orthogonal in L2([a, 
b]). It is therefore sometimes said that the expansion is bi-orthogonal since the random 
coefficients Zk are orthogonal in the probability space while the deterministic functions ek are 
orthogonal in the time domain. The general case of a process Xt that is not centered can be 
brought back to the case of a centered process by considering Xt − E[Xt] which is a centered 
process.The above expansion into uncorrelated probabilistic, geo-spetrotemporally, geosampled, 
YFV-related, randomized  SAS/GIS-geoclassified,  variables may be also known as the 
Karhunen–Loève expansion or Karhunen–Loève decomposition. The empirical version (i.e., 
with the coefficients computed from a sample) is known as the Karhunen–Loève transform 
(KLT), principal component analysis, proper orthogonal decomposition (POD)(Cressie 1993), 
Empirical orthogonal functions (a term used in meteorology and geophysics), or the Hotelling 
transform. 

Hotelling's T-squared distribution is a generalization of the Student's t-distribution in 
multivariate setting, and its use in statistical hypothesis testing and confidence regions. If 

and , with the samples independently drawn from 
two independent multivariate normal distributions with the same mean and covariance, and we 

define as the sample means,and as 
the unbiased pooled covariance matrix estimate, then Hotelling's two-sample T-squared statistic 

is and it can be related to the F-distribution 

by  

By employing the Hotellings T-squared distribution a probabilistic,  canonical correlation 
analyses can be performed in SAS for an empirical,explanatorial dataset of clinical, field or 
remote geo- spatiotemporal or geo-spectrotemrporal, geosampled sylvatic, YF-related LULC 
sub-meter resolution, oviposition analyses. If the vector pd1 is Gaussian multivariate-distributed 
with zero mean and unit covariance matrix N(p01,pIp) and mMp is a p x p matrix with a Wishart 
distribution with unit scale matrix and m degrees of freedom W(pIp,m) then m(1d' pM−1

pd1) has a 
Hotelling T2 distribution with dimensionality parameter p and m degrees of freedom.  In 
statistics, the Wishart distribution is a generalization to multiple dimensions of the chi-squared 
distribution, or, in the case of non-integer degrees of freedom, of the gamma distribution. 

If the notation is used to denote a geo-spatiotemrpoally geosampled , explanatorial, 
clincial, field or remote, YFV randomized LULC, variable having Hotelling's T-squared 
distribution with parameters p and m then, if a random variable X has Hotelling's T-squared 

distribution, then where is the F-distribution with parameters 
p and m−p+1.Hotelling's T-squared statistic is a generalization of Student's t statistic that is used 
in multivariate hypothesis testing, and is defined as follows. Let denote a p-variate 
normal distribution with location and covariance . Let be n independent 
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random variables, which may be represented as column vectors of real numbers. 

Define to be the sample mean. It can be shown that where is 
the chi-squared distribution with p degrees of freedom. To show this use the fact that 

and then derive the characteristic function of the random variable 
.This may be probabilistically, geo-spatiotemporally  employed as 

below,

However, is often unknown and we wish to do hypothesis testing on 
the location . 

An eco-epidemiological, probabilsitic, explanatorial, empirical datatset of clinical, field 
or remote-geosampled, YFV-related, predictive, sylvatic Ae. aegypti, risk model may be defined 

in SAS as to be the sample covariance. By so doing, it can be shown the 
W is positive-definite and as such (n-1) W would also be positive defintIt can be shown that is 
positive-definite and follows a p-variate Wishart distribution with n−1 degrees of 
freedom. The Wishart distribution is a generalization of the univariate chi-square distribution to 
two or more variables. It is a distribution for symmetric positive semidefinite matrices, typically 
covariance matrices, the diagonal elements of which are each chi-square random variables 
(Crtessie 1993). In the same way as the chi-square distribution can be constructed by summing 
the squares of independent, identically distributed, zero-mean univariate normal random 
variables, a time series dependent, endmember,   

YFV-related,LULC, Wishart distribution can be constructed by summing the inner 
products of independent, identically distributed, zero-mean multivariate normal random vectors. 
The Wishart distribution is often used as a model for the distribution of the sample covariance 
matrix for multivariate normal random data, after scaling by the sample size (Griffith 2003).. 

 Hotelling's T-squared statistic may be then probabilistically empirically defined to 

be and, also from above, i.e. where  
would be  the F-distribution with the geosampled explanatorial, parameter estimators p and n−p. 
In order to calculate a p value, multiply the t2 statistic by the above constant and use the F-
distribution.The non-null distribution of this statistic is the noncentral F-distribution (the ratio of 
a non-central Chi-squared random variable and an independent central Chi-squared random 

variable) with where is the difference 
vector between the population means. 

The set of all càdlàg functions from E to M is often denoted by D(E; M) (or simply D) 
and is called Skorokhod space (Cressie 1993).Skorokhod space can be assigned a topology that, 
intuitively allows a ecologist, entomologist or experimenter  to "wiggle space and time a bit"  in 
an explanatorial, geo-spatiotemporal, geosampled, eco-epidemiological, LULC, clinical, field or 
remote-specified,  endemic, transmission-oriented,YFV-related, forecasting, risk model. For 
simplicity, the model paramter estimator may take E = [0, T] and M = Rn However, an analogue 
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of the modulus of continuity, ϖ′ƒ(δ) must be defined in the forecasting, risk model . For any F ⊆ 

E, set and, for δ > 0, defining the càdlàg modulus to 

be where the infimum runs over all partitions Π = {0 = t0 < t1 < 
… < tk = T}, k ∈ N, with mini (ti − ti−1) > δ may render optimal, estimators (Cressie 1993). This 
definition would  make sense for non-càdlàg ƒ in a geospatiotemporal, geosampled, YFV-
related, eco-epidemiological, geopredictive, risk model (just as the usual modulus of continuity 
makes sense for discontinuous functions) where it can be shown that ƒ is càdlàg if and only if 
ϖ′ƒ(δ) → 0 as δ → 0.Now let Λ denote the set of all strictly increasing, continuous bijections 
from E to itself (these are "wiggles in time") in the model. Then  let denote the 
uniform norm on functions on E. Therefater by defining the Skorokhod metric σ on D 

by where I: E → E is the identity function, the 
"wiggle" intuition, ||λ − I|| would measure the size of the "wiggle in time", and ||ƒ − g○λ|| would 
measure the size of the "wiggle in space".It thus may be shown that the Skorokhod metric is 
indeed a metric in a robust, interpolatable, endemic, transmission-oriented,  explanatorial, time 
series dependent, LULC, sylvatic ,YFV-related probabilsitically regression-oriented, forecasting, 
eco-epidemiological, risk model. The topology Σ generated by σ in the YFV model would  be  
the Skorokhod topology on D. 

If the space C of a continuous dataset of empirically regressable, YFV-related, 
geosampled, probabilistic,  endmeber,LULC, time series dependent functions on E is a subspace 
of D , then the Skorokhod topology may be relativized to C  in the model probabilistic 
derivatives as it would coincide with the uniform topology . It may be shown employing 
convergence of  regression-related, probability measures  that, although D is not a complete 
space with respect to the Skorokhod metric σ, there is a topologically equivalent metric σ0 with 
respect to which D is complete in the geo-spatiotemporal, geosampled, endemic, transmission-
oriented, YFV-related geopredictive, eco-epidemiological, probabilistic, LULC, risk model  (see 
Billingsley 199), With respect to either σ or σ0, D is a separable space (Hazewinkle 2001). Thus, 
Skorokhod space is a Polish space. In the mathematical discipline of general topology, a Polish 
space is a separable completely metrizable topological space; that is, a space homeomorphic to a 
complete metric space that has a countable dense subset (Cressie 1993). Under the Skorokhod 
topology and pointwise addition of functions, D would not be a topological group in a 
explanatorial, clincial, field or remote-specified, LULC, time series dependent, risk model as can 
be seen by the following example:Let be the unit interval and take 

to be a sequence of characteristic functions. Despite the fact that 
in the Skorokhod topology in the YFV-related model, the sequence  

would not converge to 0. 

By an application of the Arzelà–Ascoli theorem, an ecologist, entomologist, or 
experimenter  can show that a sequence (μn)n=1,2,… of probability measures on Skorokhod space 
D in a time series, forecasting, explanatorial, clinical, field or remote, YFV, LULC, eco-
epidemiological, risk model is tight if and only if both the following conditions are 

met: and
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary 
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and sufficient conditions to decide whether every sequence of a given family of real-valued 
continuous functions defined on a closed and bounded interval has a uniformly convergent 
subsequence (Hazewinkle 2001). The main condition in the risk model eco-epidemiological, 
probabilistic, residualized, regressed derivatives would then be  the equicontinuity of the family 
of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano 
existence theorem in the theory of ordinary differential equations, Montel's theorem in complex 
analysis, and the Peter–Weyl theorem in harmonic analysis. Based on the  Peano existence 
theorem if an ecologist, entomologist or experimenter lets D be an open subset of R × R 
with a continuous function and a continuous, explicit first-order 
differential equation defined on D, then every initial value problem for f with 

has a local solution where is a neighbourhood of in , such that 
for all . Suppose that is a family of meromorphic functions on an 

open set  in a  then  is is such that is not normal at , and is a neighborhood 
of , and would be  dense in the complex plane in a  robust, empirically regressable, geo-
spatiotempoal, geosampled, explanatorial, clinical, field or remote geosampled, YFV-related 
probabilsitic, eco-epidemiological, LULC, risk model based on the Montel Theoreum. In 
mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, 
applying to topological groups that are compact, but are not necessarily abelian (Cressie 1993). 

Alternatively, a sequence { fn }n∈N of continuous, geosampled, explanatorial, clinical, 
field or remote specified  functions on an interval I = [a, b]  in an eco-epidemiological, YFV-
related, probabilsitic, explanatorial, clinical, field or remote-specified,  LULC, risk model may 
be  uniformly bounded if there is a number M such that for every function  fn  
belonging to the sequence, and every x ∈ [a, b]. By so doing, the sequence would be 
equicontinuous if, for every ε > 0, there exists δ > 0 such that whenever 
|x − y| < δ  for all functions  fn  in the algrothmic sequence. Succinctly, a sequence in an eco-
epidemiological, YFDV-related, probabilistic, explanatorial, clinical, field or remote-specified, 
geospecified, LULC,predictive, Ae .aegypti, ovisposition, eco-epidemiological,  risk model is 
equicontinuous if and only if all of its elements admit the same modulus of continuity. In 
simplest terms, the theorem can be stated as follows:Consider a sequence of real-valued 
continuous functions { fn }n∈N in a eco-epidemiological, explanatorial,geo-spatiotemporal,YFV-
related, forecasting, risk model defined on a closed and bounded interval [a, b] of the real line. If 
this sequence is uniformly bounded and equicontinuous, then there exists a subsequence (fnk) that 
converges uniformly.The converse is also true, in the sense that if every subsequence of { fn } 
itself has a uniform convergent subsequence, then { fn } is uniformly bounded and 
equicontinuous. 

Let be the space of real-valued functions on that are right-continuous 
and have left-hand limits, i.e. 

I
n probabilistic literature, such a function is also said to be a cadlag function, "cadlag" being an 
acronym for the French "continu à droite, limites à gauche". Introducing a norm on by setting 

, then  becomes a Banach space, but it is easy to see that it is non-
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separable (cf. also Separable space). The Banach space is a complete normed vector space. The 
function spaces introduced by D. Hilbert, M. Fréchet and F. Riesz between 1904 and 1918 
served as the starting point for spaces of strong and weak convergence, compactness, linear 
functional, linear operator etc., A Banach space is a complete vector space with a norm 

(Hazewinkle 2001). Two norms and are called equivalent if they give the same 
topology, which is equivalent to the existence of constants and such that and 

hold for all (Cressie 1993) In the finite-dimensional case, all norms are equivalent. 
An infinite-dimensional space in an explanatorial, interpolatable, geo-spatiotemporally, 
geosampled, YFV-related , clinical, field or remote, ArcGIS geoclassified LULC , forecasting, 
eco-epidemiological, risk model can have many different norms. A basic example is -
dimensional Euclidean space with the Euclidean norm. Usually, the notion of Banach space is 
only used in the infinite dimensional setting, typically as a vector space of functions(Griffith 
2003). For example, the set of continuous functions on closed interval of the real line with the 

norm of a function given by is a Banach space in a, explanatorial, YFV-related 
LULC risk model , where denotes the supremum. On the other hand, the set of continuous 

functions on the unit interval with the norm of a function given by is not a 
Banach space in the  geopredictive, risk model  because it is not complete. For instance, the 

Cauchy sequence of functions would  not converge to a 
continuous function in the model. A sequence , , ... such that the metric satisfies 

Cauchy sequences in the rationals do not necessarily converge, but they do 
converge in the reals(empirical, operationizable datset of  explanatorial, clinical, field or remote 
,LULC, geo-spatiotemporally geosampled, covariate paramter estimator coefficients).These 
discrete interger values can be defined using either Dedekind cuts or Cauchy sequences. 
Dedekind cut is a partition of the rational numbers into two non-empty sets A and B, such that all 
elements of A are less than all elements of B, and A contains no greatest element (Hazewinkle 
2001) Hilbert spaces with their norm given by the inner product are examples of Banach spaces 
in the explanatorial, sylvatic YFV-reltaed forecasting LULC, African, expanding, riceland,  
ovispoition, vulnerability model . While a Hilbert space is always a Banach space, the converse 
need not hold in a robust, YFV-related probabilsic risk model. Therefore, it is possible for a 
Banach space not to have a norm given by an inner product. For instance, the supremum norm 
cannot be given by an inner product in the model.  

Examples of inner product spaces include: 1. The real numbers , where the inner 
product is given by 2. The Euclidean space , where the inner product is given by 
the dot product       Inner product is a 
generalization of the dot product (Cressie 1993). In a vector space, it is a way to multiply vectors 
together, with the result of this multiplication being a scalar. The vector space of real functions 
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whose domain is an closed interval with inner product The dot product can 
be defined for two vectors and by where is the angle between the vectors 
and is the norm. It follows immediately that if is perpendicular to (Hazewinkle 
2001). The dot product therefore would render the geometric interpretation in a explanatorial, 
geo-spatiotemporally, geosampled YFV-related, forecasting, risk model as the length of the 
projection of onto the unit vector when the two vectors are placed so that their tails coincide. 
By writing = , =  into the regression equation for 
qualitatively quantiating an empirical geo-spatiotemporally, geosampled, dataset of 
georeferencable, optimizable, YFV-related, explanatorial, clinical, field or remote-specified, 
LULC covariate, parameter estimators, it follows that the model residually forecasts would 
yield = =  which then was equalivent to 

= So, in general, = =  yi. This 
may be written succinctly employing Eistein summations in Wolfram Language. 

In Jacob et al. 2012 a Possionian  with a non-homogenopus gamma distributed mean was 
constructed using Wolfram language for regressively qualitatively quantitating district-level    ( 
see Jacob et al. 2012). Specific , district –level prevalence measures , however  were forecasted 
using  probablistic autorgressive matrix specifications. This model was written very succinctly 
using Einstein summation notation as The dot product was implemented in the 
Wolfram Language as Dot[a, b], or simply by using a period, a . b. The dot product is 
commutative and distributive The associative property was 
meaningless for the dot product because  in the malarial model as is not defined since 

is a scalar and therefore cannot itself be dotted. However, it does satisfy the property 
for a scalar. The derivative of a dot product of vectors is 

 Case as count were used as a response explanatorial, geo-
spatiotemporal geopredictive variables (e.g., meterological data, distribution of health centers, 
etc)  for remotely targeting districts that had higher prevalence rates from 2006 to 2010 in 
Uganda. Results from both a Poisson and a negative binomial (i.e., a Poisson random variable 
with a gamma distrusted mean) revealed that the covariates rendered from the model were 
significant, but furnished virtually no predictive power.  

Importantly, the dot product is invariant under rotations = = = 
= = =  where Einstein summation has been used. The dot product is 

also called the scalar product(Cressie 1993). In the scalar product context, the  probabilistically 
regressable values are  usually written . By so doing, the dot product in a explanatorial, geo-
spatiotemrpoal, geosampled, , YFV-related LUCL,  forecasting, eco-epidemiological, risk model 
may be  defined for tensors and by  Further, for four-vectors and , a YFV-
related, forecasting, eco-epidemioloigical, risk model may be  defined by 

= = = where is the usual three-dimensional dot 
product. More precisely, for a real vector space, an product  would satify the following four 
properties. Let , , and be vectors and be a scalar, then: 

, , and equal if and only if  
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(Hazewinkle 2001). The fourth condition in the list above is known as the positive-definite 
condition. Related thereto, note that some authors define an inner product to be a function 

satisfying only the first three of the above conditions with the added (weaker) condition of 
being (weakly) non-degenerate (i.e., if for all , then ) (See Griffith 2003). In such 
literature, functions satisyfing all the above mentioned conditions in a explanatorial, geo-
spatiotemporal, geosampled, sylvatic, oviposition, sub-meter resolution, YFV-related, 
forecasting, eco-epidemiological, vulnerability , risk model would rely on positive –definite 
inner products (see Ratcliffe 2006). Unfortunately inner products in a YFV-risk model may be 
indefinite. These difference may be realized in a regression-based weighted matrix in an ArcGIS 
cyberenvironment. By so doing, the magnitude of psotive definite “ norms” would be 
qualitatively quantiated which would then subsequently yield absolute  covariate parameter 
estimators associated with time series prevelance, for example.  

In some instance, the Lorentizan inner products may be  an indefinite inner product in a 
explanatorial, clinical, field  or remote geo-spatiotemporally, geosampled, hyperendemic, YFV-
related, forecasting, risk model.    The four-dimensional Lorentzian inner product is used as a 
tool in special relativity, namely as a measurement which is independent of reference frame and 
which replaces the typical Euclidean notion of distance. The standard Lorentzian inner product 
on is given by i.e., for vectors and , 

endowed with the metric tensor induced by the Lorentzian 
inner product which is known as Minkowski space and is denoted  (Cressie 1993).  The 
Lorentzian inner product on is nothing more than a specific case of the more general 
Lorentzian inner product on -dimensional Lorentzian space with metric signature  
(Griffith 2003). In this more general environment, the inner product of two vectors 

and  may take on the form 
 when qualitatively quantitating an eco-epidemiological 

dataset of explanatorial, geo-spatiotemporally, geosampled, sylvatic YFV-related, time series 
dependnet, geopredictive, georeferencable, interpolatable covariate, parameterizable, regression, 
estimators. The Lorentzian inner product of two such vectors is sometimes denoted to avoid 
the possible confusion of the angled brackets with the standard Euclidean inner product 
(Ratcliffe 2006). Analogous presentations can also be made if the equivalent metric signature 

(i.e., for Minkowski space)  is employed when qualitatively regressively quantiating  
an empirical operationizable, datset of geo-spatiotemporally geosampled , clinical, field or 
remote –specified covariate, paramter estimator coefficient values.  

 For a four-vector in Minkowski space, a explanatorial, dataset of geo-
spatiotemporally, geosampled YFV-related, geoclassified,LULC, geopredictive variables , , 
and can be thought of as space variables with as the time variable. A four-dimensional 
pseudo-Euclidean space of signature (1,3)  , suggested by H. Minkowski (1908) as a geometric 
model of space-time in the special theory of relativity (see Cressie 1993 ). Corresponding to each 
event there is a point of Minkowski space, three coordinates of which represent its coordinates in 
the three-dimensional space; the fourth coordinate is ct  , where c  is the velocity of light and t  is 
the time of the event. The space-time relationship between two events is characterized by the so-
called square interval: s 2 =c 2 (Δt) 2 −(Δx) 2 −(Δy) 2 −(Δz) 2 .  
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A vector space together with an inner product on it is called an inner product space. This 
definition also applies to an abstract vector space over any field in an explanatorial, geo-
spatiotemporally, geosampled, YFV-related, geopredictive, eco-epidemiologically, forecasting, 
risk model. When given a complex vector space in a forecasting, risk model, the third property 
above is usually replaced by where refers to complex conjugation. This inner 
product property in a YFV risk model  would be a Hermitian inner product and a complex vector 
space with a Hermitian inner product (i.e., a Hermitian inner product space). Every inner product 
space is a metric space(Cressie 1993). The metric would be  given by If 
this process results in a complete metric space in the YFV risk model it would be a Hilbert space. 
What's more, every inner product in the model  naturally would induce a norm of the form 

whereby it follows that every inner product space  in the model probabilsically 
forecasted  explanatorial, LULC-related clinical, field or remote geo-spatiotemporally, 
geosampled derivatives would also naturally be a normed space. Inner products in a  
explanatorial, YFV-related , geopredictive, eco-epidemiological, forecasting, risk model  which 
fail to be positive-definite yield "metrics" - and hence, "norms"   that may  thus actually  render 
something different due to the possibility of failing their respective positivity conditions. For 
example, -dimensional Lorentzian Space (i.e., the inner product space consisting of with the 
Lorentzian inner product) comes equipped with a metric tensor of the form 

and a squared norm of the form for all 
vectors . In particular, one can have negative infinitesimal distances and 
squared norms, as well as nonzero vectors whose vector norm is always zero. As such, the metric 
(respectively, the norm) fails to actually be a metric (respectively, a norm) in the YFV-related 
risk model, though they usually are still called such when no confusion may arise.  

Several generalizations of the Skorokhod space are worth mentioning. Instead of real-
valued probabilsitically regresssable, explanatorial, operationizable, YFV-related, risk model 
functions on it is possible to consider functions defined on and taking values in a 
metric space . The space of cadlag functions obtained in this way is denoted by 

and if is a Polish space, then , with the appropriate topology, is also 
a Polish space, where these spaces are treated systematically. mathematical discipline of general 
topology, a Polish space is a separable completely metrizable topological space; that is, a space 
homeomorphic to a complete metric space that has a countable dense subset (Cressie 1993). 
Another generalization is obtained when the one-dimensional parameter (often regarded as 
"time") is replaced by multi-variate variable . Let denote unit cube in Rk. It 
may be possible to introduce the space of cadlag functions on and a Skorokhod 
topology on it in a optimizable, explanatorily interpolatable, clinical, field or remote geo-
spatiotemporally, geosampled, sylvatic, YFV-related, probabilistic,ovispoition, eco-
epidemiological, risk model for rendering robust stochastically/detrministically interpolatable, 
covariate, parameter estimators.  

The uniform rate of convergence in Donsker’s theorem can be quantified by the result 

known as the Hungarian embedding:  in a -
spatiotemporally, geosampled, sylvatic, YFV-related, probabilistic, risk model. In theory of 
probability, the Komlós–Major–Tusnády approximation (also known as the KMT 
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approximation, the KMT embedding, or the Hungarian embedding) is an approximation of the 
empirical process by a Gaussian process constructed on the same probability space (Cressie 
1993). A probability space in a geosampled,  geo-spatiotemproal, entomological-related, 
explanatorial, endemic, transmission-oriented,  forecasting, probabilistic, risk model  consists of 
three parts: 1) A sample space, Ω, which is the set of all possible outcomes.2)A set of events , 
where each event is a set containing zero or more outcomes (predicted geolocations of prolific 
immature habitats);and, 3)The assignment of probabilities to the events; that is, a function P 
from events to probabilities (e.g., tillering LULC agroecosystem to highly productive immature 
Ae egypti habitats) 

In mathematics, fuzzy measure theory considers generalized measures in which the 
additive property is replaced by the weaker property of monotonicity. Let  be a universe of 
discourse, be a class of subsets of , and . A function 

where1)  and 2) is called a fuzzy measure. 
A fuzzy measure is called normalized or regular if . The central concept of fuzzy measure 
theory is the fuzzy measure which was introduced by Choquet in 1953 and independently 
defined by Sugeno in 1974 in the context of fuzzy integrals. In mathematics, the Sugeno integral, 
named after M. Sugeno, is a type of integral with respect to a fuzzy measure.Let be a 
measurable space and let be an -measurable function in an explanatorial, clinical, 
field or remote- geosclassifed, LULC-oriented, endemic, transmission-related, geo-
spatiotemporally, geosampled,  YFV, probabilistic, risk model .The Sugeno integral over the 
crisp may be then set of the function with respect to the fuzzy measure  which may be  

defined by: where 
.The Sugeno integral over the fuzzy set of the function with respect to the 

fuzzy measure  may then be  defined by: where is the 
membership function of the fuzzy set .There exists a number of different classes of fuzzy 
measures including plausibility/belief measures; possibility/necessity measures; and probability 
measures which are a subset of classical measures(Hazewinkle 2001). 

Alternatively, the rate of convergence of can also be quantified in terms of the 
asymptotic behavior of the sup-norm of this expression in an explanatorial, clinical, field or 
remote geosampled, probabilistically, emprically regressable, geo-spatiotemporally, geosampled,  
YFV-related, probabilistic, risk model. Number of results exist in this venue, for example the 
Dvoretzky–Kiefer–Wolfowitz inequality can provide bound on the tail probabilities of 

: in an empirical dataset of  eco-epidemiological, 
time series dependent, forecastable, explanatorial, interpolatable, clinical, field or remote 
geosampled, YFV-related variables. In the theory of probability and statistics, the Dvoretzky–
Kiefer–Wolfowitz inequality predicts how close an empirically determined distribution function 
will be to the distribution function from which the empirical samples are drawn. It is named after 
Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz, who in 1956 proved[ the inequality with an 
unspecified multiplicative constant C in front of the exponent on the right-hand side. In 1990, 
Pascal Massart proved the inequality with the sharp constant C = 1, confirming a conjecture due 
to Birnbaum and McCarty. Given a natural number n, let X1, X2, …, Xn be real-valued 
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independent and identically distributed , probabilistically regressable, YFV-related, empirical 
dataset of LULC explanators with distribution function F(·). Let Fn denote the associated 

empirical distribution function defined by in the risk model 
probabistic, risk-related output.The Dvoretzky–Kiefer–Wolfowitz inequality would then bound 
the probability that the random function since Fn would differ from F by more than a given 
constant ε > 0 anywhere in the forecasted derivative dataset. More precisely, there is the one-

sidedestimate  where every Ɛ >  also implies a two-sided 

probabilistic estimate for every Ɛ > 0. The explanatorial, geo-
spatiotemporally or geo-spatiotemporally geosampled, sylvatic YFV-related, probabilistic, 
geopredictive, eco-epidemiological, risk model would be based on the Glivenko–Cantelli 
theorem by quantifying the rate of convergence as n tends to infinity in the risk model 
derivatives. By so doing, the model resdiual probabilty estimates may be also regressively 
tabulates by employing the tail probabilities of the Kolmogorov–Smirnov statistic.  

The Kolmogorov has shown that if the cdf F is continuous, then the expression 
converges in distribution to , which has the Kolmogorov distribution that does 

not depend on the form of F.Another result, which follows from the law of the iterated 

logarithm, is that and  These inequalities 
follow from the case where F corresponds to be the uniform distribution on [0,1] in view of the 
fact that Fn may have the same explanatorial,  probabilistic, eco-epidemiological, time series 
dependent, forecastable, explanatorily interpolatable, LULC-related, clinical, field or remote 
geosampled, YFV-related regressed distributions as Gn(F) where Gn is the empirical distribution 
of U1, U2, …, Un, where there are independent and Uniform(0,1)s, and where 

with equality can occur in the model 
outputs but if and only if F is continuous. 

Bootstrapping is the practice of estimating properties of a probabilistic explanatorial, geo-
spatiotemroral, predictor (such as its variance) by measuring those properties when sampling 
from an approximating distribution. One standard choice for approximating an explanatorial 
explanatorial, clincial, field or remotegeospatiotemrpoally geosampled, YFV-related, 
stochastically/deterministically interpolated LULC distribution is the empirical distribution 
function for. If a set of probabilistic, sylvatic,YFV-related observations is detremined to be to be 
from an independent and identically distributed population, a number of resamples with 
replacement of the observed dataset (and of equal size to the observed dataset) may be validated 
in SAS .These data may also be used for constructing hypothesis tests or, as an alternative to 
statistical inference based on the assumption of a parametric model especially if any model 
assumptions are in doubt, or where parametric inference is impossible or requires complicated 
formulas for the calculation of standard errors. 

Thereafter, by derivation of the moment conditions and optimal weighting matrix without 
distributional assumptions for the GM estimation procedure of the selected  probabilsic 
geosampled, autoregressive LULC-related, explanatorial, clinical, field or remote geoclassifed, 
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YFV, sub-meter resolution,  covariate parameter estimators in the  Gulu eco-epidemiological 
study site, we regressively quantitated the disturbance process while defining a generalized two-
stage least square estimator for the seasonal geosampled, YFV-related, regression parameters. We 
proved consistency of a GM estimator and provided Monte Carlo evidence for geospatially 
adjusting the empirically probabilistically regressed dataset of  the explanatorial, clinical, field or 
remote geoclassified, georeferenced explanatorial, geopredictive variables of seasonal-sampled 
YFV-related covariate, parameter estimators in the  agro-village complex epidemiological study 
site . We noted that the asymptotic distribution of the probabilistic, residualized YFV-related time 
series autocovariate matrices from a fitted multivariate, geopredictive, explanatorial, reduced, 
rank a model  and a portmanteau test was extendable to  a reduced rank model.  
 

Traditionally, hierarchical generalized, empirically regressable, time serie dependent, 
functional data are widely seen in complex YFV-related studies where subunits are nested within 
units, which in turn are nested within treatment groups. A generalized framework of functional 
mixed effects explanatorial, geo-spatiotemporal YFV-related , explanatorial, clinical, field or 
remote, geoclassified, LULC forecastable, covariate parameter estimator may be generated but 
the model derivatives may be serially correlated. Alternatively,Penalized splines may be 
employed to model the functions of functional mixed effects model for such data where within-
unit and within-subunit variations may be modeled through separate sets of principal 
components. By so doing, the subunit level explanatorial geo-spatiotemporal, time series 
functions may be allowed to be correlated. Penalized splines are used to model both the mean 
functions and the principal components functions, where roughness penalties are used to 
regularize the spline fit(Cressie 1993).  

An expectation maximization (EM) algorithm may be also developed to fit a 
explanatorial, geo-spatiotemporal or geo-spectrotemporal, eco-epidemiologically geosampled, 
sylvatic YFV-related model, clinical, field or remote covariate, parameter estimators, while the 
specific covariance structure of the model may be utilized for computational efficiency to avoid 
storage and inversion of large matrices. Our dimension reduction with principal components 
provides an effective solution to the difficult tasks of modeling the covariance kernel of a 
random function and modeling the correlation between functions. The proposed methodology 
may be illustrated in SAS using simulations and an empirical dataset from any clincial, field or 
remote specified, YFV-related LULC study 

The explantorial, clinical, field and remote geo-spatiotemrpoally , geosampled, sylvatic 
YFV-related risk eco-epidemiological LULC, African, expanding, Riceland, agro-irrigated model 
adequacy was based on the residual autocovariance generated from the filtering exercises.  
Thereafter, a convenient asymptotic approximation for geoprediction of the statically important, 
empirical probabilistically dataset of  the regressed, YFV-related, covariate, parameter 
estimators, regression coefficients was determined  using a mean square error matrix. This model 
employed the reduced rank forest canopy to agro-village complex, LULC-related, geopredictive, 
probabilsitic  estimators for calculating the higher-order autoregressive functions. These 
estimators were then re-computed employing variance-standardized, normalized covariances for 
quantitating the observed time series dependent, YFV-related  uncertainty probabilities in a 
structural-equation model fit.  
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Interestingly for the time series explanatorial,  YFV-related, risk based analysis, two well-
known versions of a portmanteau test were employed for testing for latent autocorrelation in 
ArcGIS. These tests were  based on whether any geocalssified LULC  group of autocorrelations 
of residual time series were different from zero in the geo-spatiotemrpoally, geosampled, eco-
epidemiological empirical  dataset of forecasted derivatives. The Ljung–Box test, which is an 
improved version of the Box–Pierce test, having been devised at essentially the same time which 
may identify seemingly trivial simplifications omitted in any optimizing algorithm 
(www.esri.com). The Ljung–Box test is a type of statistical test of whether any of a group of 
autocorrelations of a explanatory time series are different from zero(Box and Jenkins 1985). 
Instead of testing randomness at each distinct lag, the test evaluated  the "overall" randomness 
based on a number of lags, and was therefore a portmanteau test .  

The Ljung–Box test in ArcGIS was defined as follows for constructing the   seasonal, 
robust, YFV-related, explanatorial, probabilistic, eco-epidemiological, risk model where H0 was 
the geosampled, YFV-related, data which were the independently distributed (i.e. the correlations 
in the population from which the sample is taken are 0, so that any observed YFR-related 
correlations in the data result from randomness of the sampling process). Ha then was  the data 

not independently distributed. The test statistic was then  where n was the 
seasonal empirical sampled, sylvatic, YFV-related   parameter estimator dataset size, was  the 
sample autocorrelation at lag k, and h was the number of lags being tested. For significance level 
α, the critical region for rejection of the hypothesis of randomness then  in our seasonal  
geopredictive, endemic, transmission-oriented, YFV-related, eco-epidemiological, risk model 
was  where  was the α-quantile of the chi-squared distribution with h degrees of 
freedom. 

We employed the Ljung–Box test for constructing a robust ARIMA employing the 
geosampled, clinical, field and remote-geosampled YFV-related explanatory model parameter 
estimator  employing  the empirical sampled field and remote covariates. Note that it was applied 
to the residuals of a fitted ARIMA model, not the original series, thus in our applications the 
hypothesis actually being tested was that the time series YFV-related model residuals from the 
ARIMA model that had no latent autocorrelation coefficients. When testing the residuals of an 
estimated ARIMA model, the degrees of freedom need to be adjusted to reflect the parameter 
estimation. For example, for an ARIMA(p,0,q) model, the degrees of freedom should be set to 

 (see Box and Jenkins 1985).The Box-Pierce test uses the test statistic which was 

given , by  which used the critical regions as defined above. Our simulation ARIMA 
study showed that the Ljung–Box statistic can model explanatory geopredictive YFR-related 
time series data. 

To model a series of monthly counts of new seasonal, YRV episodes in Gulu, GSARIMA 
models and GARIMA models with a deterministic seasonality component were developed. 
GSARIMA and GARIMA models are an extension of the class of GARMA models and are 
suitable of parsimonious, forecast, risk modeling non-stationarity in seasonal time series count 
data with binomial conditional distributions(see Cressie 1993). The seasonal, YFV-related, time 
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series dependent, probabilistic, explanatorial, risk models were presented with a choice of 
identity link function or logarithmic link functions. A choice between two transformation 
methods were then applied to deal with the zero-valued, explanatorial, geopredictive, time series 
dependent, probabilistic, sylvatic, YFV-related, covariate, parameter estimator in the 
explanatorial, clinical,  field and remote-geosampled, time series, empirical dataset using a 
threshold parameter. When a seasonal vector, arthropod-related, explanatorial, geopredictive, 
eco-epidemiological, risk model, count variable, time series has many endemic transmission-
oriented, risk-based observations of zero, both transformation methods and several threshold 
parameters should be explored in order to find the best fitting model (Jacob et. al.2005b).  

Bayesian GSARIMA and GARIMA models were then applied to the seasonal, YFV-
related, case count, time series data geosampled at the Gulu epidemiological study site. GARMA 
models related the time series geosampled, YFV-related, explanatorial, observational, clinical, 
field and remote observational predictors and ARMA components to a transformation of the 
mean parameter of the data distribution ( ), via a link function. In this research, a log link 
function ensured that  was constrained to the domain of positive geosampled, endemic, 
transmission-oriented, explanatorial, covariate, parameter estimator, coefficient values. Both a 
GSARIMA and a GARIMA model with a deterministic seasonality component were then 
selected, based on different criteria. The sylvatic YFV-related GARIMA model with 
deterministic seasonality showed a lower DIC, but the YFV-related GSARIMA model had a 
lower mean absolute relative error and required fewer clinical, field, or remote geosampled, 
coavariate, parameter estimators, for enabling the quantitation process.  

Further, Bayesian modeling allowed for the analysis of the posterior geopredictive 
seasonal explanatorial, YFV-related, probabilistic distributions. The performance of the selected 
negative binomial model was then compared with that of a Gaussian version of the model on 
Box-Cox transformed field and remote-sampled data. These distributions did not perfectly mirror 
the distribution of the residual forecasted derivatives for either model. This may have been an 
indication that the assumptions about the underlying seasonal geopredictive explanatorial, YFV-
related risk-based, geoclassified,  sylvatic, LULC distributions were not entirely appropriate for 
either endemic, transmission-oriented, probabilistic, eco-epidemiological, risk model. However, 
analysis of the regression, YFV-related, geo-spatiotemporal residuals showed that the posterior 
geopredictive distributions were much better for the negative binomial GSARIMA geopredictive, 
YFV-related, explanatorial, geo-spatiotemporal, LULC-related, eco-epidemiological, risk model 
than for its Gaussian version on the transformed data when counts were low. Both models 
accounted for latent autocorrelation in the geosampled explanatorial, endemic, transmission-
oriented, risk-related, YFV-related, clincial, field or remote data, but the negative binomial model 
had an 6% better MARE than the Gaussian version on transformed data (0.314 vs. 0.478). 

For many explanatorial, YFV-related, probabilistic, linear models, a MLE can be found as 
an explicit function of the observed data x1, ..., xn (e.g., geosampled YFV-related clinical, field or 
remote variables). For many other models, however, no closed-form solution to the maximization 
problem is known or available, and an MLE has to be found numerically using optimization 
methods in SAS. For some problems, there may be multiple estimates that maximize the 
likelihood. For other problems, no maximum likelihood estimate exists (meaning that the log-
likelihood function increases without attaining the supremum value).  
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Here, the MLE coincided with the most probable Bayesian estimator given a uniform 
prior distribution LULC-related , geo-spatiotemporal, geosampled,  covariate, paramter 
estimators   estimators Indeed, the maximum a posteriori estimate was the parameter θ that 
maximized the probability of θ given the  geosampled, explanatorial,clinical, field or remote   

data as defined by the Bayes' theorem:  where  was 
the prior distribution for the parameter θ and where  was the probability of the 
geosampled clincial, field or remote geosampled data averaged over all parameters. Since the 
denominator was  independent of θ, the Bayesian estimator wasobtained by maximizing 

with respect to θ. We assumed that the prior  was a uniform 
distribution. The Bayesian estimator was obtained by maximizing the likelihood function [i.e., 

]. Thus the Bayesian estimator coincided with the  MLE for a uniformed, 
YFV-related, explanatorial, geo-spatiotemporal, prior distribution . We found that the MLE 
was an extreme sylvatic, YFV-rerlated, probabilistic, geoclassified sub-meter resolution, eco-
georeferenceable, LULC estimator which was obtained by maximizing a function of θ, where  

the objective function (c.f., the loss function) was quantiated as  and where  
the sample analogue of the expected log-likelihood was quantiated by , where 
this expectation was taken with respect to the true LULC density [i.e., ]. 

 Maximum-likelihood estimators have no optimum properties for finite samples, in the 
sense that when evaluated on finite samples, other estimators have greater concentration around 
the true parameter-value(Cressei 1993) However, like other estimation methods, ML estimation 
possess a number of attractive limiting properties for robust, geo-spatiotemporal, YFV-related 
explanatorial, forecast, eco-epidemiological, vulnerability, risk modeling.For example, the 
sample size of an empirical geosampled, eco-epidemiological explanatorial, clinical, field or 
remote geosampled, geoclassified, LULC   dataset may increase to infinity, where sequences of  
MLEs have these properties:1)Consistency whereby the sequence of MLEs converges in 
probability to the value being estimated;and, 2)Asymptotic normality: as the sample size 
increases, the distribution of the MLE tends to the Gaussian distribution with mean and 
covariance matrix equal to the inverse of the Fisher information matrix.Efficiency, (i.e., it 
achieves the Cramér–Rao lower bound when the YFV-related sample size tends to infinity). This 
means that no consistent, covariate parameter estimator has lower asymptotic mean squared error 
than the MLE (or other geosampled, explanatorial, clinical, field or remote estimators attaining 
this bound) in any geo-spatiotemrpoally, geosampled LULC-related YFV, , forecasting, 
regression-related probabilsitic, geo-spatiotemporal, eco-epidemiological, risk model.Second-
order efficiency may be applicable to  post correction bias quantitation in the forecst derivatives. 
Since the  MLE is consistent regardless, having a sufficiently large number of explanatorial, 
clinical, field or remote geosampled, sylvatic, YFV-related observations n, it is possible to find 
the value of θ0 with arbitrary precision. This means that as n goes to infinity a geo-
spatiotemporally, geosampled, probabilistic,explanatorial, clinical, field or remote-
specified,YFV-related, geoclassified LULC covariate, paramter  estimator [i.e., ] will converge 
in probability to its true value:  
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The fact that the cumulative distribution functions did not perfectly match the diagonal 
indicated in the YFV-related LULCeco-epidemiolgical, forecasting risk model suggested that 
there is room for improvement, through modeling a more complex latent autocorrelation 
structure through time varying SARIMA parameters and through the inclusion of more seasonal-
sampled covariate, parameter estimators. It is also however possible that assuming an underlying 
negative binomial distribution is not entirely appropriate for YFV-related LULC risk modelling. 
In the latter case, the DIC, would be based on the assumption which may have a less value than 
the MARE for robustly comparing explanatorial, geopredictive, YFV-related, endemic, 
transmission-oriented, risk model, residually forecasted derivatives. Fortunately, MARE does not 
depend on the assumption of a true underlying distribution, thus it would be easier for 
implementing IVM. 

 Importantly, lagged, YFV-related, probabilsic observations employed as seasonal-
geosampled, geoclassified, LULC covariate parameter estimators in PROC ARIMA were 
logarithmically transformed, which unfortunately was not possible for observations with a value 
of zero. To circumvent this problem, we added a small constant to the geosampled, clinical, field 
and remote geo-spatiotemporal, geoclassified, YFV data for the zero-valued, probabilistic, 
parameter estimator, covariate coefficients. Grunwald and colleagues (2000) considered a 
conditional linear autoregressive (CLAR) model with an identity link function. In order to ensure 
a positive , restrictions we used the explanatorial, geopredictive, endemic, transmission-
oriented, risk-related, regression-based, YFV-related,LULC, covariate,  parameter estimators as a  
variant of the GARMA model. We then constructed a robust, generalized, linear, autoregressive, 
moving average model. 

Heinen (2003) proposed a class of explanatorial, predictive, autoregressive, conditional 
Poisson (ACP) models which may allow for over and under dispersion in the marginal 
distribution of seasonal, geosampled explanatorial, geopredictive, YFV-related, clinical, field and 
remote-specified, geosampled empirical data. Another class of Poissonized probability models 
with autocorrelated error structure that uses “binomial thinning are called integer-valued 
autoregressive (INAR) models”. INAR models may be theoretically extended to moving average 
(INMA) and INARMA seasonal, probabilsitic,empriically regressable,  YFV-related, time series 
dependnet, explanatorial, geopredictive,  risk models in ArcGIS. 

An alternative, seasonal, YFV-related, parameter-driven,  ArcGIS-related, probabilsitic, 
risk modeling approach may assume an autoregressive process on time specific random effects as 
introduced in the mean structure, using a logarithmic link function. Such a model is sometimes 
called a stochastic autoregressive mean (SAM) model and has frequently been applied in 
Bayesian geo-spatiotemporal, hierarchical, generalized, probabilsic modeling. This model can 
compare various regression models for time series of counts which can account for discreetness, 
overdispersion and serial correlation. Besides observation- and covariate parameter estimator-
driven YFV-related,probabilsitic, eco-epidemiological, risk models based upon corresponding 
conditional Poissonian distributions, a ecologist or data analyst may also consider a dynamic 
ordered probit model as a flexible specification to capture the salient  explanatorial 
georferncable, explanatorial, clinical, field or remote geosampled, eco-epidmiological, data, 
feature attributes based on  time series of counts. For all sylvatic YFV-related, LULC, forecast, 
vulnerability,risk  models, appropriate efficient estimation procedures may be generated in 
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SAS(e.g., PROC MCMC). For covariate parameter estimator-driven, YFV-related LULC 
specifications this requires Monte Carlo procedures like simulated Maximum likelihood or 
Markov Chain Monte-Carlo. The methods including corresponding diagnostic tests may then be 
illustrated with, YFV-related G(S)ARIMA, geoclassified LULC, risk models. The residually 
forecasted derivatives may be particularly useful in the drive towards YFV-related elimination, 
but could also be applied to other vector arthropod-related diseases. Although building and fitting 
Bayesianized,geo-spatiotemproal or geo-spectrotemporal, eco-epidemiological, vulnerability, 
endmeic,  YFV-related explanatorial, eco-epidemiological,  forecast-oriented, GSARIMA-
related, endemic transmission-oriented, geoclassified LULC, risk models is laborious, they may 
provide more realistic distributions when quantitating time series of LULC counts than do 
Gaussian methods on transformed data, especially when counts are low. 

 
We then employed a binary, geographic weighted, geo-spatiotemproal matrix based on a 

planar graph for geo-spatiotemporally quantitating the time series dependent, YFV-related, 
explanatorial, endemic, transmission-oriented, geopredictor variables. Seasonal explanatorial, 
geopredictive, sylvatic YFV-related,  spatial autocorrelation devices were constructed from 
geographic weights matrices in ArcGIS to capture the covariation among the geosampled, 
endemic, transmission-oriented, covariate LULC-derived, parameter estimator, coefficient values 
of one or more random variables that were  associated with the configuration of the LULC areal 
units.  We generated a Moran’s scatterplot in ArcGIS employing the time series LULC changes 
which were then transformed to robust explanatorial, geopredictive, Cartesian coordinates for 
representing the forest canopy to agro-village complex LULC changes based on geo-
spatiotemporal changes in ,precipitation and  human population statistics at the Gulu 
epidemiological  study site  to display probabilistically regressed values for the 
ecogeoreferenced, eco-epidemiological, wavelength, frequency,  YFV-related, geoclassified 
LULC, data feature attributes. We employed a standardized versus summed nearby standardized 
values format in ArcGIS whose associated bivariate regression slope coefficient was used to 
generate the unstandardized Moran’s Coefficient (MC).  
 

Thereafter, we employed a datset of orthogonal spatial filter eigenvectors in ArcGIS to 
determine if the time series explanatorial, geopredictive, YFV-related, endemic transmission-
oriented, LULC-specified, data, feature attributes  represented positive or negative 
autocorrelation. Autocorrelation can quantify time series cluster-based varying and constant 
explanatory georefernced geopredictive covariates (Griffith 2003). We quantitated the residual 
heteroskedastic, geoclassified, LULC geoparameters in the spatial filter hierarchical, 
autoregressive, sylvatic YFV cluster-based, endemic, transmission-oriented, eco-
epidemiological, geoclassified LULC, risk-related forecasting African, ricland agro-irrgated 
village models. Heteroskedascity occurs when the standard deviations of a sampled variable 
monitored over a specific amount of time is non-constant (Hosmer and Leneshew 2000). Non-
quantitation of latent, heteroskedatic, explanatorial, clinical, field or remote-specified parameters 
in a time series explanatorial, geopredictive, vector insect larval habitat, geoclassified LULC, 
distribution model can propagate  errorresdiuals  (Jacob et al. 2009d, Jacob et al. 2010b).  

Modeling non-constant variance, or heteroscedasticity in a seasonal, YFV-related 
explanatorial, LULC, geopredictive, endemic, transmission-oriented, risk model can improve the 
efficiency of estimates of the covariate, parameter estimators associated with the mean of a series 
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while providing insight into the volatility of the series. SAS/ETS software provides capability to 
do linear and nonlinear time series dependent, YFV-related, geoclassified, LULC, explanatorial 
regression with heteroskedatic models using the AUTOREG and MODEL procedures, 
respectively. This example makes use of the MODEL procedure.  One of the key assumptions of 
regression analysis is that the variance of the errors is constant across observations (Hosmer and 
Lemeshew 2000).  Unfortunately, this assumption is often violated when forecast, eco-
epidemiological, geo-spatiotemporal,risk modeling time series or panel-related, seasonal, vector 
arthropod-related, time series dependent, geoclassified, LULC, endemic, transmission-oriented, 
clinical, field and remote geosampled  data, resulting in inefficient covariate, parameter 
estimatators and inaccurate forecast error variance.  

Consider the following generalized, model: where 

 Suppose a seasonal, sylvatic, time series, YFV-related, endemic, transmission-
oriented, prognosticative, explanatorial, time series dependent, eco-epidemiological, 
geoclassified LULC, risk model is  homoscedastic, [i.e.,h(t)=1]. If a probabilistic, geo-
spatiotemporal, geosampled,  YFV-related risk model is heteroscedastic with known form a 
ecologist or data analyst can improve the efficiency of the geosampled geoparameter 
probabilistically regressed, estimates by performing a weighted regression.       

The weight variable, using this notation, is  if the residually forecasted errors for an 
explanatorial, robust, geopredictive, YFV-related, geoclassified LULC, risk model are 
heteroscedastic and the functional form of the variance is known, the model for the variance can 
be estimated along with the regression function. Thereafter, to specify a functional form for the 
variance, a ecologist, entomologist or data analyst may assign the function an H.var variable 
where var is the equation variable in AUTOREG. Thus,  for instance, if  the researchist desires to 
estimate the scale parameter for the variance of a simple OLS time series dependent,  
explanatorial, predictive, vulnarability, sylvatic YFV endemic transmission-oriented, 
probabilistic, regression-based, risk  model  y = a + b * x can be  specified in SAS as:  

  proc model data=s; 
     y = a + b * x; 
     h.y = sigma**2; 
   fit y; 
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In so doing, the above YFV-related, predictive, risk model would have a constant 
variance, sigma**2. PROC MODEL estimates the constant-variance model by default; therefore 
the h.y equation is unnecessary in this case. Thereafter, a ecologist, entomologist or researchist 
may consider the same model with the following functional form for the variance: 

This seasonal, YFV-related, probabilsitic, geo-spatiotemporal geosampled, 
forecast, eco-epidemiological, geoclassified LULC, risk model may be written as  

  proc model data=s; 
     y = a + b * x; 
     h.y = sigma**2 * x**alpha; 
   fit y; 

In addition to estimating the parameters, a and b, the MODEL procedure may also estimates the 
time series dependent,  YFV-related  parameters sigma and alpha, which may then be determined 
to be associated with the error variance.  

The following example may be then employed  for time series dependent, YFV-related, 
probabilistic, geoclassified LULC, data creation  from an average of daily rainfall figures from 
January 1961 to March 2000. A simple, commonly used rate model is the Vasicek model: 

 The following PROC 
MODEL statements may then be employed to fit a geo-spatiotemporal, geosampled, 
explanatorial, clinical, field or remote geosampled, YFV-related, endemic, probabilistic, 
geoclassified LULC, risk  model as:  

  proc model data=weeklyraindall rates; 
     ffrate = lag(ffrate) + kappa  * (theta - lag(ffrate)); 
     lag_ffrate = lag( ffrate ); 
     label kappa = "Speed of Mean Reversion"; 
     label theta = "Long term Mean"; 
   fit ffrate / fiml breusch=( lag_ffrate ) out=resid outresid; 
  run; 

The test for heteroscedasticity then would be positive.  To correct for the heteroscedasticity, a 
researchist  could use a time series dependent, geo-spatiotemproal, variance model. Another 
popular model for this type of data is the Cox Ingersoll Ross model, which could account for the 
heteroscedastic, Ae aegypti, oviposition, sub-meter resolutiuon, LULC, covariate parameter 

estimator employing   
The following PROC MODEL statements could then be employed to fit this probilistic, eco-
epidemiological,YFV-related, endemic, transmission-oriented, geoclassified LULC, risk  model:  

  proc model data=weekly rainfall rates; 
     ffrate = lag(ffrate) + kappa * (theta - lag(ffrate)); 
     h.ffrate = sigma**2 * lag(ffrate); 
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     label kappa = "Speed of Mean Reversion"; 
     label theta = "Long term Mean"; 
     label sigma ="Constant part of variance"; 
   fit ffrate / fiml out=resid outresid; 
  run; 

Interestingly, the dependency on the lag of FFRATE has been removed, by SAS but the 
residuals would still  remain heteroscedastic. A GARCH (1,1) related YFV endemic 
transmission-oriented risk-related, geoclassified LULC, forecasting, risk model may then be  
considered using 

. Residuals from a Cox Ingersoll Ross YFV-related, explanatorial, 
geopredictive, regression-based, eco-epidemiological, probabilistic, geoclassified LULC, risk 
model could then be constructed employing the PROC MODEL statements as by  fit a 
GARCH(1,1) model:  

  proc model data=weekly rainfall rates; 
     ffrate = lag(ffrate) + kappa * (theta - lag(ffrate)); 
     if ( _OBS_ = 1 ) then 
     h.ffrate = arch0 + arch1 * mse.ffrate + garch1 * mse.ffrate; 
     else 
     h.ffrate = arch0 + arch1 * zlag(resid.ffrate**2)  
                + garch1 * zlag(h.ffrate); 
   fit ffrate / fiml out=resid outresid; 
  run; 

The residuals from this estimation may then be employed with other  clinical, field or 
remote geosampled covariate parameter estimators( e.g., time series forest canopy to agro-village 
complex LULC prognosticators)  in order to generate unbiased stochastically and/or 
deterministically explanatorily  interpotable covariate,parameter estimators in the  forecasted 
geospatialized, sylvatic YFV, clinical, field or remote-specified, residualized, ovispoition,  sub-
meter resolution, propogagtional, probabilsitic derivatives.  

 The linearized probabilsitic, regression seasonal, explanatorial, geopredictive,  YFV-
related, endemic, transmission-oriented, geoclassified LULC, forecasting, eco-epidemiological, 
risk model  where X is the vector of explanatorial, geopredictive, endemic, 
transmission-oriented, risk related, clinical, field or remote-specified, geopredictive variables and 
β was a k × 1 column vector of geoparameters to be estimated ( e.g., NDVI measured time series 
ArcGIS quantitated, covariate, parameter estimator,  geoclassified, LULC coefficients) .  

We employed the OLS estimator  where denoted the matrix of 
stacked  explanatorial, georeferncable, geoclassified LULC, clinical, field and remote 
geosampled time series dependent, explanatorial, sylvatic YFV-related geoclassified, covariate, 
paramter estimator, coefficient values observed in the data geosampled at the Gulu 
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epidemiological study site. Since the sample errors had equal variance σ2 and were uncorrelated, 
then the least-squares estimate of β was the  best linear unbiased estimator and its variance was 

easily estimated with where was the probabilistic, 
regression residuals. When the assumptions of are violated, the OLS estimator 
loses its desirable properties ( Hosmer  and Lemeshew 2000). 
Indeed, where  appeared in the 
forecasted clinical, field or remote, geopredictive variables. While the OLS point estimator 
remained unbiased in our seasonal, geopredictive, probabilsitic, YFV-related, endemic, 
transmission-oriented, geoclassified LULC, risk model, it may not have been the optimal in the 
sense of having minimum mean square error in the residually forecasted derivatives. The OLS 

variance estimator does not provide a consistent estimate of the variance of the 
OLS estimates (Greene 1998). 

Since the probabilistically quantiated regression errors in our time series dependent, 
explanatorial, geopredictive, probabilsitic, YFV-related, endemic, transmission-oriented, 
geoclassified, LULC, risk model  were independent, but had distinct variances σi

2, we 
assumed that may  be optimally estimated with . This same 
assumption provided White's (1980) estimator, often referred to as heteroscedasticity-consistent 

estimator): where  
denotes a matrix of stacked  clinical, field and remote-sampled coefficient values from the 
empirically, geo-spatiotemporal or geo-spectrotemporal, eco-epidemiologically  geosampled 
datasets. The estimator we employed was from then derived in terms of the generalized method 
of moments (GMM). 

In our seasonal, geopredictive, vector arthropod-related, endemic, transmission-oriented, 
risk based data analyses, the GMM was a generic method for the geosampled, clincial, field and 
remote time series dependent, geopredictive, explanatorial, estimating parameters. Usually 
GMM applied in the context of semiparametric,  seasonal, YFV-related, explanatorial  
geopredictive, endemic, transmission-oriented, geoclassified LULC,  risk models employ a 
parameter of interest that is finite-dimensional, whereas the full shape of the distributional  
function of the geosampled data may not be known, and therefore the  MLE is not applicable. In 
statistics a semiparametric model is a model that has parametric and nonparametric 
components.(Hosmer and Lemeshew 2000). Our seasonal, probabilsitc, sylvatic, YFV-related, 
explanatorial, geopredictive, endemic, transmission-oriented, geoclassified LULC, risk model 
was then a collection of distributions: indexed by a parameter . A parametric  
explanatorial, YFV-related, probabilistic, time series seasonal,  endemic, transmission-oriented, 
risk  model  is one in which the indexing parameter is a finite-dimensional vector (in -
dimensional Euclidean space for some integer ( forest-canopy to agro-village complex LULC 
change ); ( i.e. the set of possible sampled values for  would be  a subset of , or ). In 
this case a could remark that is finite-dimensional in a robust, seasonally probabilictic, YFV-
related, endemic, transmission-oriented, eco-epidemiologica, risk model. In nonparametric 
models, the set of possible values of the parameter is a subset of some space, not necessarily 
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finite dimensional (Greene 1998). For instance,  a researchist might consider  a datset of all 
seasonal, YFV-related, spatial distributions with mean 0. Such spaces would then be vector 
spaces with topological structure, but may not be finite dimensional as vector spaces. Thus, 

for some possibly infinite dimensional space  may conduct a   powerful covariate, 
parameter estimation.  In semiparametric models, the parameter has both a finite dimensional 
component and an infinite dimensional component (often a real-valued function defined on the 
real line)(Hosmer and Lemeshew 2000). Thus, the parameter space  in a semiparametric, 
seasonal, YFV-related, explanatorial, geopredictive, eco-epidemiological, probabilistic, risk 
model would satisfy , where is an infinite dimensional non-Euclidean space. 

Parametric and semi-parametric, seasonal, vector arthropod-related explanatory 
geopredictive, endemic, transmission-oriented, wavelength, submeter resolution, LULC risk 
models often use smoothing or kernels (Jacob et al. 2005b, Griffith 2005). In statistics and image 
processing, to smooth an empirical dataset of geo-spatiotermpoally geosampled probablsitically 
regressed, LULC estimators  is to create an approximating function that attempts to capture 
important patterns in the data, while leaving out noise or other fine-scale structures/rapid 
phenomena (www.esrei.com). In smoothing, seasonal empirically, probabilistically regressed, 
YFV-related, geoclassified LULC, data points of a signal may be  modified so that individual 
geo-spatiotemporally, geosampled points presumably because of noise are reduced, and points 
that are lower than the adjacent geosampled points are increased leading to a smoother signal. 
Smoothing may be used in important ways that can aid in seasonal, sylvatic YFV-related, 
geoclassified LULC, predictive, eco-epidemiological, risk-based, time series, data analysis 
including 1) being able to extract more information from the data as long as the assumption of 
smoothing is reasonable and (2) being able to provide a risk-based analyses that are both flexible 
and robust. Many different algorithms may be used in smoothing of empirical geosampled, YFV-
related clinica,  field and remote-specified,  explanatorial covariate parameter estimators. Data 
smoothing for regressively quantitating vector arthropod-related probabilistically geosampled, 
covariate  parameter estimator significance is typically done through the simplest of all density 
estimators, the histogram (see Jacob et al. 2005b, Griffith 2005).Other higher level  smoothing 
techniques may also be employed for deriving optimal, unbiased, asymptotical, YFV-related, 
stochastic/deterministic, covariate parameter estimators. For example, use of an interpolating 
spline may fit a smooth curve exactly through  a time series dataset of geo-spatiotemporal or 
geo-spectro0temporal, geosampled, YFV-related empirically regressable, explanatorial, clinical, 
field or remote, geoclassified, LULC, seasonally sensitive points.  

In mathematics, a spline is a sufficiently smooth polynomial function that is piecewise-
defined, and possesses a high degree of smoothness at the places where the polynomial pieces 
connect (which are known as knots) (Cressie 1993). In interpolating problems, spline 
interpolation is often referred to as polynomial interpolation because it yields similar results, 
even when using low-degree splines, to interpolating with higher degree polynomials while 
avoiding instability due to Runge's phenomenon. In the mathematical field of numerical analysis, 
Runge's phenomenon is a problem of oscillation at the edges of an interval that occurs when 
using polynomial interpolation with polynomials of high degree over a set of equispaced 
interpolation points (Hosmer and Lmeshew 2002). 
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In computer graphics splines are popular curves because of the simplicity of their 
construction, their ease and accuracy of evaluation, and their capacity to approximate complex 
shapes through curve fitting and interactive curve design. The most commonly used splines in 
vector arthrpos-related forecast , vulnerability, eco-epidemiological, risk models are cubic spline, 
cubic B-spline and cubic Bézier spline. They are common, in particular, in spline interpolation 
simulating the function of splines. The term spline is adopted from the name of a flexible strip of 
metal commonly used by draftsmen to assist in drawing curved lines. Splines are curves, which 
are usually required to be continuous and smooth( Cressie 1993). Splines are usually defined as 
piecewise polynomials of degree n with function values and first n-1 derivatives that agree at the 
points where they join. The abscissa values of the join points are called knots. The term "spline" 
is also used for polynomials (splines with no knots) and piecewise polynomials with more than 
one discontinuous derivative. As such, YFV-related explanatorial splines with no knots would be 
generally smoother than splines with knots, which would be subsequently generally smoother 
than splines with multiple discontinuous derivatives. Splines with few knots are generally 
smoother than splines with many knots(Cressie 1993); however, increasing the number of knots 
usually increases the fit of the spline function in LULC data (Jacob et al. 2011). Knots give the 
curve freedom to bend to more closely follow the data (Griffith 2003). 

Thus, a spline in a explanatorial, clinical, field or remote-specified, geo-spatiotemporally 
geosampled, probabilistic,  piecewise-polynomial real function on an interval [a,b] 
composed of k subintervals with .The restriction 
of S to an interval i is a polynomial ,so 
that  The highest 
order of the polynomials is said to be the order of the spline S. The spline is said to be 
uniform if all subintervals are of the same length, and non-uniform otherwise (Cressie 1993). 
The idea then in a sylvatic YFV-related, ovispoition eco-epidemiological, geoclassified, LULC, 
probabilsitic, African, ricland, agro-irrigated, village-level, risk model is to choose the 
polynomials in a way that guarantees sufficient smoothness of S. Specifically, for a spline of 
order n, S is required to be both continuous and continuously differentiable to order n-1 at the 
interior points : for and  The method 
requires that a certain number of moment conditions were specified for the model. These 
moment conditions are functions of the model parameters and the data, such that their 
expectation is zero at the true values of the parameters. The GMM method then minimizes a 
certain norm of the sample averages of the moment conditions (Griffith 2003). The GMM 
estimators are known to be consistent, asymptotically normal, and efficient in the class of all 
estimators that don’t use any extra information aside from that contained in the moment 
conditions. 

Note in the literature, the covariance matrix of the -consistent limiting 
distribution: where and the forecasting equation 

= Thus, 

 may be revealed when 
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geo-spatiotemporally, empirically regressing, probabilsitic, clincial, field or remote gesampled 
time series dependnet, forecasters. Precisely which covariance matrix is  to be employed in a 
robust, YFV-related, explanatorial, seasonal, geopredictive, endemic, transmission-oriented, 
probabilistic, eco-epidemiological, risk model then should be a matter of the context. Alternative 
estimators have been proposed in MacKinnon an d White (1985) that correct for unequal 
variances of regression residuals due to different leverage. Unlike the asymptotic White's 
estimator, these estimators may unbiased when the sylvatic, YFV-related, time series, eco-
georferenceable, ecoe-pidemiological, sub-meter, resol;ition grod-stratfiied, LULC data are 
homoscedastic. 

 Another approach that may be employed  for future YFV-related geocalssified LULC 
research is g an ArcGIS-based Land Information Surface (LIS) model.  These models are 
designed explicitly for soil moisture LULC estimation.  The LIS model is very customizable 
with the ability to choose many different inputs for geo-spatiotemporal, geosampled covariate, 
parameter estimators (e.g., elevation, soil types, and land use classification) and other related 
data (i.e., radiation and meteorological fields including precipitation updated hourly or 3-hourly).  
LIS has the ability to run several "tiles" within a QuickBird, digitized ,grid cell that has different 
geoclassified, geo-spatiotemporal,seasonal LULC classifications, (Jacob et al. 2010b), so even if 
a digitized cell classified at a riceland agroecosystem LULC study site was for example 5% 
urban, that portion could still be monitored. In previous research, Jacob et al. (2010b) generated 
an LIS map using field and QuickBird-sampled explanatorial, probabilistic predictors of Cx. 
pipiens/restuans for 15 larval habitats in Urbana/Champaign, Illinois USA (Figure 17). The LIS 
framework may be thus used to provide information on surface soil moisture conditions related 
to the sampled Aedes and wild monkey habitats at the Gulu study site, for example. In these 
models  the configuration, may be based on a Land Data Assimilation System (NLDAS) forcing 
data (1/8- degree, hourly) up to 3 days before the sampling day and a Global Land Data 
Assimilation System (GLDAS) forcing data (1/2 degree, 3-hourly) up to 12 hours previous to the 
time of sampling. Additionally,  a researchist may augment  YFV-related, time series, 
explanatorial model covariate, paramter estimators with extra georeferencable, explanatorial, 
geopredictive, time series dependent, LULC variables at each grid point to quantify such data as: 
(1) depth in an open artificial water container (taking into account precipitation and evaporation 
influenced by temperature, humidity, winds, and radiation), (2) water depth in a shaded water 
container such as a waste tire (similar to the first, but with little or no solar radiation), and (3) 
potential standing water on the ground, assuming an area with suitable LULC topography exists 
inside the QuickBird grid cell with no drainage by runoff.  This would provide monitoring of 
potential conditions favorable to Ae egypti and other YFV-related mosquito outbreaks. 
Thereafter, all generated model covariate paramter estimators may be analyzed using various 
spatial statistical algorithms. 

A hierarchical, Bayesian, generalized, probabilistic, orthogonal matrix generated in 
PROC MCMC optimal seasonal sylvatic ,YFV-related, explanatorial interpolatable predictors by 
quantitating  the asymptotical variance distribution in the geosampled data for identifying 
prolific, geo-spatiotemporal geosampled LULC count data. Currently, interest is emerging within 
bioinformatics to use Bayesian statistics for building geo-spatiotemporal, geosampled, vector 
insect larval habitat, eco-epidemiological, forecasting,risk-related, distribution models of various 
kinds. As such in a ecologist, entomologist or data anlyst could  construct Bayesian, probablistic, 
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estimation matrices based on the geosampled Aedes and wild monkey habitat explanatory 
predictor covariate, paramter estimators, for example. Often, when constructing Bayesian 
frameworks for quantifying vector mosquito larval habitat data there is a requirement of a Box-
Cox type of power transformation and a Markov Chain Monte Carlo (MCMC) algorithm for 
enabling the use of non-normal probability models with a spatial autoregressive specification but 
in a hierarchical model context. For example, in Jacob et al. (2011a), a Bayesian model was 
generated using WinBUGs to quantify stochastic error propagation in multiple datasets of An. 
gambiae s.l. explanatory predictor, covariate, paramter estimator,  geo-spatiotemporally 
geosampled in Malindi and Kisumu, Kenya. WinBUGS is statistical software for Bayesian 
analysis using MCMC methods based on the BUGS (Bayesian inference Using HYPERLINK  
(http:www.mrc-bsu.cam.ac.uk/bugs/winbugs/content shtml).  

 
In Bayesian settings, geosampled explanatorial,  prognosticative, covariate paramter 

estimator Depth of habitat was the most important variable associated with productive habitats 
based on geo-spatiotemporal, geosampled, count data. Thus for future research efforts researchist 
could incorporate multiple Bayesianistic LULC models for determining probabilistic, time series 
predictors that are associated with the sampled Aedes mosquitoes and wild monkey habitats at 
the Gulu study site, for example. The  assumption would be  that the Bayesian LULC eco-
epidmeiological, risk-related analysis may enable researchers to estimate both conditional 
autoregressive and spatial filter hierarchical, generalized linear model specifications employing 
the geo-spatiotemporal, geosampled, YFV-related, LULC mosquito data and wild monkey 
habitat explanatorial covariate, parameter estimators. Spatial filter eigenvectors can then be 
employed to quantitate, probabilistic, uncertainty estimates in the YFV-related geocalssied 
LULC distribution models by geospatially adjusting the georeferenced, geosampled 
explanatorial, clinical,field or remote  data in SAS/GIS®  

 
SAS/GIS® software (HYPERLINK "http://www.sas.com/products/gis/" 

http://www.sas.com/products/gis/).provides an interactive GIS within the SAS System for data 
analyses. SAS/GIS® and SAS STAT® software may thus be employed for determining important 
probability values of   regressed explanatorial clinical, field or remote geoclassified, tiem series 
dependent, covariate, paramter estimators associated to productive Aedes and wild monkey 
habitats at the Gulu riceland agroecosystem, eco-epidemiological study site. SAS STAT® 
provides data analysis in downloadable, experimental versions of three procedures for SAS 9.3® 
on Windows GENMOD, LIFEREG, and PHREG. Fortunately, the new BAYES statement in 
these procedures can generate a Bayesian eco-epidemiological, sylvatic, YFV-related LULC , 
forecasting, risk-related analyses and inference capability in generalized linear models. This 
version is named BGENMOD and contains the full functionality of the original procedures. 
Spatial modeling in SAS/GIS® and SAS STAT software allows errors of estimations to be 
quantified, making it possible to assess the precision of a vector insect larval distribution habitat, 
eco-epidemiological, probabilistic, risk map and relative importance of factors associated with 
abundance (Jacob et al. 2011a, Jacob et al. 2010b, Jacob et al. 2009d).  

      Further an ecologist, entomologist or data analyst may also include time series dependent,  
explanatorial, clinical, field and remote-geo-spatiotemporally geosampled ArcGIS, LULC-
related, covariate parameter estimators and seasonal meteorological coefficient estimates from 
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geosampled Aedes mosquito and monkey cooperative breeding areas and communal resting sites 
to define expectations for prior distributions in WinBUGS®. The BUGS (Bayesian inference 
Using Gibbs Sampling) project is concerned with flexible software for the Bayesian analysis of 
complex statistical models using MCMC specifications (Gilks 1996). In WinBugs®, MCMC 
chains may be generated for the geosampled, explanatorial, clinical,  field and remote 
environmental variables from each potential Aedes mosquito habitats sampled at an ricland 
agroecosystem, geoclassified LULC, eco-epidemiological interventional study site.  Thereafter, 
the WinBUGS Deviance Information Criterion (DIC) tool can be employed to obtain mean 
posterior deviance values and to construct improvement of fit tables and deviation statistics to 
identify the best fitting Aedes habitat models. By specifying explanatorial, clinical, field or 
remote geo-spatiotemporal, sylvatic, YFV-related covariate, paramter estimator, coefficients in a 
Bayesian framework in WinBUGS, a researchist may then account for the explanatorial, 
predictive, covariate, parameter estimators  and determine which ones(s) are significantly 
associated with  a particular ArcGIS derived,  time series, geo-spatiotemporal or geo-
spectrotemporal, eco-epidemiologically geoclassified LULC variables. 

     Finally with the advent of satellite remote sensing products even higher spatial resolution data 
may be employed than QuickBird 0.61m visible and NIR data to identify and quantitate YVR-
related LULC and other  seasonal explanatorial geopredictors. For example, in Jacob et al. 
(2011d) geospatially lagged and simultaneous autoregressive, eco-epidemiological, 
explanatorial, geo-spatiotemporal, risk  models based on multiple predictor variables of 
immature WNV mosquito vector Cx. quinquefacistus and Worldview 1 (WV-1) 5m visible and 
NIR data was  employed to help implant a remote larval habitat-based surveillance system in 
Trinidad and Tobago. Initially, the authors used Geomatica Ortho Engine® v. 10.2 for extracting 
a 3-Dimensional digital elevation model (DEM) from the WV-1 raw imagery. Results of the 
DEM analyses indicated a statistically significant inverse linear relationship between total 
geosampled Cx. quinquefacistus immature data and elevation (m) (R2= 0.439; p < 0.0001), with 
a standard deviation of 10.41. Additional field, geosampled information was derived using data 
from an orthogonal digitized grid-matrix constructed in an ArcGIS and overlaid onto the WV-1 
data. A unique identifier was placed in the centroid of each grid cell. Univariate statistics and 
Poisson regression models were then generated using the georeferenced covariate parameter 
estimators in SAS/GIS®. Coefficient estimates were also used to define expectations for prior 
distributions in a Bayesian estimation matrix using MCMC specifications which revealed that the 
covariate , paramter estimator Depth of the geosampled habitat and Distance to the nearest house 
were important geopredictors related to productive habitats based on egg-raft count data. 
Therefore,  a  ecologist, entomologist or data analyst can  conduct  a robustifiable geo-
spatiotemporal,probabilistic, regression-related,  residual, trend analyses employing 
autocorrelation indices linked to tabular data in SAS PROCLMIXED® , for instance  along with 
the Aedes habitat count data in an ArcGIS® geodatabase. An Ordinary kriged-based interpolator  
may then then be used in Geostatistical Analyst Extension of ArcGIS  based on adjusted 
Bayesian estimates to identify unknown and unsampled prolific Aedes aquatic larval habitats. 
The ability to automate tasks and to run the complex spatial autocorrelation and the Bayesian 
probabilsic, estimation models may thus aid in developing IVM control strategies for YFV at the 
Gulu riceland, agro-ecosystem, study site. The resulting geoclassified LULC, explanatorial, 
clinical, field or remote-related, space-time models may then be employed to forecast sites of 
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immature seasonal  Aedes mosquito abundance and cooperative breeding areas and communal 
resting sites throughout the eco-epidemiological, study site. 

 Thereafter,  C++ models can be generated to  geopredict  high and high YFV infection 
rates employing  Aedes mosquito abundance data, habitats meteorological variables, ArcGIS-
derived, LULC covariate, parameter estimators and others. Randomized areas in the eco-
epidemiological, study site will be used to validate the characterization and prediction tools 
created. Thereafter these metrics may be used to validate risk of yellow fever transmission by 
rating variables from 1 to 3 for: 1) continued above average temperatures, 2) continued above 
average rainfall, 3) large vector population, 4) suspected cases for humans; and, 5) virus activity 
in nearby areas to the study sites. Ratings of 1 will indicate low to average risk, ratings of 2 will 
indicate moderate risk and ratings of 3 will indicate high risk 
 

Although in this research we did generate a C++ model based on ArcGIS-derived LULC 
sub-meter resolution, ovispoition, parameter estimators, meteorological variables  and previous 
case data,   entomological factors associated with zoonotic and epidemic transmission factors 
would create a more robust model. This would be vital for the  development  and implementation 
of  a  YF surveillance system.  In order to accomplish this take however it would be necessary to 
understand and define the relationship of the virus with the mosquitoes species associated with 
both the zoonotic and epidemic cycle as well as in non-human primates within an eco-
epidemiological interventional study site. Understanding the cycle of YFV in an interventional 
site can provide the basis for YFV surveillance, epidemic risk prediction and control ().   
 

Unfortunately, the zoonotic cycle or maintenance cycle in most areas of Gulu much like 
the rest of Africa is poorly understood. Thus, it would be vital to initially identity and establish as 
much as information as possible on the temporal distribution and abundance of mosquito species 
associated within different LULCs (e.g., forest, savannah, peri-domestic and urban ecosystems) 
at sentinel study sites.  In  so doing, the principal non-human and human hosts associated with 
specific Aedes mosquitoes may be identified  at a particular site by geo-spatiotemporal 
distribution employing mosquito blood meal analysis and through identification of sylvatic YFV 
in mosquito pools. Thereafter, C++ geopredictive,risk models may be constructed   employing 
ArcGIS-derived, LULC-derived, parameter estimators and meteorological variables  at the 
sentinel sites  
 
        An IVM may be defined  in C++ and ArcGIS for  optimal targeting Aedes mosquitoes for 
vector control  which can include: 1) evidence-baseddecision-making, 2) integrated approaches 
3), collaboration within the health sector and with other sectors, 4) advocacy, social 
mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally 
for the control of all vector-borne diseases. Important recent progress has been made in 
developing and promoting IVM for national malaria control programmes in Africa at a time 
when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) 
and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS 
successfully reduce transmission intensity and the burden of malaria in many situations, it was 
not clear if these interventions alone will achieve those critical low levels that result in other 
vector arthropod elimination. Despite the successful employment of comprehensive integrated 
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malaria control programmes, further strengthening of vector control components through IVM  
for Yellow fever  has not been actualized especially during the "end-game" scenarios where 
control efforts are supposed to go from low transmission situations to sustained local and 
country-wide elimination. To meet this need and to ensure sustainability of control efforts, YFV 
control programmes should strengthen their capacity to use C++ ,ArcGIS and spatial statistical 
data for decision-making with respect to evaluation of current vector control programmes, 
employment of additional vector control tools in conjunction with, case-detection and treatment 
strategies, to determine how much and what type of vector control and interdisciplinary input are 
required to achieve yellow fever elimination. Similarly,on a global scale, there is a need for 
continued research to identify and evaluate new tools for geospatial Aedes immature habitat 
control that can be integrated with existing biomedical strategies in C++ and ArcGIS within 
national  Yellow fever  control programmes.  
 

In conclusion results from both a Poisson and a negative binomial regression (i.e., a 
Poisson random variable with a gamma distrusted mean) revealed that the village-level seasonal-
sampled YFV-related explanatory geopredictive explanatory covariate coefficients were highly 
significant, but furnished virtually no predictive power. Importantly, taking the Poisson mean as 
a gamma distributed random variable leas to the negative binomial regression model for deriving 
various forms of mean-variance relationship, in particular both linear and quadratic, depending 
on assumptions about the gamma mixing distribution YFV-related, probabilsic,  LULC 
geoclassified parameter estimators. In other words, the sizes of the population denominators 
were not sufficient to result in statistically significant relationships, while the detected 
relationships were inconsequential. Thereafter, a linear mean-variance negative binomial model 
was obtained by allowing the gamma shape parameter to vary across the seasonal, geosampled, 
eco-epidemiological, clinical, field or remote-specified, YFV-related, probabilistic observations 
which kept the scale parameter constant, whereas the quadratic form arose  from taking the shape 
parameter as constant and letting the scale vary. 

 
We then generated the normal Q-Q plot for the normalized randomized quantile residuals 

of the model, for which the distribution was slightly leptokurtic. A plot of 
these normalized randomized quantile residuals against time appears a random scattered at first 
sight, but upon closer inspection, extreme residuals occured more often during periods with 
stronger relative changes. This was because the residuals, , were positively correlated with a 

relative change in YFV cases, where the linear regression line expressed  , 
. We constructed a spatial autocorrelation plotin SAS/GIS.The MC was 0.068 while the 

GR was ).791 We then constructed a C++ model.  Rainfall and an  LULC variables were 
employed to represent  rainfall for specific years for quantitating interface distance between 
human population and forest regions respectively. YFV-related cases represented the number of 
yellow fever cases reported for a particular year. From these input, we created a formula of form 
as below, Z = a0 + a1*X + a2*Y and YFCases = a0 + a1*Rainfall + a2*LULC. We then 
determined the values of constants a0 a1 and a2.  We probabilistically  prognosticated the value 
of the sylvatic YFV-related cases without considering effect of human population in initial stage 
and then later we added the effect of population over yellow fever prevalence. To determine a 
relationship between our YFV-related explanatory geoclassified LULC, endemic ,transmission-
oriented, data, we also created 3-D regression.  We used Least square regression plane of the 
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form Z = a0 + a1*X + a2*Y that provided the best fit for the input, eco-epidemiological, data 
points geo-spatiotemporally geosampled  at the Gulu study site.  Only those values were used 
which minimized the following least square value function: F(a0, a1, a2) = (Zi - a0 - a1*X - 
a2*Y)².  The solution of this formula was found with the matrices with the system F/a0 = 0 , F/a1 
= 0 , F/a2 = 0  . The matrix was then used to solve the constants is as follows: Solving these 
equation provided the unique values of constants. In our case these covariate paramter estimator 
coefficient values were as follows:  a0 = 60.9239,  a1 = 0.1957 a2= -65.4218. So the formula was 
written as follows: YFCases =  60.9239 + 0.1957 * Rainfall - 65.4218 * LULC. These YF case 
values predicted does not consider effect of population on it. So to consider population data on 
this prediction, we can re-write the formula as below: YFCases = (1+PI_Factor) * [60.9239 + 
0.1957 * Rainfall - 65.4218 * LULC]. We noted from the C++ model  output that as the human 
population grew yellow fever prevalence also grew linearly due to the variation in LULC from 
agro-village complexes to canopy forested zones and their boundaries. Anthropogenic drivers of 
ecosystem disturbance via human population growth and urbanization can lead to specific 
changes in bioecology that may lead to transfer of the  YF virus pathogen via mosquitoes to 
increasing numbers of highly concentrated and susceptible human populations Real time, 
temporal, vulnerability,eco-epidemiological, Ae.egypti LULC, risk maps can aid in implementing 
IVM . 
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